Introduction to Energy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Potential Energyenergy Isis Storedstored Energyenergy Duedue Toto Anan Objectobject Location.Location
TypesTypes ofof EnergyEnergy && EnergyEnergy TransferTransfer HeatHeat (Thermal)(Thermal) EnergyEnergy HeatHeat (Thermal)(Thermal) EnergyEnergy . HeatHeat energyenergy isis thethe transfertransfer ofof thermalthermal energy.energy. AsAs heatheat energyenergy isis addedadded toto aa substances,substances, thethe temperaturetemperature goesgoes up.up. MaterialMaterial thatthat isis burning,burning, thethe Sun,Sun, andand electricityelectricity areare sourcessources ofof heatheat energy.energy. HeatHeat (Thermal)(Thermal) EnergyEnergy Thermal Energy Explained - Study.com SolarSolar EnergyEnergy SolarSolar EnergyEnergy . SolarSolar energyenergy isis thethe energyenergy fromfrom thethe Sun,Sun, whichwhich providesprovides heatheat andand lightlight energyenergy forfor Earth.Earth. SolarSolar cellscells cancan bebe usedused toto convertconvert solarsolar energyenergy toto electricalelectrical energy.energy. GreenGreen plantsplants useuse solarsolar energyenergy duringduring photosynthesis.photosynthesis. MostMost ofof thethe energyenergy onon thethe EarthEarth camecame fromfrom thethe Sun.Sun. SolarSolar EnergyEnergy Solar Energy - Defined and Explained - Study.com ChemicalChemical (Potential)(Potential) EnergyEnergy ChemicalChemical (Potential)(Potential) EnergyEnergy . ChemicalChemical energyenergy isis energyenergy storedstored inin mattermatter inin chemicalchemical bonds.bonds. ChemicalChemical energyenergy cancan bebe released,released, forfor example,example, inin batteriesbatteries oror food.food. ChemicalChemical (Potential)(Potential) -
An Overview on Principles for Energy Efficient Robot Locomotion
REVIEW published: 11 December 2018 doi: 10.3389/frobt.2018.00129 An Overview on Principles for Energy Efficient Robot Locomotion Navvab Kashiri 1*, Andy Abate 2, Sabrina J. Abram 3, Alin Albu-Schaffer 4, Patrick J. Clary 2, Monica Daley 5, Salman Faraji 6, Raphael Furnemont 7, Manolo Garabini 8, Hartmut Geyer 9, Alena M. Grabowski 10, Jonathan Hurst 2, Jorn Malzahn 1, Glenn Mathijssen 7, David Remy 11, Wesley Roozing 1, Mohammad Shahbazi 1, Surabhi N. Simha 3, Jae-Bok Song 12, Nils Smit-Anseeuw 11, Stefano Stramigioli 13, Bram Vanderborght 7, Yevgeniy Yesilevskiy 11 and Nikos Tsagarakis 1 1 Humanoids and Human Centred Mechatronics Lab, Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy, 2 Dynamic Robotics Laboratory, School of MIME, Oregon State University, Corvallis, OR, United States, 3 Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, 4 Robotics and Mechatronics Center, German Aerospace Center, Oberpfaffenhofen, Germany, 5 Structure and Motion Laboratory, Royal Veterinary College, Hertfordshire, United Kingdom, 6 Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 7 Robotics and Multibody Mechanics Research Group, Department of Mechanical Engineering, Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium, 8 Centro di Ricerca “Enrico Piaggio”, University of Pisa, Pisa, Italy, 9 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States, 10 Applied Biomechanics Lab, Department of Integrative Physiology, -
UNIVERSITY of CALIFONIA SANTA CRUZ HIGH TEMPERATURE EXPERIMENTAL CHARACTERIZATION of MICROSCALE THERMOELECTRIC EFFECTS a Dissert
UNIVERSITY OF CALIFONIA SANTA CRUZ HIGH TEMPERATURE EXPERIMENTAL CHARACTERIZATION OF MICROSCALE THERMOELECTRIC EFFECTS A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ELECTRICAL ENGINEERING by Tela Favaloro September 2014 The Dissertation of Tela Favaloro is approved: Professor Ali Shakouri, Chair Professor Joel Kubby Professor Nobuhiko Kobayashi Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright © by Tela Favaloro 2014 This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License Table of Contents List of Figures ............................................................................................................................ vi List of Tables ........................................................................................................................... xiv Nomenclature .......................................................................................................................... xv Abstract ................................................................................................................................. xviii Acknowledgements and Collaborations ................................................................................. xxi Chapter 1 Introduction .......................................................................................................... 1 1.1 Applications of thermoelectric devices for energy conversion ................................... 1 -
A Novel and Cost Effective Radiant Heat Flux Gauge This Paper Presents a Patent-Pending Methodology of Measuring Radiation Emiss
A Novel and Cost Effective Radiant Heat Flux Gauge S. Safaei and A. S. Rangwala Department of Fire Protection Engineering, Worcester Polytechnic Institution, Worcester, MA, 01609, USA V. Raghavan Department of Mechanical Engineering Indian Institute of Technology Madras, Chennai, India T.M. Muruganandam, Department of Aerospace Engineering, National Center for Combustion Research and Development, Indian Institute of Technology Madras, Chennai, India This paper presents a patent-pending methodology of measuring radiation emissions from fires, for the purposes of more practical optical flame detection and analysis. Flame radiation comprises of three phenomena: chemiluminescence, photoluminescence, and thermal radiation. The first two types are caused by elementary breakdown reactions of the reactants and the molecular excitations of products such as H2O and CO2, respectively. These emissions are within narrow bands of electromagnetic radiation wavelengths, and due to their specific molecular physics, are largely fuel dependant. The third type, thermal radiation emissions come from high temperature soot, which is a blanket term for any carbonaceous intermittent species of the combustion reaction. The amount and temperature of soot is case-specific, as it is influenced by fuel type, geometries, fuel-oxidizer premixing and the resulting level of combustion efficiency. However since naturally occurring fire hazards are diffusion flames, soot is present in high quantities and the majority of the radiation can be attributed to soot alone [1 – 2]. These soot emissions are over large ranges of the electromagnetic spectrum, from ultraviolet all the way to Long wave Infrared (LWIR), following the classic Planck Law for Blackbody emitters. This distribution of radiant energy, E, is highly dependent on the temperature of the emitter, T, due to its exponential relation E=T4. -
Low Cost Solar Thermoelectric Water Floating Device to Supply Measurement Platform
78 IAPGOŚ 4/2019 p-ISSN 2083-0157, e-ISSN 2391-6761 DOI: 10.35784/IAPGOS.734 LOW COST SOLAR THERMOELECTRIC WATER FLOATING DEVICE TO SUPPLY MEASUREMENT PLATFORM Andrzej Nowrot1, Monika Mikołajczyk2, Anna Manowska1, Joachim Pielot1, Antoni Wojaczek1 1Silesian University of Technology, Department of Electrical Engineering and Automation in Industry, Gliwice, Poland, 2Famur Institute Ltd, Katowice, Poland Abstract. This work presents the prototype of the solar – thermoelectric device, which can float on water surface. It produces electrical energy as a result of the Seebeck effect in a commercial, low-cost Peltier module. The main application of the device will be an autonomous and a floating measurement platform. An important advantage of the presented solution is the possibility to work alike at day, when a solar light heats the surface of the absorber, and at night, when the different of temperatures between air and water causes the heat flux and in an effect the electricity. The device is capable of working for many cloudy days and also in winter on very short days. The presented device is based on low-cost and widely available components. Keywords: thermoelectric devices, solar power generation, energy conversion TERMOELEKTRYCZNE URZĄDZENIE SOLARNE DO ZASILANIA PLATFORMY POMIAROWEJ Streszczenie. W pracy zaprezentowano prototypowe solarne urządzenie termoelektryczne pływające po powierzchni wody. Wytwarza ono w niedrogim, komercyjnym module Peltiera energię elektryczną w wyniku zachodzącego w nim zjawiska Seebecka. Docelowo głównym obszarem aplikacyjnym urządzenia będzie zasilanie autonomicznej, pływającej platformy pomiarowa do monitorowania parametrów środowiskowych. Istotną zaletą przedstawionego rozwiązania jest możliwość pracy zarówno w dzień, gdy światło słoneczne ogrzewa powierzchnię absorbera, jak również w nocy, gdy różnica temperatur między powietrzem a wodą powoduje powstawanie strumienia ciepła w module Peltiera. -
United States Patent [191 4,2313J97 Sher
United States Patent [191 4,2313J97 Sher [54] RADIANT ENERGY TO ELECTRIC ENERGY 4,084,101 4/1978 Sher ..................................... 290/1 R CONVERTER 4,096,393 6/1978 Sher ..................................... 290A R [76] Inventor: Arden Sher, 108 Charles River OTHER PUBLICATIONS Landing Rd., Williamsburg, Va. R. Solomon et al., “Polarization in LaF,”, J. Appl. Phys., 23185 VO~.37, pp. 3427-3432, (1966). [ * 3 Notice: The portion of the term of this patent A. Sher et al., “Transport Properties of LaF3”, Phys. subsequent to Apr. 11,1995, has been Rev., vol. 144, pp. 593-604, (1966). disclaimed. J. E. Drummond, “Electrical Power Conversion”, IECEC Record ’75, pp. 569-575. [21] Appl. No.: 889,514 S. B. Skinner, “Thermodielectric Energy Conversion [22] Filed: Mar. 23,1978 by Thin Films: Experiment & Theory”, Intersociety Energy Conv. Eng. Con$, (1967), pp. 865-873. Related U.S. Application Data A. Sher et al., “LaF3 Infrared Detector”, Appl. Phys. Lett., vol. 28, pp. 676-678, (1976). [63] Continuation-in-part of Ser. No. 631,689, Nov. 13, 1975, Pat. No. 4,084,101. Primary Examiner-Aaron Weisstuch Attorney, Agent, or Firm-Lowe, King, Price and [51] Int. Cl.2 ............................................. HQlL31/Q4 Becker [52] U.S. Cl. ............................... 136/89 SP; 290/1 R 361/280; 361/282; 310/308; 310/309; 250/211 1571 ABSTRACT 250/212; 250/336 R; Radiant energy is converted into electric energy by [58] Field of Search ............ 136/89 R, 89 NB, 89 SP; irradiating a capacitor including an ionic dielectric. The 250/211 R, 212, 336; 290/1 R 361/280,282; 310/308, 309 dielectric is a sintered crystal superionic conductor, e.g., lanthanum trifluoride, lanthanum trichloride, or [561 References Cited silver bromide, so that a multiplicity of crystallites exist U.S. -
AST242 LECTURE NOTES PART 3 Contents 1. Viscous Flows 2 1.1. the Velocity Gradient Tensor 2 1.2. Viscous Stress Tensor 3 1.3. Na
AST242 LECTURE NOTES PART 3 Contents 1. Viscous flows 2 1.1. The velocity gradient tensor 2 1.2. Viscous stress tensor 3 1.3. Navier Stokes equation { diffusion 5 1.4. Viscosity to order of magnitude 6 1.5. Example using the viscous stress tensor: The force on a moving plate 6 1.6. Example using the Navier Stokes equation { Poiseuille flow or Flow in a capillary 7 1.7. Viscous Energy Dissipation 8 2. The Accretion disk 10 2.1. Accretion to order of magnitude 14 2.2. Hydrostatic equilibrium for an accretion disk 15 2.3. Shakura and Sunyaev's α-disk 17 2.4. Reynolds Number 17 2.5. Circumstellar disk heated by stellar radiation 18 2.6. Viscous Energy Dissipation 20 2.7. Accretion Luminosity 21 3. Vorticity and Rotation 24 3.1. Helmholtz Equation 25 3.2. Rate of Change of a vector element that is moving with the fluid 26 3.3. Kelvin Circulation Theorem 28 3.4. Vortex lines and vortex tubes 30 3.5. Vortex stretching and angular momentum 32 3.6. Bernoulli's constant in a wake 33 3.7. Diffusion of vorticity 34 3.8. Potential Flow and d'Alembert's paradox 34 3.9. Burger's vortex 36 4. Rotating Flows 38 4.1. Coriolis Force 38 4.2. Rossby and Ekman numbers 39 4.3. Geostrophic flows and the Taylor Proudman theorem 39 4.4. Two dimensional flows on the surface of a planet 41 1 2 AST242 LECTURE NOTES PART 3 4.5. Thermal winds? 42 5. -
Energy Literacy Essential Principles and Fundamental Concepts for Energy Education
Energy Literacy Essential Principles and Fundamental Concepts for Energy Education A Framework for Energy Education for Learners of All Ages About This Guide Energy Literacy: Essential Principles and Intended use of this document as a guide includes, Fundamental Concepts for Energy Education but is not limited to, formal and informal energy presents energy concepts that, if understood and education, standards development, curriculum applied, will help individuals and communities design, assessment development, make informed energy decisions. and educator trainings. Energy is an inherently interdisciplinary topic. Development of this guide began at a workshop Concepts fundamental to understanding energy sponsored by the Department of Energy (DOE) arise in nearly all, if not all, academic disciplines. and the American Association for the Advancement This guide is intended to be used across of Science (AAAS) in the fall of 2010. Multiple disciplines. Both an integrated and systems-based federal agencies, non-governmental organizations, approach to understanding energy are strongly and numerous individuals contributed to the encouraged. development through an extensive review and comment process. Discussion and information Energy Literacy: Essential Principles and gathered at AAAS, WestEd, and DOE-sponsored Fundamental Concepts for Energy Education Energy Literacy workshops in the spring of 2011 identifies seven Essential Principles and a set of contributed substantially to the refinement of Fundamental Concepts to support each principle. the guide. This guide does not seek to identify all areas of energy understanding, but rather to focus on those To download this guide and related documents, that are essential for all citizens. The Fundamental visit www.globalchange.gov. Concepts have been drawn, in part, from existing education standards and benchmarks. -
LESSON 1 What Is Energy?
LESSON 1 What is Energy? Overview In this lesson students review what they know about energy in everyday life, define it, learn the different energy forms through play, and differentiate between potential and kinetic energy. Student • I can use my own words to show I understand “energy.” Learning • I can describe the main forms of energy and give examples. Targets • I can show potential and kinetic energy with my body and I can give examples of each. • I can give examples of how I use energy every day. NGSS MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. [Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.] [Assessment Boundary: Assessment does not include calculations of energy.] Background Energy is part of everything that happens in the world and everything we do. Energy can be in the form of heat, light, gravity, sound, motion, chemical reactions, or electricity. Energy is the ability to do work or make a change. Nine forms of energy: (see Overhead 1 “Forms of Energy”) • Chemical: Chemical energy is the energy stored in the bonds of atoms and molecules. Biomass, petroleum, natural gas, propane and coal are examples of stored chemical energy. • Nuclear: Nuclear energy is the energy stored in the nucleus of an atom. It is the energy that holds the nucleus together. -
Low Power Energy Harvesting and Storage Techniques from Ambient Human Powered Energy Sources
University of Northern Iowa UNI ScholarWorks Dissertations and Theses @ UNI Student Work 2008 Low power energy harvesting and storage techniques from ambient human powered energy sources Faruk Yildiz University of Northern Iowa Copyright ©2008 Faruk Yildiz Follow this and additional works at: https://scholarworks.uni.edu/etd Part of the Power and Energy Commons Let us know how access to this document benefits ouy Recommended Citation Yildiz, Faruk, "Low power energy harvesting and storage techniques from ambient human powered energy sources" (2008). Dissertations and Theses @ UNI. 500. https://scholarworks.uni.edu/etd/500 This Open Access Dissertation is brought to you for free and open access by the Student Work at UNI ScholarWorks. It has been accepted for inclusion in Dissertations and Theses @ UNI by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. LOW POWER ENERGY HARVESTING AND STORAGE TECHNIQUES FROM AMBIENT HUMAN POWERED ENERGY SOURCES. A Dissertation Submitted In Partial Fulfillment of the Requirements for the Degree Doctor of Industrial Technology Approved: Dr. Mohammed Fahmy, Chair Dr. Recayi Pecen, Co-Chair Dr. Sue A Joseph, Committee Member Dr. John T. Fecik, Committee Member Dr. Andrew R Gilpin, Committee Member Dr. Ayhan Zora, Committee Member Faruk Yildiz University of Northern Iowa August 2008 UMI Number: 3321009 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. -
Toolkit 1: Energy Units and Fundamentals of Quantitative Analysis
Energy & Society Energy Units and Fundamentals Toolkit 1: Energy Units and Fundamentals of Quantitative Analysis 1 Energy & Society Energy Units and Fundamentals Table of Contents 1. Key Concepts: Force, Work, Energy & Power 3 2. Orders of Magnitude & Scientific Notation 6 2.1. Orders of Magnitude 6 2.2. Scientific Notation 7 2.3. Rules for Calculations 7 2.3.1. Multiplication 8 2.3.2. Division 8 2.3.3. Exponentiation 8 2.3.4. Square Root 8 2.3.5. Addition & Subtraction 9 3. Linear versus Exponential Growth 10 3.1. Linear Growth 10 3.2. Exponential Growth 11 4. Uncertainty & Significant Figures 14 4.1. Uncertainty 14 4.2. Significant Figures 15 4.3. Exact Numbers 15 4.4. Identifying Significant Figures 16 4.5. Rules for Calculations 17 4.5.1. Addition & Subtraction 17 4.5.2. Multiplication, Division & Exponentiation 18 5. Unit Analysis 19 5.1. Commonly Used Energy & Non-energy Units 20 5.2. Form & Function 21 6. Sample Problems 22 6.1. Scientific Notation 22 6.2. Linear & Exponential Growth 22 6.3. Significant Figures 23 6.4. Unit Conversions 23 7. Answers to Sample Problems 24 7.1. Scientific Notation 24 7.2. Linear & Exponential Growth 24 7.3. Significant Figures 24 7.4. Unit Conversions 26 8. References 27 2 Energy & Society Energy Units and Fundamentals 1. KEY CONCEPTS: FORCE, WORK, ENERGY & POWER Among the most important fundamentals to be mastered when studying energy pertain to the differences and inter-relationships among four concepts: force, work, energy, and power. Each of these terms has a technical meaning in addition to popular or colloquial meanings. -
Evaluation of Electric Energy Generation from Sound Energy Using Piezoelectric Actuator
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 Evaluation of Electric Energy Generation from Sound Energy Using Piezoelectric Actuator Mohana Faroug Saeed Attia1, Afraa Ibraheim Mohmmed Abdalateef2 1Department of Physics, University of Dongola, Sudan 2Collaborator Instructor University of Khartoum, Sudan Abstract: This paper presents the work done on the conversion techniques and methodologies of converting sound energy to its electrical counterpart, and focuses on the future of this type of energy sources than wind energy, solar energy, and biogas. Also, it includes the increase in energy consumption due to ever growing number of electronic devices, and the harvesting energy from humans and using of piezoelectricity. In the experimental work, a piezoelectric generator lead zirconate titante (PZT actuator) is used to extract sound energy from the loudspeaker from various distances and then to convert this energy into electrical energy. The maximum voltage generated by the piezoelectric generator occurs when its resonant frequency is operating near the frequency of sound. The result shows that the maximum output voltage of 28.8 mVrms was obtained with the sound intensity of 80.5 dB resonant frequency of 65 Hz at 1 cm distance in the first mode. In the second mode, the maximum output voltage of 94 m Vrms was obtained with the sound intensity of 105.7 dB at resonant frequency of 378 Hz at 1 cm which is larger than that of the first mode. However, for both modes, voltage decreases as distance increases. Keywords: piezoelectric effect, sound energy, piezoelectric material, resonant frequency, PZT actuator, electricity 1.