Energy from Uranium

Total Page:16

File Type:pdf, Size:1020Kb

Energy from Uranium 2018-2019 Energy From Uranium Hands-on, multidisciplinary activities that introduce students to the chemistry and physics of uranium, the process of fission, the history of nuclear science, and the role of uranium in electricity generation. Grade Level: Pri Int Intermediate le Sec E Subject Areas: Science Social Studies Language Arts Technology NEED Mission Statement The mission of The NEED Project is to promote an energy conscious and educated society by creating effective networks of students, educators, business, government and community leaders to design and deliver objective, multi- sided energy education programs. Teacher Advisory Board Permission to Copy NEED curriculum is available for reproduction by classroom Constance Beatty Greg Holman teachers only. NEED curriculum may only be reproduced Kankakee, IL Paradise, CA for use outside the classroom setting when express written permission is obtained in advance from The NEED Project. James M. Brown Barbara Lazar Permission for use can be obtained by contacting Saratoga Springs, NY Albuquerque, NM [email protected]. Amy Constant - Schott Robert Lazar Raleigh, NC Albuquerque, NM Teacher Advisory Board Nina Corley Leslie Lively In support of NEED, the national Teacher Advisory Board Galveston, TX Porters Falls, WV (TAB) is dedicated to developing and promoting standards- based energy curriculum and training. Samantha Danielli Hallie Mills Vienna, VA St. Peters, MO Energy Data Used in NEED Materials Shannon Donovan Jennifer Mitchell - NEED believes in providing teachers and students with the Greene, RI Winterbottom most recently reported, available, and accurate energy data. Pottstown, PA Most statistics and data contained within this guide are Linda Fonner derived from the U.S. Energy Information Administration. New Martinsville, WV Mollie Mukhamedov Data is compiled and updated annually where available. Port St. Lucie, FL Where annual updates are not available, the most current, Teresa Fulk complete data year available at the time of updates is Don Pruett Jr. Browns Summit, NC accessed and printed in NEED materials. To further research Puyallup, WA energy data, visit the EIA website at www.eia.gov. Michelle Garlick Judy Reeves Long Grove, IL Lake Charles, LA Erin Gockel Tom Spencer Farmington, NM Chesapeake, VA Robert Griegoliet Jennifer Trochez Naperville, IL MacLean Bob Hodash Los Angeles, CA Wayne Yonkelowitz DaNel Hogan Fayetteville, WV Tucson, AZ 1.800.875.5029 www.NEED.org © 2018 Printed on Recycled Paper 2 ©2018 The NEED Project Energy From Uranium www.NEED.org Energy From Uranium Table of Contents Standards Correlation Information 4 Materials 5 Teacher Guide 6 Energy From Uranium was developed Nuclear Energy Bingo Instructions 18 by The NEED Project with funding and technical support from The Lenfest Internet Resources 20 Foundation and Washington and Lee Nuclear Energy Assessment Answer Key 21 University. Student Informational Text 22 Careers in the Nuclear Industry 40 Think, Learn, Question Master 41 The Periodic Table of the Elements Master 42 Pressurized Water Reactor Master 43 Science of Electricity Model 44 Science of Electricity Model Worksheet 47 Atomic Mass Model 48 Boron Isotopes and Atomic Mass 49 Average Atomic Mass of Boron 50 Examining Nuclear Energy 52 Licorice Decay 53 M&Mium Radioactive Decay 54 Licorice and M&Mium Decay Graph 55 Radiation Dose Chart 56 Milling Simulation 57 Nuclear Power Plant Simulation Summary 58 Nuclear Energy Expo 59 Uranium in the Round Cards 61 Culminating Activity: Nuclear Power Plant Hearing 64 Culminating Activity: Nuclear Energy Letter Prompt 66 Nuclear Energy Assessment 67 Nuclear Energy Bingo 70 Glossary 71 Evaluation Form 74 ©2018 The NEED Project Energy From Uranium www.NEED.org 3 Standards Correlation Information www.NEED.org/curriculumcorrelations Next Generation Science Standards This guide effectively supports many Next Generation Science Standards. This material can satisfy performance expectations, science and engineering practices, disciplinary core ideas, and cross cutting concepts within your required curriculum. For more details on these correlations, please visit NEED’s curriculum correlations website. Common Core State Standards This guide has been correlated to the Common Core State Standards in both language arts and mathematics. These correlations are broken down by grade level and guide title, and can be downloaded as a spreadsheet from the NEED curriculum correlations website. Individual State Science Standards This guide has been correlated to each state’s individual science standards. These correlations are broken down by grade level and guide title, and can be downloaded as a spreadsheet from the NEED website. 4 ©2018 The NEED Project Energy From Uranium www.NEED.org Energy From Uranium Materials ACTIVITY MATERIALS NEEDED Science of Electricity Small bottle Fine sandpaper Strong rectangle magnets Multimeters 12” x ¼” Wooden dowels Sharp scissors Rubber stoppers with ¼” hole Alligator clips Foam tube Rulers Spools of magnet wire Hand operated pencil sharpeners Masking tape Push pins Permanent markers Utility knife (optional) Small nail Large nail Atomic Mass of Isotopes Pennies* Digital balances Radioactive Decay: Candy Chemistry M&M’s® candies* Licorice Small cups Graph paper Paper towels Detecting Radiation — Done as a 100% Alcohol Flashlight class demonstration, no group set- Dry ice Uranium ore or other radioactive sample up is required. Cloud chamber with lid Neodymium magnet Piece of sponge Milling Simulation Sand Cooking pot Salt Heat source Gravel Beakers Screens Safety glasses Filters Scales or balances Water Stirrers Nuclear Power Plant Simulation Poster board Flashlight Blue plastic table cloth Masking tape Index cards Poker chips, sticky notes, candies, or other Red paper counting pieces (60-100 needed) Blue paper Swivel stool (optional) String Hole punch Rope or extension cord Nuclear Energy Expo Tri-fold boards Markers Uranium in the Round Cardstock Culminating Activity: Advantages and Internet access for students Challenges of Nuclear Energy *NOTE: Any marked, two-sided, identical objects can be used as a substitute for these activities, including coins, candies, disks, or chips. If using pennies, be sure they were all minted after 1982, to ensure similar masses. ©2018 The NEED Project Energy From Uranium www.NEED.org 5 Teacher Guide Grade Level & Background Intermediate, grades 6-8 This is an integrated curriculum designed to teach students about the use of uranium as an energy source. Time Approximately 10-20 2 Preparation 45-minute class periods Familiarize yourself with the activities and information contained within the guide. Select the or less, depending on the activities that will be most appropriate for your students. activities selected Gather any materials you will need for the activities you select. A materials list can be found on page 5. Science Notebooks This curriculum is designed Activity 1: Introduction to be used in conjunction with science notebooks. Objective Experimental questions, Students will be able to describe uranium’s role in the process of generating power. procedures, sample data tables, and conclusion Time questions are provided. If 1 class period you do not use notebooks in your classroom, students may Materials require paper for recording Think, Learn, Question (TLQ), page 41 data and conclusions. If Nuclear Energy Bingo, pages 18-19, 70 you use notebooks in your Student informational text, pages 22-39 classroom, your students Culminating project rubric, page 17 (optional) may choose to incorporate the activity sheets into their 2Preparation notebooks. Make copies of the informational text and worksheets for each student. Online Resources Procedure See page 20 for a list of informa- 1. Give students 3-5 minutes to brainstorm what they know about nuclear energy, and some tive and interactive websites questions they may have. When students are done, take two minutes and let students share that support this content. their thoughts with a partner, then have a class discussion for students to share their thoughts. 2. During the discussion, write students’ thoughts on the board or chart paper. Students may try to correct each other’s misconceptions during the conversation. Allow this discussion to take place. However, if there is something that remains in dispute, do not correct the misconception yourself, but make note of it and add it to the question section. Let students know that they should be looking for supporting evidence for their ideas and answers to their questions in the coming days. 3. Play Nuclear Energy Bingo as an introduction to the unit. 4. If you are going to have your students participate in the mock nuclear power plant hearing, introduce the culminating project to your students and assign roles to students to take on as they learn about nuclear energy. Encourage students to analyze information from the viewpoint of their assigned character. Throughout the unit students should also conduct outside research to prepare for their presentation at the hearing. See pages 16 and 64-65 for more details about the hearing. You may also give students the rubric for assessment ahead of time. 5. Assign students to read the informational text. As students read, they should keep notes on key points and facts. This can be done in their notebooks, or using the TLQ handout. Students can complete the reading during class time or as homework,
Recommended publications
  • AST242 LECTURE NOTES PART 3 Contents 1. Viscous Flows 2 1.1. the Velocity Gradient Tensor 2 1.2. Viscous Stress Tensor 3 1.3. Na
    AST242 LECTURE NOTES PART 3 Contents 1. Viscous flows 2 1.1. The velocity gradient tensor 2 1.2. Viscous stress tensor 3 1.3. Navier Stokes equation { diffusion 5 1.4. Viscosity to order of magnitude 6 1.5. Example using the viscous stress tensor: The force on a moving plate 6 1.6. Example using the Navier Stokes equation { Poiseuille flow or Flow in a capillary 7 1.7. Viscous Energy Dissipation 8 2. The Accretion disk 10 2.1. Accretion to order of magnitude 14 2.2. Hydrostatic equilibrium for an accretion disk 15 2.3. Shakura and Sunyaev's α-disk 17 2.4. Reynolds Number 17 2.5. Circumstellar disk heated by stellar radiation 18 2.6. Viscous Energy Dissipation 20 2.7. Accretion Luminosity 21 3. Vorticity and Rotation 24 3.1. Helmholtz Equation 25 3.2. Rate of Change of a vector element that is moving with the fluid 26 3.3. Kelvin Circulation Theorem 28 3.4. Vortex lines and vortex tubes 30 3.5. Vortex stretching and angular momentum 32 3.6. Bernoulli's constant in a wake 33 3.7. Diffusion of vorticity 34 3.8. Potential Flow and d'Alembert's paradox 34 3.9. Burger's vortex 36 4. Rotating Flows 38 4.1. Coriolis Force 38 4.2. Rossby and Ekman numbers 39 4.3. Geostrophic flows and the Taylor Proudman theorem 39 4.4. Two dimensional flows on the surface of a planet 41 1 2 AST242 LECTURE NOTES PART 3 4.5. Thermal winds? 42 5.
    [Show full text]
  • Energy Literacy Essential Principles and Fundamental Concepts for Energy Education
    Energy Literacy Essential Principles and Fundamental Concepts for Energy Education A Framework for Energy Education for Learners of All Ages About This Guide Energy Literacy: Essential Principles and Intended use of this document as a guide includes, Fundamental Concepts for Energy Education but is not limited to, formal and informal energy presents energy concepts that, if understood and education, standards development, curriculum applied, will help individuals and communities design, assessment development, make informed energy decisions. and educator trainings. Energy is an inherently interdisciplinary topic. Development of this guide began at a workshop Concepts fundamental to understanding energy sponsored by the Department of Energy (DOE) arise in nearly all, if not all, academic disciplines. and the American Association for the Advancement This guide is intended to be used across of Science (AAAS) in the fall of 2010. Multiple disciplines. Both an integrated and systems-based federal agencies, non-governmental organizations, approach to understanding energy are strongly and numerous individuals contributed to the encouraged. development through an extensive review and comment process. Discussion and information Energy Literacy: Essential Principles and gathered at AAAS, WestEd, and DOE-sponsored Fundamental Concepts for Energy Education Energy Literacy workshops in the spring of 2011 identifies seven Essential Principles and a set of contributed substantially to the refinement of Fundamental Concepts to support each principle. the guide. This guide does not seek to identify all areas of energy understanding, but rather to focus on those To download this guide and related documents, that are essential for all citizens. The Fundamental visit www.globalchange.gov. Concepts have been drawn, in part, from existing education standards and benchmarks.
    [Show full text]
  • Toolkit 1: Energy Units and Fundamentals of Quantitative Analysis
    Energy & Society Energy Units and Fundamentals Toolkit 1: Energy Units and Fundamentals of Quantitative Analysis 1 Energy & Society Energy Units and Fundamentals Table of Contents 1. Key Concepts: Force, Work, Energy & Power 3 2. Orders of Magnitude & Scientific Notation 6 2.1. Orders of Magnitude 6 2.2. Scientific Notation 7 2.3. Rules for Calculations 7 2.3.1. Multiplication 8 2.3.2. Division 8 2.3.3. Exponentiation 8 2.3.4. Square Root 8 2.3.5. Addition & Subtraction 9 3. Linear versus Exponential Growth 10 3.1. Linear Growth 10 3.2. Exponential Growth 11 4. Uncertainty & Significant Figures 14 4.1. Uncertainty 14 4.2. Significant Figures 15 4.3. Exact Numbers 15 4.4. Identifying Significant Figures 16 4.5. Rules for Calculations 17 4.5.1. Addition & Subtraction 17 4.5.2. Multiplication, Division & Exponentiation 18 5. Unit Analysis 19 5.1. Commonly Used Energy & Non-energy Units 20 5.2. Form & Function 21 6. Sample Problems 22 6.1. Scientific Notation 22 6.2. Linear & Exponential Growth 22 6.3. Significant Figures 23 6.4. Unit Conversions 23 7. Answers to Sample Problems 24 7.1. Scientific Notation 24 7.2. Linear & Exponential Growth 24 7.3. Significant Figures 24 7.4. Unit Conversions 26 8. References 27 2 Energy & Society Energy Units and Fundamentals 1. KEY CONCEPTS: FORCE, WORK, ENERGY & POWER Among the most important fundamentals to be mastered when studying energy pertain to the differences and inter-relationships among four concepts: force, work, energy, and power. Each of these terms has a technical meaning in addition to popular or colloquial meanings.
    [Show full text]
  • Gy Use Units and the Scales of Ener
    The Basics: SI Units A tour of the energy landscape Units and Energy, power, force, pressure CO2 and other greenhouse gases conversion The many forms of energy Common sense and computation 8.21 Lecture 2 Units and the Scales of Energy Use September 11, 2009 8.21 Lecture 2: Units and the scales of energy use 1 The Basics: SI Units A tour of the energy landscape Units and Energy, power, force, pressure CO2 and other greenhouse gases conversion The many forms of energy Common sense and computation Outline • The basics: SI units • The principal players:gy ener , power, force, pressure • The many forms of energy • A tour of the energy landscape: From the macroworld to our world • CO2 and other greenhouse gases: measurements, units, energy connection • Perspectives on energy issues --- common sense and conversion factors 8.21 Lecture 2: Units and the scales of energy use 2 The Basics: SI Units tour of the energy landscapeA Units and , force, pressure, powerEnergy CO2 and other greenhouse gases conversion The many forms of energy Common sense and computation SI ≡ International System MKSA = MeterKilogram, , Second,mpereA Unit s Not cgs“English” or units! Electromagnetic units Deriud v n e its ⇒ Char⇒ geCoulombs EnerJ gy oul es ⇒ Current ⇒ Amperes Po werW a tts ⇒ Electrostatic potentialV⇒ olts Pr e ssuP a r s e cals ⇒ Resistance ⇒ Ohms Fo rNe c e wto n s T h erma l un i ts More about these next... TemperatureK⇒ elvinK) ( 8.21 Lecture 2: Units and the scales of energy use 3 The Basics: SI Units A tour of the energy landscape Units and Energy, power,
    [Show full text]
  • 3. Energy, Heat, and Work
    3. Energy, Heat, and Work 3.1. Energy 3.2. Potential and Kinetic Energy 3.3. Internal Energy 3.4. Relatively Effects 3.5. Heat 3.6. Work 3.7. Notation and Sign Convention In these Lecture Notes we examine the basis of thermodynamics – fundamental definitions and equations for energy, heat, and work. 3-1. Energy. Two of man's earliest observations was that: 1)useful work could be accomplished by exerting a force through a distance and that the product of force and distance was proportional to the expended effort, and 2)heat could be ‘felt’ in when close or in contact with a warm body. There were many explanations for this second observation including that of invisible particles traveling through space1. It was not until the early beginnings of modern science and molecular theory that scientists discovered a true physical understanding of ‘heat flow’. It was later that a few notable individuals, including James Prescott Joule, discovered through experiment that work and heat were the same phenomenon and that this phenomenon was energy: Energy is the capacity, either latent or apparent, to exert a force through a distance. The presence of energy is indicated by the macroscopic characteristics of the physical or chemical structure of matter such as its pressure, density, or temperature - properties of matter. The concept of hot versus cold arose in the distant past as a consequence of man's sense of touch or feel. Observations show that, when a hot and a cold substance are placed together, the hot substance gets colder as the cold substance gets hotter.
    [Show full text]
  • Notes on Thermodynamics the Topic for the Last Part of Our Physics Class
    Notes on Thermodynamics The topic for the last part of our physics class this quarter will be thermodynam- ics. Thermodynamics deals with energy transfer processes. The key idea is that materials have "internal energy". The internal energy is the energy that the atoms and molecules of the material possess. For example, in a gas and liquid the molecules are moving and have kinetic energy. The molecules can also rotate and vibrate, and these motions also contribute to the gases total internal energy. In a solid, the atoms can oscillate about their equilibrium position and also possess energy. The total internal energy is defined as: The total internal energy of a substance = the sum of the energies of the constituents of the substance. When two substances come in contact, internal energy from one substance can de- crease while the internal energy of the other increases. The first law of thermody- namics states that the energy lost by one substance is gained by the other. That is, that there exists a quantity called energy that is conserved. We will develop this idea and more over the next 4 weeks. We will be analyzing gases, liquids, and solids, so we need to determine which properties are necessary for an appropriate description of these materials. Although we will be making models about the constituents of these materials, what is usually measured are their macroscopic quantities or "large scale" properties of the sys- tems. We have already some of these when we studied fluids in the beginning of the course: Volume (V ): The volume that the material occupies.
    [Show full text]
  • Energy Performance Score Report
    ENERGY PERFORMANCE SCORE Address: Reference Number: 010000122 Huntsville, AL 35810 Current Energy Use Energy Cost Carbon Energy Score: 43,000 kWhe/yr $2,434 Carbon Score: 10.7 tons/yr Electric: 19,400 kWh/yr $1,648 Electric: 6.4 tons/yr Natural Gas: 800 therms/yr $787 Natural Gas: 4.3 tons/yr Energy Score Carbon Score *See Recommended Upgrades *See Recommended Upgrades †With energy from renewable sources This score measures the estimated total energy use This score measures the total carbon emissions based on (electricity, natural gas, propane, heating oil) of this home the annual amounts, types, and sources of fuels used in for one year. The lower the score, the less energy required this home. The lower the score, the less carbon is released for normal use. Actual consumption and costs may vary. into the atmosphere to power this home. Measured in kilowatt hours per year (kWhe/yr). Measured in metric tons per year (tons/yr). Bedrooms: 5+ Audit Date: 02/09/2012 Year Built: 2002 Auditor: Synergy Air Flow and Ventilation Witt, Todd SIMPLE EPS Version 2.0 v20111011 Visit www.energy-performance-score.com to maximize energy savings Page 1 of 16 Energy Performance Score What is the Energy Performance Score? A Third-Party Certified Score The Energy Performance Score calculation is based on a home energy assessment. Anyone may use the EPS assessment methodology for evaluating energy performance and upgrades of a home, but only a certified EPS analyst has been trained and qualified to conduct an EPS. A third-party certified EPS can only be issued by a certified EPS analyst who does not have any material interest in the energy work that will be, or has been, performed on the home.
    [Show full text]
  • RELATIVISTIC UNITS Link To
    RELATIVISTIC UNITS Link to: physicspages home page. To leave a comment or report an error, please use the auxiliary blog and include the title or URL of this post in your comment. Post date: 14 Jan 2021. One of the key ideas drummed into the beginning physics student is that of checking the units in any calculation. If you are working out the value of some quantity such as the speed of a car or the kinetic energy of a falling mass, if the units don’t work out to the correct combination for the quantity you’re calculating, you’ve done something wrong. The standard unit systems provide units for mass, distance and time, and the most commonly used systems in physics courses are the MKS system (metre-kilogram-second), also known as the SI (for Systeme Internationale) system, and the CGS system (centimetre-gram-second). Most other units used in physics are a combination of the three basic units and can be derived from the formula defining that particular unit. For example, the unit of energy can be derived from the formula for ki- 1 2 netic energy, which is T = 2 mv . The unit of velocity is (distance)/(time), so the unit of energy is (mass)(distance)2(time)−2. In the MKS system, this comes out to kg · m2s−2 and the MKS unit of energy is named the joule. This system of units works well for most practical applications of physics in the everyday world, since the units were chosen to be of magnitudes similar to those sorts of things we deal with on a daily basis.
    [Show full text]
  • What Is Energy?
    Chapter 1 What is Energy? We hear about energy everywhere. The newspaper tells us that California has an energy crisis, and that the Presi- dent of the United States has an energy plan. The Vice President, meanwhile, says that conserving energy is a personal virtue. We pay bills for energy every month, but an inventor in Mississippi claims to have a device that provides “free” energy. Athletes eat high-energy foods, and put as much energy as they can into the swing or the kick or the sprint. A magazine carries an advertisement for a “certified energy healing practitioner,” whose private, hands-on practice specializes in the “study and exploration of the human energy field.” Like most words, “energy” has multiple meanings. This course is about the scientific concept of energy, which is fairly consistent with most, but not all, of the meanings of the word in the preceding paragraph. What is energy, in the scientific sense? I’m afraid I don’t really know. I some- times visualize it as a substance, perhaps a fluid, that permeates all objects, endow- ing baseballs with their speed, corn flakes with their calories, and nuclear bombs with their megatons. But you can’t actually see the energy itself, or smell it or sense it in any direct way—all you can perceive are its effects. So perhaps energy is a fiction, a concept that we invent, because it turns out to be so useful. Energy can take on many different forms. A pitched baseball has kinetic en- ergy, or energy of motion.
    [Show full text]
  • Plasma Physics and Fusion Energy
    This page intentionally left blank PLASMA PHYSICS AND FUSION ENERGY There has been an increase in worldwide interest in fusion research over the last decade due to the recognition that a large number of new, environmentally attractive, sustainable energy sources will be needed during the next century to meet the ever increasing demand for electrical energy. This has led to an international agreement to build a large, $4 billion, reactor-scale device known as the “International Thermonuclear Experimental Reactor” (ITER). Plasma Physics and Fusion Energy is based on a series of lecture notes from graduate courses in plasma physics and fusion energy at MIT. It begins with an overview of world energy needs, current methods of energy generation, and the potential role that fusion may play in the future. It covers energy issues such as fusion power production, power balance, and the design of a simple fusion reactor before discussing the basic plasma physics issues facing the development of fusion power – macroscopic equilibrium and stability, transport, and heating. This book will be of interest to graduate students and researchers in the field of applied physics and nuclear engineering. A large number of problems accumulated over two decades of teaching are included to aid understanding. Jeffrey P. Freidberg is a Professor and previous Head of the Nuclear Science and Engineering Department at MIT. He is also an Associate Director of the Plasma Science and Fusion Center, which is the main fusion research laboratory at MIT. PLASMA PHYSICS AND FUSION ENERGY Jeffrey P. Freidberg Massachusetts Institute of Technology CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521851077 © J.
    [Show full text]
  • E Introduction to Energy
    e Introduction to Energy What Is Energy? Energy does things for us. It moves cars along the road and boats on the Energy at a Glance, 2015 water. It bakes a cake in the oven and keeps ice frozen in the freezer. It plays our favorite songs and lights our homes at night. Energy helps our 2014 2015 bodies grow and our minds think. Energy is a changing, doing, moving, working thing. World Population 7,178,722,893 7,245,299,845 Energy is defined as the ability to produce change or do work, and that U.S. Population 318,857,056 321,418,820 work can be divided into several main tasks we easily recognize: World Energy Production 539.5 Q 546.7 Q U.S. Energy Production 87.398 Q 88.024 Q Energy produces light. Renewables 9.6923 Q 9.466 Q Energy produces heat. Nonrenewables 77.706 Q 78.558 Q Energy produces motion. World Energy Consumption 537.36 Q 542.49 Q Energy produces sound. U.S. Energy Consumption 99.868 Q 97.344 Q Energy produces growth. Renewables 9.656 Q 9.450 Q Energy powers technology. Nonrenewables 90.212 Q 87.667 Q* Forms of Energy Q = Quad (1015 Btu), see Measuring Energy on page 8. Data: Energy Information Administration There are many forms of energy, but they all fall into two categories– *Totals may not equal sum of parts due to rounding of figures by EIA. potential or kinetic. POTENTIAL ENERGY Potential energy is stored energy and the energy of position, or gravitational potential energy.
    [Show full text]
  • Introduction to Energy
    Introduction to Energy What Is Energy? Energy does things for us. It moves cars along the road and boats on the Energy at a Glance, 2017 water. It bakes a cake in the oven and keeps ice frozen in the freezer. It plays our favorite songs and lights our homes at night. Energy helps our 2016 2017 bodies grow and our minds think. Energy is a changing, doing, moving, World Population 7,442,136,000 7,530,360,000 working thing. U.S. Population 323,127,573 325,147,000 Energy is defined as the ability to produce change or do work, and that World Energy Production 564.769* work can be divided into several main tasks we easily recognize: U.S. Energy Production 84.226 Q 88.261 Q Energy produces light. Renewables 10.181 Q 11.301 Q Energy produces heat. Nonrenewables 74.045 Q 76.960 Q Energy produces motion. World Energy Consumption 579.544 Q* Energy produces sound. U.S. Energy Consumption 97.410 Q 97.809 Q Energy produces growth. Renewables 10.113 Q 11.181 Q Energy powers technology. Nonrenewables 87.111 Q 84.464 Q Q = Quad (1015 Btu), see Measuring Energy on page 8. Forms of Energy * 2017 world energy figures not available at time of print. Data: Energy Information Administration There are many forms of energy, but they all fall into two categories– **Totals may not equal sum of parts due to rounding of figures by EIA. potential or kinetic. POTENTIAL ENERGY Potential energy is stored energy and the energy of position, or gravitational potential energy.
    [Show full text]