John Percival

Total Page:16

File Type:pdf, Size:1020Kb

John Percival THE LINNEAN Wheat Taxonomy: the legacy of John Percival THE LINNEAN SOCIETY OF LONDON BURLINGTON HOUSE, PICCADILLY, LONDON WlJ OBF SPECIAL ISSUE No 3 2001 ACADEMIC PRESS LIMITED 32 Jam.estown Road London NWl 7BY Printed on acid free paper © 2001 The Linnean Society of London All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system without permission in writing from the publisher. The designations of geographic entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of the publishers, the Linnean Society, the editors or any other participating organisations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of The Society, the editors, or other participating organisations. Printed in Great Britain. Wheat Taxonomy: the legacy of John Percival Conference Participants (most of whom are identified by number on the key to the group photograph above). I. M. Ambrose,; 2. J. Bingham, UK; 3. R. Blatter, Switzerland; 4. A. Bomer, Germany; 5. A. Brandolini Italy; 6. R. Brigden, UK; 7. A. H. Bunting, UK; 8. P. Caligari, UK; 9. E.M.L.P. Clauss, USA; 10. P.O. Clauss, USA; 11 . K. Clavel, France; 12. P. Davis, UK; 13. J. Dvohik, USA; 14. !. Faberova, Czech Republic; 15 . A. A. Filatenko, Russia; 16. N. P. Goncharov, Russia; 17. P. Greenwell, UK; 18. J. Gregory, USA; 19. K. Hammer, Germany; 20. J. G. Hawkes, UK; 21. H. G. Hewitt, UK; 22. G. Hillman, UK; 23. T. Hodgkin, ltaly; 24. S. Jury, UK; 25 . H. Knuepffer, Germany; 26. J. Letts, UK; 27. F. Miceli, Italy; 28. T. Miller, UK; 29. E. H. Milligan, UK; 30. J. Moore, UK; 31. L.A. Morrison, UK; 32. M. Nesbitt, UK; 33. S. Ohta, Japan; 34. A. Ormerod, UK; 35. J. Owen, UK; 36. J. Peacock, UK; 37. C. Qualset, USA; 38. R.K. Rai, The Netherlands; 39. S. Rajaram, Mexico; 40. S.M. Reader, UK; 41 . M. Redfeam, UK; 42. M. Reynolds, USA; 43. A. Schlumbaum, Switzerland; 44. V. Schubert, Germany; 45 . K.A. Siddiqui, Pakistan; 46. R. Simpson, UK; 47. M. Sinyavskya, Belarus; 48 . J.W. Snape, UK; 49. J. Valkoun, Syria; 50. G. Waines, USA; 51. N. Watanabe, Japan; 52. D. Wiseman, UK; 53. D. Wiseman (Mrs), UK; 54. A. Yamamoto, Japan. THE LINNEAN SPECIAL ISSUE No 3 Wheat Taxonomy: the legacy of John Percival edited by P. D. S. Caligari and P. E. Brandham An edited volume arising from papers presented at The Percival Symposium: Wheat- Yesterday, Today & Tomorrow A meeting to celebrate the life and work of John Percival Organised by: The School of Plant Sciences The University of Reading, UK in collaboration with The Linnean Society 12-13 July 1999 ACADEMIC PRESS THE LEGACY OF JOHN PERCIV AL Preface John Percival (1863-1949) was Professor of Agricultural Botany at the University of Reading from 1907 to 1932 and a driving force behind the creation of agricultural botany as a scientific discipline. His monumental treatment of wheat The Wheat Plant: A Monograph (1921) still serves as a standard reference, having been reprinted as recently as 1974. Percival was the consummate agricultural scientist - botanist, taxonomist, geneticist, germplasm collector, curator, breeder, agronomist, historian and teacher. On the occasion of the 50th anniversary ofPercival's death, the University's School of Plant Sciences hosted a meeting to celebrate his life and work. Reflecting the scope ofPercival's scientific views, invited speakers surveyed research progress during the last half-century in the archaeobotany, systematics, genetics and breeding of the wheat plant. The two-day event offered a unique opportunity for a multi-disciplinary gathering of experts who shared a common interest in wheat studies. Peter D. S. Caligari Peter E. Brandham Department ofAgricultural Botany Jodrell Laboratory The University ofReading Royal Botanic Gardens, Kew Whiteknights, P.O. Box 221 Richmond Reading RG6 6AS, UK Surrey TW9 JDS, UK THE LEGACY OF JOHN PERCIVAL 7 Introduction John·Percival- acknowledging his legacy PETER D. S. CALIGARI Department of Agricultural Botany, School of Plant Sciences, The University of Reading, Whiteknights, P 0 Box 221, Reading, RG6 6AS, UK John Percival died in 1949, the year that I was born, but his legacy still remains a strong one, not only in philosophical but also in tangible terms. The Department of Agricultural Botany at The University of Reading, of which he was the first Professor in 1909, has flourished and is an active centre for as wide a range of aspects of agricultural botany as John Percival himself encompassed and encouraged. A collection of herbarium specimens (The Percival Collection) that he assembled still exists in different research centres and is actively used today. His internationally acclaimed book The Wheat Plant: A Monograph which he first published in 1921, is still widely referenced. This stood alongside a range of books, papers and activity which formed the very basis of the subject of agricultural botany. Of course, as I am sure John Percival would have insisted, the subject and Department have moved on and developed considerably since his time. I will not detail the history of the Department but simply point out that, from his starting point, it is now one of the three constituent departments of the School of Plant Sciences at the University of Reading, a School which was rated as the top plant science group in the UK in the last Research Assessment Exercise, gaining the top 5* rating. One cannot help but wonder how he would have seen the current work, such as the opportunities that are being opened up by the new technologies in the areas of molecular biology and biotechnology. I am sure, however, that he would have used them to advantage. John Percival's influence continues in many ways, including our still finding physical evidence of his activities. In only the last few years the unpublished parts of what John Percival himself had entitledAegilops species: A Monograph (an outline of which is included at the end of this volume) were discovered, works that might have gone alongside his masterful The Wheat Plant: A Monograph. 1 The 50 h anniversary of his death seemed a very appropriate opportunity to commemorate his life and work. It is an opportunity to see where we are now and where we are going in the future. On this basis a distinguished group of speakers, who represent a wide range of interests that John Percival shared, agreed to present the papers published 8 WHEAT TAXONOMY: in this volume. I am very grateful to them all for agreeing to play such a vital role in this meeting and helping to fulfill this vision. The first important point was to set John Percival's work in the context ofhis life. Professor Hugh Bunting, with whom I share the privilege of having held the Chair of Agricultural Botany, of which John Percival was the founding Professor, generously agreed to the request that he speak about Percival the man. This constitutes the first paper with subsequent ones covering important aspects of John Percival 's work on wheat, a major but no means exclusive part of his academic contribution ACKNOWLEDGEMENTS My unreserved thanks to all the contributors to this volume (and the Symposium) for their willingness to play such a vital part in helping to celebrate John Perciv.al' s life and work. I would also like to thank those who played such an active part in organising the meeting- indeed without the forward thinking ofLaura Morrison, Mark Nesbitt and Terry Miller this meeting might never have been conceived. They have continued to play their part and have been joined by Step hen Jury and GeoffHewitt who have played active roles. I would particularly wish to note Geoffs inputs in turning the ideas into reality. The co-operation and involvement of the Rural History Centre has been gratifying, as has the response from those in the University Archives. It is a pleasure to acknowledge the Linnean Society for its financial support of the meeting from which the following papers emanated, and for agreeing to publish the Proceedings as a Special issue of The Linnean. THE LEGACY OF JOHN PERCIV AL 9 John Percival- the man: his life and times A. H. BUNTING 27 The Mount, Caversham, Reading, Berks., RG4 7RU, UK Introduction · · · · · · · 10 The years of preparation · 10 The South-eastern Agricultural College, Wye, 1894-1902/3 13 Percival at Reading, 1902/3 to 1909 · · · · · 15 Percival after 1909 · · · · · · · · · · · · · · 16 Research in Agricultural Botany, 1907-1932 18 Percival's last years 23 Acknowledgements 26 References · · · · · 26 Keywords: Percival- Reading- Wye- botany- agricultural education- agricultural botany­ wheat - archaeobotany - domestication of plants Abstract JohnPercival was born in 1863 in Carperby, Wensleydale, North Yorkshire. He was the second natural son of Edward Chapman, a farmer's son, taxidermist and naturalist, and Elizabeth Percival. Though some of his descendants record that he was always sensitive to the circumstances of his birth, his parents were married in 1869, and a stable family background evidently did much to promote his remarkable later career. At the age of 14, after nine years in a local school, his father's Quaker associations may have facilitated his move to York, where he was apprenticed to the Quaker bookseller and printer William Sessions. With the help of the Quaker families Spence and Cotton, he entered Cambridge in 1884 at 21.
Recommended publications
  • Identification of Cereal Remains from Archaeological Sites 2Nd Edition 2006
    Identification of cereal remains from archaeological sites 2nd edition 2006 Spikelet fork of the “new glume wheat” (Jones et al. 2000) Stefanie JACOMET and collaborators Archaeobotany Lab IPAS, Basel University English translation partly by James Greig CEREALS: CEREALIA Fam. Poaceae /Gramineae (Grasses) Systematics and Taxonomy All cereal species belong botanically (taxonomically) to the large family of the Gramineae (Poaceae). This is one of the largest Angiosperm families with >10 000 different species. In the following the systematics for some of the most imporant taxa is shown: class: Monocotyledoneae order: Poales familiy: Poaceae (= Gramineae) (Süssgräser) subfamily: Pooideae Tribus: Triticeae Subtribus: Triticinae genera: Triticum (Weizen, wheat); Aegilops ; Hordeum (Gerste; barley); Elymus; Hordelymus; Agropyron; Secale (Roggen, rye) Note : Avena and the millets belong to other Tribus. The identification of prehistoric cereal remains assumes understanding of different subject areas in botany. These are mainly morphology and anatomy, but also phylogeny and evolution (and today, also genetics). Since most of the cereal species are treated as domesticated plants, many different forms such as subspecies, varieties, and forms appear inside the genus and species (see table below). In domesticates the taxonomical category of variety is also called “sort” (lat. cultivar, abbreviated: cv.). This refers to a variety which evolved through breeding. Cultivar is the lowest taxonomic rank in the domesticated plants. Occasionally, cultivars are also called races: e.g. landraces evolved through genetic isolation, under local environmental conditions whereas „high-breed-races“ were breed by strong selection of humans. Anyhow: The morphological delimitation of cultivars is difficult, sometimes even impossible. It needs great experience and very detailed morphological knowledge.
    [Show full text]
  • Wheat Landraces from Oman: a Botanical Analysis
    Emir. J. Food Agric. 2014. 26 (2): 119-136 doi: 10.9755/ejfa.v26i2.16760 http://www.ejfa.info/ REGULAR ARTICLE Wheat landraces from Oman: A botanical analysis A. A. Filatenko1* and K. Hammer2 1N. I. Vavilov Research Institute of Plant Industry, Veteran Council, St. Petersburg, Russia 2University of Kassel, Faculty of Agriculture, International Rural Development and Environmental Protection, Witzenhausen, Germany Abstract The wheat landraces of Oman are chacterized. Their main constituents are Triticum aestivum L. ssp. aestivum, T. aestivum ssp. hadropyrum (Flaksb.) Tzvel., T. compactum Host, T. aethiopicum Jakubz.ssp. aethiopicum, T. aethiopicum ssp. vavilovianum Jakubz. et A. Filat. and T. dicoccon Schrank. The classification of the landraces was performed using the morphological method developed by Dorofeev, Filatenko et al. (1979), considering species, subspecies, convarieties and a great number of botanical varieties. Single landraces contained up to three different species (“Sareeaa”) and up to 17 different botanical varieties (“Missani”). T. aethiopicum var. hajirense A. Filat. et K. Hammer is newly described. Keys for the determination of important Omani wheat races are proposed. 15 wheat landraces of Oman are characterized morphologically. A detailed list describing origin, local names, and infraspecific taxa of the material is provided. Transformation processes of the oasis settlements lead to a replacement of the traditional agricultural systems and the landraces are threatened by genetic erosion. Additional measures are necessary
    [Show full text]
  • KAMUT® Brand Khorasan Wheat Whole Grain US Senator For
    The Ancient Grain for Modern Life—Our mission is to promote organic agriculture and support organic farmers, to increase diversity of crops and diets and to protect the heritage of a high quality, delicious an- January 2013 cient grain for the benefit of this and future generations. Eat the Whole Thing: KAMUT® Brand Khorasan Wheat Whole Grain UPCOMING Whole grains are an important and tasty way of including complex carbohydrates in a healthy EVENTS diet. Depending on your age, health, weight, and activity level, the USDA recommends that Americans consume at least three portions, from 1.5 ounces (young children) to 8 ounces (older 20 – 22 January boys and young adult men) of grains a day, and that more than half of those grains should be 2013* - National As- whole grains. The US Food and Drug Administration (FDA) defines “whole grain to include cere- sociation for the Spe- al grains that consist of the intact, ground, cracked or flaked fruit of the grains whose principal cialty Food Trade, components -- the starchy endosperm, germ and bran -- are present in the same relative propor- Fancy Food Show, San tions as they exist in the intact grain.” Francisco, CA, USA Each part of the grain is healthful, but consuming them “whole” provides all of the benefits work- ing together. The FDA recognizes that whole grains provide energy and provide reduced risk for 25 January 2013 – disease including bowl disorders, cancer, heart disease and high cholesterol, stroke, high blood Annual KAMUT® Grower’s Dinner, Re- pressure, obesity and Type 2 diabetes. gina, SK, Canada In order to help you find good whole grain products, a lot of packaging includes the helpful term “whole grain” on the front or even better includes Whole Grains Council stamps.
    [Show full text]
  • GENETICALLY MODIFIED WHEAT 2018 © Her Majesty the Queen in Right of Canada (Canadian Food Inspection Agency), 2018
    Incident Report GENETICALLY MODIFIED WHEAT 2018 © Her Majesty the Queen in Right of Canada (Canadian Food Inspection Agency), 2018. CFIA P0951-18 ISBN: 978-0-660-26780-7 Catalogue No.: A104-141/2018E-PDF Aussi disponible en français. Request other formats online or call 1-800-442-2342. If you use a teletypewriter (TTY), call 1-800-465-7735. Alternative format are available on demand. EXECUTIVE SUMMARY ࢝ The Canadian Food Inspection Agency (CFIA) was notified on January 31, 2018, about a few wheat plants found on an access road in southern Alberta that survived a spraying treatment for weeds. ࢝ The CFIA’s tests confirmed that the wheat found is genetically modified to be herbicide tolerant. Genetically modified (GM) wheat is not authorized to be grown commercially in any country. ࢝ Since being notified, the CFIA worked diligently with federal and provincial partners and other stakeholders to determine the origin and extent of the GM wheat plants to get as much complete, accurate, and credible information about this discovery as possible. Based on extensive scientific testing, there is no evidence that this GM wheat is present anywhere other than the isolated site where it was discovered. ࢝ There is also no evidence that this wheat has entered the food or animal feed system, nor is it present anywhere else in the environment. ࢝ Health Canada and the CFIA have performed risk assessments of this finding, and have concluded that it does not pose a food safety, animal feed, or environmental risk. ࢝ The wheat plants found in Alberta are not a match for any wheat authorized for sale or for commercial production in Canada.
    [Show full text]
  • Khorasan (Kamut® Brand) Wheat
    Khorasan (Kamut® Brand) Wheat Introduction Khorasan wheat (Triticum turgidum, ssp. turanicum) is an ancient wheat variety that originated in the Fertile Crescent in Western Asia. It is a relative of durum wheat and is believed to have come to North America from Egypt, following World War II. It was rediscovered in 1977 by a Montana farmer who spent the next few years propagating the small supply of original seed. In 1990, khorasan wheat was first sold under the trademark KAMUT® in the United States. The trademark was implemented to preserve minimum standards for the khorasan wheat variety and to ensure consistent quality and market supply. KAMUT® wheat is currently only grown as KAMUT® wheat has larger heads, awns and kernels than an organic certified grain and hard red spring wheat and durum. marketed to various countries Photo courtesy T. Blyth, Kamut International around the world. Plant Adaptation KAMUT® wheat production is well suited to growing conditions found in southern Alberta and southern Saskatchewan, similar to durum. Northern regions with cooler, wetter conditions are less favorable for KAMUT® wheat production as disease risk may be greater and the crop requires about 100 days to mature after seeding or approximately one week later than spring wheat. KAMUT® wheat will grow well in any soil that is suitable for other cereal grain production. KAMUT® wheat has a growth pattern similar to spring wheat varieties. Each sprouted kernel produces one or two stems per seed, and each stem produces a large head with long black awns. It has moderate straw strength and grows to approximately 127 cm (4.2 ft) tall.
    [Show full text]
  • Spelt Wheat: an Alternative for Sustainable Plant Production at Low N-Levels
    sustainability Article Spelt Wheat: An Alternative for Sustainable Plant Production at Low N-Levels Eszter Sugár, Nándor Fodor *, Renáta Sándor ,Péter Bónis, Gyula Vida and Tamás Árendás Agricultural Institute, Centre for Agricultural Research, Brunszvik u. 2, 2462 Martonvásár, Hungary; [email protected] (E.S.); [email protected] (R.S.); [email protected] (P.B.); [email protected] (G.V.); [email protected] (T.A.) * Correspondence: [email protected]; Tel.: +36-22-569-554 Received: 31 October 2019; Accepted: 21 November 2019; Published: 27 November 2019 Abstract: Sustainable agriculture strives for maintaining or even increasing productivity, quality and economic viability while leaving a minimal foot print on the environment. To promote sustainability and biodiversity conservation, there is a growing interest in some old wheat species that can achieve better grain yields than the new varieties in marginal soil and/or management conditions. Generally, common wheat is intensively studied but there is still a lack of knowledge of the competitiveness of alternative species such as spelt wheat. The aim is to provide detailed analysis of vegetative, generative and spectral properties of spelt and common wheat grown under different nitrogen fertiliser levels. Our results complement the previous findings and highlight the fact that despite the lodging risk increasing together with the N fertiliser level, spelt wheat is a real alternative to common wheat for low N input production both for low quality and fertile soils. Vitality indices such as flag leaf chlorophyll content and normalized difference vegetation index were found to be good precursors of the final yield and the proposed estimation equations may improve the yield forecasting applications.
    [Show full text]
  • A Review on KAMUT Khorasan Wheat
    International Journal of Food Sciences and Nutrition ISSN: 0963-7486 (Print) 1465-3478 (Online) Journal homepage: http://www.tandfonline.com/loi/iijf20 Ancient wheat and health: a legend or the reality? A review on KAMUT khorasan wheat Alessandra Bordoni, Francesca Danesi, Mattia Di Nunzio, Annalisa Taccari & Veronica Valli To cite this article: Alessandra Bordoni, Francesca Danesi, Mattia Di Nunzio, Annalisa Taccari & Veronica Valli (2017) Ancient wheat and health: a legend or the reality? A review on KAMUT khorasan wheat, International Journal of Food Sciences and Nutrition, 68:3, 278-286, DOI: 10.1080/09637486.2016.1247434 To link to this article: https://doi.org/10.1080/09637486.2016.1247434 © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group Published online: 28 Oct 2016. Submit your article to this journal Article views: 2866 View related articles View Crossmark data Citing articles: 4 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=iijf20 INTERNATIONAL JOURNAL OF FOOD SCIENCES AND NUTRITION, 2017 VOL. 68, NO. 3, 278–286 http://dx.doi.org/10.1080/09637486.2016.1247434 COMPREHENSIVE REVIEW Ancient wheat and health: a legend or the reality? A review on KAMUT khorasan wheat Alessandra Bordonia,b , Francesca Danesia , Mattia Di Nunziob , Annalisa Taccaria and Veronica Vallia aDepartment of Agri-Food Sciences and Technologies, University of Bologna, Cesena, Italy; bInterdepartmental Centre of Agri-Food Research, University of Bologna, Cesena, Italy ABSTRACT ARTICLE HISTORY After WWII, the industrialized agriculture selected modern varieties of Triticum turgidum spp. Received 28 July 2016 durum and spp.
    [Show full text]
  • Improvement of Australian Wheat Grain Functionality for Breadmaking by Introgression of Novel High-Molecular Weight Glutenin Subunits Into Australian Cultivars
    Improvement of Australian wheat grain functionality for breadmaking by introgression of novel high-molecular weight glutenin subunits into Australian cultivars NANDITA ROY A thesis submitted to Murdoch University in fulfilment of the requirements for the degree of Doctor of Philosophy Australia-China Joint Centre for Wheat Improvement School of Veterinary and Life Sciences Murdoch University Perth, Western Australia 2019 Declaration I am Nandita Roy, certify that: This work contains no material previously submitted for a degree or diploma in any University or other tertiary institution and, to the best of my knowledge and belief, no material which has been published or written by any other person except where due reference is made in the text. i Table of Contents Declaration i Table of Contents ii Acknowledgments x Abstract xii Abbreviations xiv Publications and conferences xvi List of Tables xvii List of Figures xviii Chapter 1 1 General Introduction 1 1.1 Aims of the project 1 1.2 Background 1 1.3 Thesis outline 3 1.4 References 4 Chapter 2 6 Literature review 6 2.1 Wheat 6 2.1.1 Evolution of bread wheat 6 2.1.2 Australian Wheat 7 2.1.3 Grain composition of wheat 7 ii 2.1.4 Storage protein and baking quality 8 2.2 Wheat grain protein composition and classification 10 2.2.1 Albumins 11 2.2.2 Globulins 11 2.2.3 Gluten 11 2.2.4 Gliadins 12 2.2.5 Glutenins 12 2.3 The genetics of gluten (gliadins and glutenins) 14 2.3.1 x and y-type HMW-GSs 15 2.3.2 Expression pattern of HMW glutenins genes in different types of wheat 16 2.4 The role of
    [Show full text]
  • Article on Genetic Markers for Bunt Resistance From
    Let’s make grain great again Click here to sign up for the newsletter The Landrace Newsletter no. 5 May 2021 A new growing season is ahead of us, and I greet the spring with news from both future and past from the organic grain sector. I wish you joyfull reading Anders Borgen Content in this newsletter Open field day and general assembly in Landsorten, Tuesday 22. June..............................................2 But now then, is it Landsorten or Agrologica, selling organic seed in future?...................................2 Mobile stone mill for local production................................................................................................3 Nordic grain festival 28th-30th October 2021 in Norway.....................................................................4 News from Agrologica science lab......................................................................................................4 Genetic markers for bunt resistance - news from LIVESEED-, Økosort-II and bunt projects......4 Acid rain and gluten-index..............................................................................................................4 Zanduri, Macha, and the hailstorm in Georgia...............................................................................6 Colchic emmer (Triticum paleochochicum)...............................................................................6 Emmer........................................................................................................................................7 Durum........................................................................................................................................7
    [Show full text]
  • An Organic Khorasan Wheat-Based Replacement Diet Improves Risk Profile of Patients with Acute Coronary Syndrome: a Randomized Crossover Trial
    Nutrients 2015, 7, 3401-3415; doi:10.3390/nu7053401 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Article An Organic Khorasan Wheat-Based Replacement Diet Improves Risk Profile of Patients with Acute Coronary Syndrome: A Randomized Crossover Trial Anne Whittaker 1, Francesco Sofi 2,3,4,*, Maria Luisa Eliana Luisi 4, Elena Rafanelli 4, Claudia Fiorillo 5, Matteo Becatti 5, Rosanna Abbate 3, Alessandro Casini 2, Gian Franco Gensini 3 and Stefano Benedettelli 1 1 Department of Agrifood Production and Environmental Sciences, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy; E-Mails: [email protected] (A.W.); [email protected] (S.B.) 2 Unit of Clinical Nutrition, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy; E-Mail: [email protected] 3 Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy; E-Mails: [email protected] (R.A.); [email protected] (G.F.G.) 4 Don Carlo Gnocchi Foundation Florence, Via di Scandicci 269, 50143, Florence, Italy; E-Mails: [email protected] (M.L.L.); [email protected] (E.R.) 5 Department of Clinical and Experimental Biomedical Sciences, Interdipartimental Center for Research on Food and Nutrition, University of Florence, Sesto Fiorentino, Florence, 50019, Italy; E-Mails: [email protected] (C.F.); [email protected] (M.B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-055-7949420; Fax: +39-055-7949418. Received: 20 November 2014 / Accepted: 21 April 2015 / Published: 11 May 2015 Abstract: Khorasan wheat is an ancient grain with previously reported health benefits in clinically healthy subjects.
    [Show full text]
  • Part B Other Products Referred to in Article 2(1)
    Part B Other products referred to in Article 2(1) Other products References to Part A to which the same MRLs apply (1) Main product of the group or subgroup Code number Category Code number or Common names/synonyms Scientific names Name of the group or subgroup 0110010-001 Natsudaidais Citrus natsudaidai 0110010-002 Shaddocks/pomelos Citrus maxima; syn: Citrus grandis 0110010-003 Sweeties/oroblancos Citrus grandis x Citrus paradisi 0110010 Grapefruits 0110010-004 Tangelolos Citrus paradisi x tangelo 0110010-005 Tangelos (except minneolas)/Ugli® Citrus tangelo 0110010-990 Other hybrids of Citrus paradisi , not elsewhere mentioned 0110020-001 Bergamots Citrus bergamia 0110020-002 Bitter oranges/sour oranges Citrus aurantium 0110020-003 Blood oranges Citrus sinensis 0110020 Oranges 0110020-004 Cara caras Citrus sinensis 0110020-005 Chinottos Citrus myrtifolia 0110020-006 Trifoliate oranges Poncirus trifoliata 0110020-990 Other hybrids of Citrus sinensis, not elsewhere mentioned 0110030-001 Buddha's hands/Buddha's fingers Citrus medica var. sarcodactyla 0110030 Lemons 0110030-002 Citrons Citrus medica 0110040-001 Indian sweet limes/Palestine sweet limes Citrus limettioides 0110040-002 Kaffir limes Citrus hystrix 0110040 Limes 0110040-003 Sweet limes/mosambis Citrus limetta 0110040-004 Tahiti limes Citrus latifolia 0110040-005 Limequats Citrus aurantiifolia x Fortunella spp. 0110050-001 Calamondins Citrus madurensis 0110050-002 Clementines Citrus clementina 0110050-003 Cleopatra mandarins Citrus reshni 0110050-004 Minneolas Citrus tangelo 0110050 Mandarins 0110050-005 Satsumas/clausellinas Citrus unshiu 0110050-006 Tangerines/dancy mandarins Citrus tangerina 0110050-007 Tangors Citrus nobilis 0110050-990 Other hybrids of Citrus reticulata , not elsewhere mentioned 0120010-001 Apricot kernels Armeniaca vulgaris; syn: Prunus armeniaca 0120010-002 Bitter almonds Amygdalus communis var.
    [Show full text]
  • Exploiting the Genetic Diversity of Wild Ancestors and Relatives of Wheat for Its Improvement Jagdeep Singh Sidhu South Dakota State University
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2018 Exploiting the Genetic Diversity of Wild Ancestors and Relatives of Wheat for its Improvement Jagdeep Singh Sidhu South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Plant Breeding and Genetics Commons Recommended Citation Sidhu, Jagdeep Singh, "Exploiting the Genetic Diversity of Wild Ancestors and Relatives of Wheat for its Improvement" (2018). Electronic Theses and Dissertations. 2641. https://openprairie.sdstate.edu/etd/2641 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. EXPLOITING THE GENETIC DIVERSITY OF WILD ANCESTORS AND RELATIVES OF WHEAT FOR ITS IMPROVEMENT BY JAGDEEP SINGH SIDHU A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Plant Science South Dakota State University 2018 iii This thesis is dedicated to my respected father Mr. Amrik Singh Sidhu, mother Mrs. Harjit Kaur, my dear sister Sukhdeep Kaur and cute niece Samreet. iv ACKNOWLEDGEMENTS First of all, I am grateful to Dr. Sunish Sehgal for giving me an opportunity work in his winter breeding program. My master’s work would not have been possible without his love, help, support and encouragement. I truly respect Dr.
    [Show full text]