Ultrastrucrure, TAXONOMY and AFFINITIES of SOME ORDOYICIAN and SILURIAN ORGANIC MICROFOSSILS -.: Palaeontologia Polonica

Total Page:16

File Type:pdf, Size:1020Kb

Ultrastrucrure, TAXONOMY and AFFINITIES of SOME ORDOYICIAN and SILURIAN ORGANIC MICROFOSSILS -.: Palaeontologia Polonica To my mother PIOTR MIERZEJEWSKI ULTRASTRUcrURE, TAXONOMY AND AFFINITIES OF SOME ORDOYICIAN AND SILURIAN ORGANIC MICROFOSSILS (PI :lIe~ 19-37) M IfRz rJrWSKI. P.: Ultrastructure, taxonomy and a ffinities o f som e Ordovic ian a mi Siluri..n o rga nic microfossils. Palaeontolog i.. Pol onica. 47, 1~ 9 - ::' ::'O , 19RIi. The work pre sent s the results of morphological a nd ultrast ructural (TEM a m! SE MI studies o n Ordovician a nd Silur ian organic (non-ca lcareo us) fossi ls amo ng which representa tives o f scyphozoans, hyd rozoans, pogonophorans a nd pterobranch s a re recognized , A few forms o f uncerta in systematic po sition are a lso de scribed . Scyph ozoa : well pre ser ved scyphotheca e of Byronia robusta (KOZL.) are desc ribed a lo ng with ultrastructural o bservations made o n other Byr..nia spec ies . Part of the so-ca lled d ithecoid graptolites is recognized a'i col oni al scyp ho po lyps , Hyd rozoa : form, described by R. KOZLOWSKI ami A. EISf.SACK as hyd roid s a re revised . The asrogenesis of Rhubdohydra tridens KOZL. is reconst ructed. Two new taxa a re designated. The periderm ultrastructure of five species i~ described ami interpreted. Some forms known as dirhccoid graptolites a nd the group Chaunogruptidae are recognized as colonial hydropolyps. Pogonophoru : Brklrrnishcvitrs grundis gen . et sp. n. is described. Tube ultrastructure i'i studied for IWo species reveal ing in one case the presence of a chitiu-protci n co mplex. Ptc ro­ branchi a : forms described by R . Kozr.owsx I are revised and a new taxon om y is proposed fo r Rhabdopleurida. Some forms clusvified previou sly as hydro ids lire identified a'i rh abdopleurids and five new taxa a re des ignated. T he as togcnexix o f Rhabdopleuritcs primacvus KOZL. is reconstructed and new types of , 10 11 \11:1 1 tubes [wi tho ut lig·ng suture and Iusell i) are described. The ult rast ru ct ure o f cysts . vto lons a nd sto lo na l tubes is studied in severa l forms, A congene rity of Rhabd...plrurites with so me forms described previously as tubo id or sto lonoi d graptol ites and hydroids is sugges ted . Miscellanea : ult ra structure of live pr oble­ mal ic rnicr ofos..ils a re studied. A few new tax a a rc de scribed includi ng t wo new genera. Key word s : Ul trastructure. taxonomy, rnicrofossils, Scyphozoa , Hyd rozoa. Po­ gonophora, Pterobranchia, Graptolithinn, Miscellan ea, Ordo vician, Silurian , glacial erratics, Balt ic Reg ion . Poland. Piotr Mierzejewski, Zaklad Paleobiologii, Polsku Akadrmia Nauk, AI. Zwirk] j Ij'j. gur), 96, Ol-()89 Waruawa. Poland, Received: March. 1983. ~ - Pa laecntclcg ta Po lcn l ~. t i 130 PIOTR M IERZ EJ E\VSK I 1:1 TR ASTIli T n ;RA , T .\I\ <; n ~()\ II . \ 1 P OKR E WI F ~ S T \\'lI :-;IH ("f I) II H 11 O IlJ)nWWK IC II I S Yl l :RSKIC II \ 1I " I I O ' K .~ ,\ IIE 1'o I A I ll;'l I OIlC; \ :-;11 / .N \ l 11 S treszczenie -- Op rucowano, przy wykorzystuniu tcchnik clektronowo-mikros kopowych ordowickic i sylurskie mikrosknmienialosci orga nicznc, rozrozniajqc wsrod nich kra zkoplawy, stulbioplawy. pogonofory, pioro skrzeluc i rozma ite fl)J'JU Y inccrt ae scdis. Scyphozou. - - Opisuno dobrze zachowunc scyIo 11: ki ltyronia robustu (K01.1.), zbada no ultra­ strukture pcriderrny 2 gatunkow, w jcdny m przypadku ujawniono jej chit ynowo-proteinowy charak tcr. C z ~ ~c tzw. graptolitow ditckoidowych uznano zu kolonijne scyfopolipy. Hydrozoa, --- Przcp .owadzono rewizjc form opisanych przez R. K OZ I.O W SK ([GO i A. Ersr­ N ACKA. Zrck onstruowano kormogcncze Rhabdohydra tridens Ko/I. , wyrozniono 2 nowc tak sony, zbud.ino uluu strukturc peridermy 5 gutun kow. ('z,,'se ( I. W , gr.ip to litow ditekoidowych i Chau­ nogrupt iduc uznano za kolonijnc hydropolipy, Pogonophoru, - Opisano Bek lcntishcvit cs griuulis gen. n. sp, n.. zbadano uhrastrukture rurck 2 g.u unkow, w jcdnym przypadku ujawniono obecnosc kompleksu proteinowo-chi­ tynowcgo. Pterobra uchia. - Przepr owadzono rewizjc form op isunych przez R. KOZl.OWSK ir co, przccl-rawiono nowq konccpcje tuksunomii Rhabdopleu ridu, wykazano rubdopleuridowy charukter szercgu form uwazanych dotad za Hydroidu, wyrozniono 5 nowych tak sonow, Zrckonstruowano korrnogencze Rhabdoplcurites prinu tcvus Ke)Z!.., opisano nieznune dotad typy rurek stolonalnych (bcz SZWll zygzakowatcgo i bczfuzcllarn e), zbaduno ultrastrukture cyst, stolonow i rurek stolonalnych niektorych form. Sugeruje sie kongcncrycznosc Rhabdo­ pleurites 7. niektorymi dornnicmanyrni grap tolitarni tuboidowyrni lub stolonoidowymi oraz Hydroida. Miscellanea. - - Zbadano ultrustruk ture 5 problematykow i op isuno kilka dalszych, usta­ nawiajac t1 W:1 mon otypowe nowe rodzajc. ( UNTEN1S Int rod uction . .. DI Acknowledgment s I ~ I Mat erial . 131 Methods ..,. 138 C hemica l met hods J.11! Electron microscopy 138 Systema tic pa rt , . 140 Scyphozoa .. 140 D ith eco idea - - pr irnitive gral'to lit e ~ or co lonial ~c Y l' h lJ po ly l" ? 142 Descript io n ... " . 145 H ydrozou ; . , .,. ,.. 14S Some remarks o n Il y,lrllida skeleto n 149 De scription 151 Pogonophora . ..,. 169 Pterobranchia . .. , t 70 The structure o f the Rhabdoplcui ida co encc iurn 172 Remark s on th e sys teui.u ics " I' the R hubdopleui id Ol 174 Stolonoideu -- grupto lites or pterobrunc hs 175 Descri ptio n 176 M iscellanea .. ., 194 Re ferences . ... , :!03 Ex plana tion of plates 19- 37 :!Oll Ind ex of generi c and specific names 217 ORDO VICIAN AND SILURIAN ORGAN IC ~nCROFOS S ILS 131 IN TRODUCTION In 1973, the late Professor ROM AN KOZI.OWSK I kindly passed me for further st udy some orga­ nic microfossils he had extract ed by chemical method s from Balti c er ratics of Ordovician and Silurian age. The material comprised vari ou s microfossils, usually in the form of branching or simple tubes. Some specimens of th at collection have been previously described as Hydroid a by KOZLOWSK I (1959a). In discussion s, he repeat edly suggested th at some of th e forms pre­ viou sly interpreted by him as Hydroida may actually ha ve nothing in co mmon with coelente­ rates. He also used to emphasize the neces sity of revising some taxa described by him . My studies show a high degree of homeomorphy of tubular orga nic skeleto ns or fragmen ts of such, often representing quite distant systema tic groups, thus confirming his opinion than rev ision was necessary. This paper deals with animal microfossils built of orga nic matter and ofdebat ab le or unknown systematic position. An atte mpt to esta blish their taxon omi c affinities has result ed in an ine­ vita ble break in the compactness of the pap er. However, I regarded it necessar y to present as com plete as po ssible a n a na lysis of the taxonomy of the microfossils that represent dif­ ferent systematic groups but are poorl y kn own, sim ilar in shape and often very difficult to dis­ tin guish and to classify. ACK NO WLE DGME1'.'TS Warm th anks are du e to Professor ADAM U RBANE K (Warszawa ) for help in the co urse of preparation of thi s paper, valuable discussion s on the studied materi al and rema rks co n­ cerning methods of laboratory wo rk. Thanks are due to Professor NOEL P. DILLY (London) and Or. CYPRIAN KULICK I (Warszawa) for discussion s on some problems con cerning pt e­ robranchs, and Professor DONAT V. NAUM OV (Leningrad) for comments of fossil hydrozoan s. Professor T AD EUSZ G UNIA (Wroclaw) a nd Professor H UBERT SZANIAWSKI (Warszawa) kindly reviewed the manuscript and provided helpful corrections a nd comment s. I am very much inde bted to Professor J6ZEF KAZMI ER CZAK (Warszawa) for fruitful discussion s on several probl ems as well as a co nstructive review of the manuscript. Special th anks are extended to Dr. R. B. Rickards (Cambridge) who kindly made a complete linguistic revision of the text. The studies were conducted at the laborator'es of electron microscop y of the follow ing institution s : M. Nencki Institute of Experimental Biology and Centre of Expe rime nta l Medicine (Polish Academ y of Scienc es), Zo ology and Botany Departments of Warsaw U niversity and the Ana tomy Department of the St. George's Hospital Med ical School (Lond on ). MATERI AL The material studied comes from one localit y ill situ, four borings, and some dozens of glacial erratics (fig. 1). Soko lovites pogonophoroides K ozr.. was derived from the cha lcedonites of Chojno w 061 by Zbilutka. The age of these chalcedonites was estimat ed by SZAN IAWSKI (1979) as Upper Trem ad oc. Some fossils were extracted from the following borings : Biala Podlaska 2. Middle Ordovici an (W . BEDNAR CZYK , person al informati on). Depth 680-687 m. Rhabdohydra tridens KOZLOWSKI , TRhabdopleurites sp. Kystodendron ex gr. longicarpus (EISENACK) sensu KOZLOWSKI. 9' 132 PIOTR MIERZEJ EWSKI - ----- ---- - -- --- - ---,-- -------- _._-- ----_._._---- -- Or ze chowo p o~ Jaro s t awi e c • Or t owo A = , _ . ... / ., ., Ust r an i e Mor sk l e _ ------:::::YJ - - --.-. = - _ . • GDANS K [~I " o ° KOS ZAL I N Hewa ! KOf, ORRZE G l \ _ H i ~ d l Y l d r o j.- . o Ol.S 7.T YN \ , ~ , \ S Z(' Z ! '( '! N \ ') \ Pu dbo r owl ska i' I" Kr z yie ~ . ~ ./ "" Hi e l oi k l ' O ( ~ .
Recommended publications
  • Trends of Aquatic Alien Species Invasions in Ukraine
    Aquatic Invasions (2007) Volume 2, Issue 3: 215-242 doi: http://dx.doi.org/10.3391/ai.2007.2.3.8 Open Access © 2007 The Author(s) Journal compilation © 2007 REABIC Research Article Trends of aquatic alien species invasions in Ukraine Boris Alexandrov1*, Alexandr Boltachev2, Taras Kharchenko3, Artiom Lyashenko3, Mikhail Son1, Piotr Tsarenko4 and Valeriy Zhukinsky3 1Odessa Branch, Institute of Biology of the Southern Seas, National Academy of Sciences of Ukraine (NASU); 37, Pushkinska St, 65125 Odessa, Ukraine 2Institute of Biology of the Southern Seas NASU; 2, Nakhimova avenue, 99011 Sevastopol, Ukraine 3Institute of Hydrobiology NASU; 12, Geroyiv Stalingrada avenue, 04210 Kiyv, Ukraine 4Institute of Botany NASU; 2, Tereschenkivska St, 01601 Kiyv, Ukraine E-mail: [email protected] (BA), [email protected] (AB), [email protected] (TK, AL), [email protected] (PT) *Corresponding author Received: 13 November 2006 / Accepted: 2 August 2007 Abstract This review is a first attempt to summarize data on the records and distribution of 240 alien species in fresh water, brackish water and marine water areas of Ukraine, from unicellular algae up to fish. A checklist of alien species with their taxonomy, synonymy and with a complete bibliography of their first records is presented. Analysis of the main trends of alien species introduction, present ecological status, origin and pathways is considered. Key words: alien species, ballast water, Black Sea, distribution, invasion, Sea of Azov introduction of plants and animals to new areas Introduction increased over the ages. From the beginning of the 19th century, due to The range of organisms of different taxonomic rising technical progress, the influence of man groups varies with time, which can be attributed on nature has increased in geometrical to general processes of phylogenesis, to changes progression, gradually becoming comparable in in the contours of land and sea, forest and dimensions to climate impact.
    [Show full text]
  • On Some Hydroids (Cnidaria) from the Coast of Pakistan
    Pakistan J. Zool., vol. 38(3), pp. 225-232, 2006. On Some Hydroids (Cnidaria) from the Coast of Pakistan NASEEM MOAZZAM AND MOHAMMAD MOAZZAM Institute of Marine Sciences, University of Karachi, Karachi 75270, Pakistan (NM) and Marine Fisheries Department, Government of Pakistan, Fish Harbour, West Wharf, Karachi 74900, Pakistan (MM) Abstract .- The paper deals with the occurrence of eleven species of the hydroids from the coast of Pakistan. All the species are reported for the first time from Pakistan. These species are Hydractinia epidocleensis, Pennaria disticha, Eudendrium capillare, Orthopyxis cf. crenata, Clytia noliformis, C. hummelincki, Dynamena crisioides, D. quadridentata, Sertularia distans, Pycnotheca mirabilis and Macrorhynchia philippina. Key words: Hydroids, Coelenterata, Pakistan, Hydractinia, Pennaria, Eudendrium, Orthopyxis, Clytia, Dynamena, Sertularia, Pycnotheca, Macrorhynchia. INTRODUCTION used in the paper are derived from Millard (1975), Gibbons and Ryland (1989), Ryland and Gibbons (1991). In comparison to other invertebrates, TAXONOMIC ENUMERATION hydroids are one of the least known groups of marine animals from the coast of Pakistan Haque Family BOUGAINVILLIIDAE (1977) reported a few Cnidaria from the Pakistani Genus HYDRACTINIA Van Beneden, 1841 coast including two hydroids i.e. Plumularia flabellum Allman, 1883 (= P. insignis Allman, 1. Hydractinia epidocleensis Leloup, 1931 1883) and Campanularia juncea Allman, 1874 (= (Fig. 1) Thyroscyphus junceus (Allman, 1876) from Keamari and Bhit Island, Karachi, respectively. Ahmed and Hameed (1999), Ahmed et al. (1978) and Haq et al. (1978) have mentioned the presence of hydroids in various habitats along the coast of Pakistan. Javed and Mustaquim (1995) reported Sertularia turbinata (Lamouroux, 1816) from Manora Channel, Karachi. The present paper describes eleven species of Cnidaria collected from the Pakistani coast all of which are new records for Pakistan.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • The Origin of Tetraradial Symmetry in Cnidarians
    The origin of tetraradial symmetry in cnidarians JERZY DZIK, ANDRZEJ BALINSKI AND YUANLIN SUN Dzik, J., Balinski, A. & Sun, Y. 2017: The origin of tetraradial symmetry in cnidarians. Lethaia, DOI: 10.1111/let.12199. Serially arranged sets of eight septa-like structures occur in the basal part of phosphatic tubes of Sphenothallus from the early Ordovician (early Floian) Fenxi- ang Formation in Hubei Province of China. They are similar in shape, location and number, to cusps in chitinous tubes of extant coronate scyphozoan polyps, which supports the widely accepted cnidarian affinity of this problematic fossil. However, unlike the recent Medusozoa, the tubes of Sphenothallus are flattened at later stages of development, showing biradial symmetry. Moreover, the septa (cusps) in Sphenothallus are obliquely arranged, which introduces a bilateral component to the tube symmetry. This makes Sphenothallus similar to the Early Cambrian Paiutitubulites, having similar septa but with even more apparent bilat- eral disposition. Biradial symmetry also characterizes the Early Cambrian tubular fossil Hexaconularia, showing a similarity to the conulariids. However, instead of being strictly tetraradial like conulariids, Hexaconularia shows hexaradial symme- try superimposed on the biradial one. A conulariid with a smooth test showing signs of the ‘origami’ plicated closure of the aperture found in the Fenxiang For- mation supports the idea that tetraradial symmetry of conulariids resulted from geometrical constrains connected with this kind of closure. Its minute basal attachment surface makes it likely that the holdfasts characterizing Sphenothallus and advanced conulariids are secondary features. This concurs with the lack of any such holdfast in the earliest Cambrian Torellella, as well as in the possibly related Olivooides and Quadrapyrgites.
    [Show full text]
  • Abstracts and Program AFFINITIES and CLASS-LEVEL
    Abstracts and Program 297 AFFINITIES AND CLASS-LEVEL SYSTEMATICS OF THE PHYLUM CNIDARIA VAN ITEN, Heyo, Dept. of Geology, Gustavus Adolphus CoIIege, Saint Peter, MN 56082, U.S.A. Phylogenetic relationships among the cnidarian classes Anthozoa, Hydrozoa and Scyphozoa, and between Cnidaria and other metazoan phyla, continue to be subject to widely divergent interpretations. Also controversial are the affinities of numerous fossil groups, including Byronia Bischoff, Sphenothallus Hall and conulariids, that have been interpreted as extinct cnidarians. Currently favored interpretations of evolution within Cnidaria are generaIIy consistent with one of two alternative hypotheses of phylogenetic relationships: scyphozoans and anthozoans are members of a monophyletic group that excludes hydrozoans; or scyphozoans and hydrozoans are members of a monophyletic group that excludes anthozoans. Putative anthozoan-scyphozoan synapomorphies include (1) gastric septa present; (2) cnidae present in both ectoderm and gastroderm; (3) sex cells gastrodermal; and (4) mesoglea contains amoeboid cells. Putative hydrozoan-scyphozoan synapomorphies include (1) medusa present; (2) tetraradial symmetry; (3) rhopaloid nematocysts; and (4) similarities in sperm structure. Evaluation of alternative hypotheses of relationships within Cnidaria is complicated by uncertainty surrounding relationships between this and other metazoan phyla. While some investigators have interpreted Cnidaria and Ctenophora as members of a monophyletic group that' excludes other phyla, others have argued that ctenophorans are more closely related to platyhelminths than they are to cnidarians. Putative cnidarian-ctenophoran synapomorphies include (1) production of ceIIs modified for prey capture; and (2) presence of a medusa. Putative ctenophoran-platyhelminth synapomorphies include (1) presence of gonoducts; (2) ciliated ceIIs with several to many cilia; (3) determinate cleavage; and (4) muscle ceIIs developed from mesoderm.
    [Show full text]
  • (Cnidaria, Hydrozoa, Hydroidolina) from the West Coast of Sweden, with a Checklist of Species from the Region
    Zootaxa 3171: 1–77 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 3171 On a collection of hydroids (Cnidaria, Hydrozoa, Hydroidolina) from the west coast of Sweden, with a checklist of species from the region DALE R. CALDER Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada M5S 2C6 E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by A. Collins: 30 Nov. 2011; published: 24 Jan. 2012 Dale R. Calder On a collection of hydroids (Cnidaria, Hydrozoa, Hydroidolina) from the west coast of Sweden, with a checklist of species from the region (Zootaxa 3171) 77 pp.; 30 cm. 24 Jan. 2012 ISBN 978-1-86977-855-2 (paperback) ISBN 978-1-86977-856-9 (Online edition) FIRST PUBLISHED IN 2012 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2012 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 3171 © 2012 Magnolia Press CALDER Table of contents Abstract . 4 Introduction . 4 Material and methods .
    [Show full text]
  • The Early History of the Metazoa—A Paleontologist's Viewpoint
    ISSN 20790864, Biology Bulletin Reviews, 2015, Vol. 5, No. 5, pp. 415–461. © Pleiades Publishing, Ltd., 2015. Original Russian Text © A.Yu. Zhuravlev, 2014, published in Zhurnal Obshchei Biologii, 2014, Vol. 75, No. 6, pp. 411–465. The Early History of the Metazoa—a Paleontologist’s Viewpoint A. Yu. Zhuravlev Geological Institute, Russian Academy of Sciences, per. Pyzhevsky 7, Moscow, 7119017 Russia email: [email protected] Received January 21, 2014 Abstract—Successful molecular biology, which led to the revision of fundamental views on the relationships and evolutionary pathways of major groups (“phyla”) of multicellular animals, has been much more appre ciated by paleontologists than by zoologists. This is not surprising, because it is the fossil record that provides evidence for the hypotheses of molecular biology. The fossil record suggests that the different “phyla” now united in the Ecdysozoa, which comprises arthropods, onychophorans, tardigrades, priapulids, and nemato morphs, include a number of transitional forms that became extinct in the early Palaeozoic. The morphology of these organisms agrees entirely with that of the hypothetical ancestral forms reconstructed based on onto genetic studies. No intermediates, even tentative ones, between arthropods and annelids are found in the fos sil record. The study of the earliest Deuterostomia, the only branch of the Bilateria agreed on by all biological disciplines, gives insight into their early evolutionary history, suggesting the existence of motile bilaterally symmetrical forms at the dawn of chordates, hemichordates, and echinoderms. Interpretation of the early history of the Lophotrochozoa is even more difficult because, in contrast to other bilaterians, their oldest fos sils are preserved only as mineralized skeletons.
    [Show full text]
  • Larval Cases of Caddisfly (Insecta: Trichoptera) Affinity in Early Permian Marine Environments of Gondwana
    Title: Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana Author: Lucas D. Mouro, Michał Zatoń, Antonio C.S. Fernandes, Breno L. Waichel Citation style: Mouro Lucas D., Zatoń Michał, Fernandes Antonio C.S., Waichel Breno L. (2016). Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana. "Scientific Reports" (Vol. 6 (2016), art. no. 19215), doi 10.1038/srep19215 www.nature.com/scientificreports OPEN Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Received: 13 October 2015 Accepted: 08 December 2015 Gondwana Published: 14 January 2016 Lucas D. Mouro1,4, Michał Zatoń2, Antonio C.S. Fernandes3 & Breno L. Waichel1 Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non- marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian– Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea.
    [Show full text]
  • Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
    MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda.
    [Show full text]
  • Morphological Study and Taxonomical Notes on Eudendriidae (Cnidaria: Hydrozoa: Athecatae/Anthomedusae)
    74-05 (Marques et al.) 11-01-2007 12:47 Page 75 Morphological study and taxonomical notes on Eudendriidae (Cnidaria: Hydrozoa: Athecatae/Anthomedusae) A.C. Marques, H. Mergner, R. Höinghaus, C.M.D. Santos & W. Vervoort Marques, A.C., H. Mergner, R. Höinghaus, C.M.D. Santos & W. Vervoort. Morphological study and taxonomical notes on Eudendriidae (Cnidaria: Hydrozoa: Athecatae/Anthomedusae). Zool. Med. Leiden 74 (5), 15.ix.2000: 75-118, figs 1-99.— ISSN 0024-0672. A.C. Marques & C.M.D. dos Santos, Departamento de Biologia - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil (e-mail: [email protected]). H. Mergner & R. Höinghaus, Abteilung für Biologie, Lehrstuhl für Spezielle Zoologie der Ruhr-Uni- versität Bochum, Germany. W. Vervoort, National Museum of Natural History (Nationaal Natuurhistorisch Museum), P.O. Box 9517, 2300 RA Leiden, The Netherlands (e-mail: [email protected]). (Correspondence should be addressed to A.C. Marques or W. Vervoort). Key words: Hydrozoa; Eudendriidae; Eudendrium; Myrionema; systematics; morphology; SEM; optical microscopy. The morphology of 25 species of the family Eudendriidae was studied, with special regard to their reproductive organs, using techniques of SEM and optical microscopy. Whenever possible a re-analy- sis of the diagnostic characters of these species was carried out. Furthermore, several synonymies were confirmed or discussed and remarks on taxonomical details are presented. A developmental
    [Show full text]
  • The Palaeontology Newsletter
    The Palaeontology Newsletter Contents100 Editorial 2 Association Business 3 Annual Meeting 2019 3 Awards and Prizes AGM 2018 12 PalAss YouTube Ambassador sought 24 Association Meetings 25 News 30 From our correspondents A Palaeontologist Abroad 40 Behind the Scenes: Yorkshire Museum 44 She married a dinosaur 47 Spotlight on Diversity 52 Future meetings of other bodies 55 Meeting Reports 62 Obituary: Ralph E. Chapman 67 Grant Reports 72 Book Reviews 104 Palaeontology vol. 62 parts 1 & 2 108–109 Papers in Palaeontology vol. 5 part 1 110 Reminder: The deadline for copy for Issue no. 101 is 3rd June 2019. On the Web: <http://www.palass.org/> ISSN: 0954-9900 Newsletter 100 2 Editorial This 100th issue continues to put the “new” in Newsletter. Jo Hellawell writes about our new President Charles Wellman, and new Publicity Officer Susannah Lydon gives us her first news column. New award winners are announced, including the first ever PalAss Exceptional Lecturer (Stephan Lautenschlager). (Get your bids for Stephan’s services in now; check out pages 34 and 107.) There are also adverts – courtesy of Lucy McCobb – looking for the face of the Association’s new YouTube channel as well as a call for postgraduate volunteers to join the Association’s outreach efforts. But of course palaeontology would not be the same without the old. Behind the Scenes at the Museum returns with Sarah King’s piece on The Yorkshire Museum (York, UK). Norman MacLeod provides a comprehensive obituary of Ralph Chapman, and this issue’s palaeontologists abroad (Rebecca Bennion, Nicolás Campione and Paige dePolo) give their accounts of life in Belgium, Australia and the UK, respectively.
    [Show full text]