A Model-Based Systems Engineering Approach to E-VTOL Aircraft and Airspace Infrastructure Design for Urban Air Mobility
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Assessment of a Fuel Cell Powered Air Taxi in Urban Flight Conditions
Assessment of a Fuel Cell Powered Air Taxi in Urban Flight Conditions M. Husemann1, C. Glaser2, E. Stumpf3 Institute of Aerospace Systems (ILR), RWTH Aachen University, 52062 Aachen, Germany This paper presents a first estimation of potential impacts on the flight operations of small air taxis in urban areas using a fuel cell instead of a battery as an energy resource. The expanding application of electric components is seen as a possibility to reduce operating costs and environmental impacts in the form of noise and pollutant emissions due to lower consumption of fossil fuels. The majority of such designs have so far been based on the use of (not yet) sufficiently efficient batteries. Long charging times, possible overheating or a limited service life in the form of limited charging cycles pose a challenge to the development of such aircraft. Parameter studies are conducted to identify possible advantages of using a fuel cell. In particular, the range and payload capacity ist investigated and first effects on the cost structure will be presented. The evaluation of the studies shows that the use of fuel cells enables significantly longer ranges than the use of batteries. In addition, the range potential gained can be used, for example, to transport more payload over the same distance. Furthermore, the technological maturity in the form of the individual energy density and the weight of the powertrain unit has a significant effect on the cost structure. Fuel cells therefore have a high potential for applications in the mobility sector, but still require extensive research efforts. I. Introduction Increasing traffic volume due to advanced technologies and growing mobility demand often leads to heavy traffic and circumstantial routing, especially in metropolitan areas. -
System of Systems Modeling for Personal Air Vehicles
9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization AIAA 2002-5620 4-6 September 2002, Atlanta, Georgia SYSTEM -OF -SYSTEMS MO DELING FOR PERSONAL AIR VEHICLES Daniel DeLaurentis, Taewoo Kang, Choongiap Lim, Dimitri Mavris, Daniel Schrage Aerospace Systems Design Laboratory (ASDL) School of Aerospace Engineering Georgia Institute of Technology, Atlanta, GA 30332 http://www.asdl.gatech.edu Abstract Introduction On -going research is described in this paper System -of -systems problems contain multiple, concerning the development of a methodology for interacting, non -homogeneous functional elements, each adaptable system studies of future transportation of which may be represented as traditional systems solutions based upon personal air vehicles. Two themselves. This collection often exists within multiple challenges in this resea rch are presented. The hierarchies and is not packaged in a physical unit. Thus, challenge of deriving requirements for revolutionary according to this preliminary definition, an aircraft is a transportation concepts is a difficult one, due to the system while a network of personal aircraft operated fact that future transportation system infrastructure collaboratively with ground systems for improved and market economics are inter -related (and transportation is a system -of -systems. In such a probl em, uncertain) parts of the eq uation. Thus, there is a need for example, there are multiple, distinct vehicle types, for a macroscopic transportation model, and such a ground and air control networks, economic drivers, etc. task is well suited for the field of techniques known The increase in complexity brought by system -of - as system dynamics. The determination and system problems challenges the current state -of -the -art in visualization of the benefits of proposed personal air conceptual design methods. -
Remote ID NPRM Maps out UAS Airspace Integration Plans by Charles Alcock
PUBLICATIONS Vol.49 | No.2 $9.00 FEBRUARY 2020 | ainonline.com « Joby Aviation’s S4 eVTOL aircraft took a leap forward in the race to launch commercial service with a January 15 announcement of $590 million in new investment from a group led by Japanese car maker Toyota. Joby says it will have the piloted S4 flying as part of the Uber Air air taxi network in early adopter cities before the end of 2023, but it will surely take far longer to get clearance for autonomous eVTOL operations. (Full story on page 8) People HAI’s new president takes the reins page 14 Safety 2019 was a bad year for Part 91 page 12 Part 135 FAA has stern words for BlackBird page 22 Remote ID NPRM maps out UAS airspace integration plans by Charles Alcock Stakeholders have until March 2 to com- in planned urban air mobility applications. Read Our SPECIAL REPORT ment on proposed rules intended to provide The final rule resulting from NPRM FAA- a framework for integrating unmanned air- 2019-100 is expected to require remote craft systems (UAS) into the U.S. National identification for the majority of UAS, with Airspace System. On New Year’s Eve, the exceptions to be made for some amateur- EFB Hardware Federal Aviation Administration (FAA) pub- built UAS, aircraft operated by the U.S. gov- When it comes to electronic flight lished its long-awaited notice of proposed ernment, and UAS weighing less than 0.55 bags, (EFBs), most attention focuses on rulemaking (NPRM) for remote identifica- pounds. -
Treball Final De Grau
TREBALL FINAL DE GRAU TÍTOL DEL TFG: Air taxi transportation infrastructures in Barcelona TITULACIÓ: Grau en Enginyeria d’Aeronavegació AUTOR: Alexandru Nicorici Ionut DIRECTOR: José Antonio Castán Ponz DATA: 19 de juny del 2020 Títol: Air taxi transportation infrastructures in Barcelona Autor: Alexandru Nicorici Ionut Director: José Antonio Castán Ponz Data: 19 de juny del 2020 Resum El següent projecte parteix de la visió d’un futur on la mobilitat urbana es reparteix també al medi aèri. A partir d’aquesta premissa, s’escull el dron de passatgers com a mitjà de transport i es busca adaptar tot un sistema infrastructural per al vehicle autònom dins el perímetre d’una ciutat, Barcelona. En un inici, la primera pregunta a respondre és: permet la normativa actual l’ús de drons de passatgers autònoms en zones urbanes? Tant les regulacions europees com les nacionals espanyoles han estat estudiades i resumides per determinar que sí es permeten operacions amb aquest tipus de vehicles i es preveu la seva integració dintre de l’aviació civil. Seguidament, un estudi de mercat de taxi drons és realitzat amb l’objectiu d’esbrinar si la tecnologia d’avui dia permet operar a paràmetres òptims i oferir el servei de taxi d’una manera completament segura i satisfactòria per al client. Prototips en fase de test i actualment funcionals han estat analitzats; per finalment, elegir un d’aquest últims com a candidat apte per al transport de persones dins la capital catalana. Un cop es té el vehicle de transport, cal mirar si la pròpia ciutat ofereix garanties d’èxit per aquest servei de transport aeri. -
Technical University of Munich Professorship for Modeling Spatial Mobility
Technical University of Munich Professorship for Modeling Spatial Mobility ENVIRONMENTAL EVALUATION OF URBAN AIR MOBILITY OPERATION Author: ALONA PUKHOVA Supervised by: Prof. Dr.-Ing. Rolf Moeckel (TUM) M. Sc. Raoul Rothfeld (Bauhaus Luftfahrt e.V.) 24.04.2019 Contents Abstract iv Acknowledgements v Acronym List vi 1 Introduction 1 1.1 Urban Air Mobility . 1 1.2 Advent of electric mobility and current state of the technology . 2 1.3 The impact of transportation on environment . 6 1.4 Research questions . 8 2 Literature Review 9 2.1 Emission modelling tools, emission factor . 9 2.2 Environmental evaluation of conventional transportation . 11 2.3 Effect of electrification in transportation on the environment . 13 2.3.1 Conventional and electric cars . 13 2.3.2 Electric Buses . 16 2.3.3 Electric bikes and scooters . 17 2.4 Air vehicle types and characteristics . 19 2.5 Source and composition of electricity . 26 i 3 Methodology 30 3.1 MATSim and UAM Extension . 30 3.2 Munich City Scenario . 31 3.2.1 Status quo (baseline) . 33 3.2.2 UAM integration . 33 3.3 Emission Calculation . 35 3.3.1 Electricity Mix . 37 3.3.2 Air Vehicle . 39 3.3.3 Conventional and electric cars . 41 3.3.4 Bus . 42 3.3.5 Tram . 44 3.3.6 U-Bahn (Underground Train) . 45 3.3.7 Sub-Urban and Regional Trains . 46 4 Results 49 4.1 Baseline Scenario . 49 4.2 Urban Air Vehicle . 51 4.3 UAM Scenario . 55 4.4 Comparison of BaU and UAM Scenarios . -
The the Roadable Aircraft Story
www.PDHcenter.com www.PDHonline.org Table of Contents What Next, Slide/s Part Description Flying Cars? 1N/ATitle 2 N/A Table of Contents 3~53 1 The Holy Grail 54~101 2 Learning to Fly The 102~155 3 The Challenge 156~194 4 Two Types Roadable 195~317 5 One Way or Another 318~427 6 Between the Wars Aircraft 428~456 7 The War Years 457~572 8 Post-War Story 573~636 9 Back to the Future 1 637~750 10 Next Generation 2 Part 1 Exceeding the Grasp The Holy Grail 3 4 “Ah, but a man’s reach should exceed his grasp, or what’s a heaven f?for? Robert Browning, Poet Above: caption: “The Cars of Tomorrow - 1958 Pontiac” Left: a “Flying Auto,” as featured on the 5 cover of Mechanics and Handi- 6 craft magazine, January 1937 © J.M. Syken 1 www.PDHcenter.com www.PDHonline.org Above: for decades, people have dreamed of flying cars. This con- ceptual design appeared in a ca. 1950s issue of Popular Mechanics The Future That Never Was magazine Left: cover of the Dec. 1947 issue of the French magazine Sciences et Techniques Pour Tous featur- ing GM’s “RocAtomic” Hovercar: “Powered by atomic energy, this vehicle has no wheels and floats a few centimeters above the road.” Designers of flying cars borrowed freely from this image; from 7 the giant nacelles and tail 8 fins to the bubble canopy. Tekhnika Molodezhi (“Tech- nology for the Youth”) is a Russian monthly science ma- gazine that’s been published since 1933. -
A Review of Current Technology and Research in Urban On-Demand Air Mobility Applications
Delft University of Technology A review of current technology and research in urban on-demand air mobility applications Polaczyk, Nicholas; Trombino, Enzo; Wei, Peng; Mitici, Mihaela Publication date 2019 Document Version Accepted author manuscript Published in 8th Biennial Autonomous VTOL Technical Meeting and 6th Annual Electric VTOL Symposium 2019 Citation (APA) Polaczyk, N., Trombino, E., Wei, P., & Mitici, M. (2019). A review of current technology and research in urban on-demand air mobility applications. In 8th Biennial Autonomous VTOL Technical Meeting and 6th Annual Electric VTOL Symposium 2019 (pp. 333-343). Vertical Flight Society. Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. A Review of Current Technology and Research in Urban On-Demand Air Mobility Applications Dr. Mihaela Mitici, Ph. D Nicholas Polaczyk Enzo Trombino Dr. Peng Wei, Ph. D Assistant Prof. Aerospace BSc. Student Aerospace BSc. Student Aerospace Assistant Prof. Aerospace Engineering Engineering Engineering Engineering Delft University of Iowa State University Iowa State University Iowa State University Technology Ames, Iowa, United States Ames, Iowa, United States Ames, Iowa, United States Delft, the Netherlands ABSTRACT The purpose of this report is to summarize the current technology and challenges facing the market for eVTOL aircraft for urban on-demand air mobility applications. -
White Paper on Urban Air Mobility Systems
Table of Content Abstract.................................................................................................................1 Chapter 1 The UAM Concept................................................................... 2 Proposed Basic UAM Structure.....................................................................................3 Key components:........................................................................................................... 3 Command-and-Control Platform............................................................................... 9 Navigation and Positioning System.........................................................................10 Base Points.................................................................................................................... 10 Interface......................................................................................................................... 11 Key UAM Characteristics...............................................................................................12 What makes UAM a viable new transportation mode?..........................................13 Key differences between UAM and the current airline model.........................13 Key differences between AAVs and UAVs............................................................14 Key differences between AAVs and helicopters................................................. 14 Key advantages of UAM vs. existing ridesharing................................................15 Competition -
Personal Air Vehicle & VTOL
PERSPECTIVEPERSPECTIVE ARTICLE 21(69), July 1, 2014 ISSN 2278–5469 EISSN 2278–5450 Discovery Personal Air Vehicle & VTOL: An Insight Ravi Katukam҉ Convener Engineering Innovation, Cyient Limited, Hyderabad, India ҉Corresponding author: Convener Engineering Innovation, Cyient Limited, Hyderabad, India; Email: [email protected] Publication History Received: 06 May 2014 Accepted: 13 June 2014 Published: 1 July 2014 Citation Ravi Katukam. Personal Air Vehicle & VTOL: An Insight. Discovery, 2014, 21(69), 128-134 Publication License This work is licensed under a Creative Commons Attribution 4.0 International License. General Note Article is recommended to print as color digital version in recycled paper. ABSTRACT The rapid progress seen in the areas of Science and Technology have not resolved even some of our basic transportation issues. The challenges only seem to have increased with the passage of time. The ever increasing population coupled with the increasing trends of transportation requirements is pushing the scientists and the R&D engineers across the globe to invent and discover more efficient aircrafts which are not only eco-friendly but also provide a convenient and cost effective means of transportation of man and material. The evolution of Personal Air Vehicles (PAV) is expected to provide a possible solution for this problem. The design of the PAV was evolved from the appearance of a flightless bird named Puffin which is eco-friendly in nature and so, its structure is incorporated in the basic skeleton of the vehicles by few scientists. The striking appearance includes an unusual landing tail sitter which has its landing gear covered while it is in flight mode. -
By Gil Carlson
No longer is there a separation between Earthly technology, other worldly technology, science fiction stories of our past, hopes and aspirations of the future, our dimension and dimensions that were once inaccessible, dreams and nightmares… for it is now all the same! By Gil Carlson (C) Copyright 2016 Gil Carlson Wicked Wolf Press Email: [email protected] To discover the rest of the books in this Blue Planet Project Series: www.blue-planet-project.com/ -1- Air Hopper Robot Grasshopper…7 Aqua Sciences Water from Atmospheric Moisture…8 Avatar Program…9 Biometrics-At-A-Distance…9 Chembot Squishy SquishBot Robots…10 Cormorant Submarine/Sea Launched MPUAV…11 Cortical Modem…12 Cyborg Insect Comm System Planned by DARPA…13 Cyborg Insects with Nuclear-Powered Transponders…14 EATR - Energetically Autonomous Tactical Robot…15 EXACTO Smart Bullet from DARPA…16 Excalibur Program…17 Force Application and Launch (FALCON)…17 Fast Lightweight Autonomy Drones…18 Fast Lightweight Autonomous (FLA) indoor drone…19 Gandalf Project…20 Gremlin Swarm Bots…21 Handheld Fusion Reactors…22 Harnessing Infrastructure for Building Reconnaissance (HIBR) project…24 HELLADS: Lightweight Laser Cannon…25 ICARUS Project…26 InfoChemistry and Self-Folding Origami…27 Iron Curtain Active Protection System…28 ISIS Integrated Is Structure…29 Katana Mono-Wing Rotorcraft Nano Air Vehicle…30 LANdroid WiFi Robots…31 Lava Missiles…32 Legged Squad Support System Monster BigDog Robot…32 LS3 Robot Pack Animal…34 Luke’s Binoculars - A Cognitive Technology Threat Warning…34 Materials -
PERSONAL AIR VEHICLE & FLYING JEEP CONCEPTS a Commentary
PERSONAL AIR VEHICLE & FLYING JEEP CONCEPTS A Commentary on Promising Approaches or What Goes Around Comes Around (about every twenty years) b'_ David W. Hall, P.E. David Hall Consulting 965 Morro Avenue Unit #C Morro Bay, California 93442 prepared on Tuesday _, July' 24, 2001 I)RAFr Personal Air Vehicle & Hying Jeep Concepts: A Commentary on thomising Approaches l'ucsday, July 24, 2001 3:12 PM PcrsonalAirVehicl: & Hsing Jeep (7oncepts: A Commcntarx on Promising Approaches Tuesday July 24 2(X)I 3:12 PM TABLE OF CONTENTS Section Title Page "7 Introduction 8 Military Fixed-Wing VTOL Approaches 8 Tail Sitters 8 Deflected Slipstream 9 Fan-In-Wing 11 Thrust Augmcmors Vectored Thrust II 13 "Fill Engines 14 Tilt Wings Other 15 16 Civilian Fixed-Wing VTOL Approac ms Historical Roadable Vehicles 16 18 Tilt Ducts & Tilt Propulsion 22 Augmentors Autogyro 22 23 Deflected Slipstream & Thrust Vectoring Other Modern Roadable Aircraft 23 24 Flying Jeeps 25 ('h_sler VZ-6 Piasecki VZ-8 25 dcl.ackncr Aerocycle 25 26 Hiller's Second H3ing Plalforrr Bell Jet Pack 27 Bertelson Aeromobile 200-2 GI-M 27 28 Curtiss Wright Model 2500 GE'.d 28 Summary 29 How the Various V/STOL Approachts Compare V/STOI_ Considerations 33 General Observations 33 Takeoff and Landing 33 46 Flight Envelopes 48 Avoid Curve Considerations in Flight Envelope Determination Vertical Lift Stability' and Conlrol Considerations 55 Effect of (}round Plane 58 61 Disc Ix3ading Effects Hover Performance 61 62 Minimizing Power Required 66 Theoretically Elegant VTOL Concepts--Fluidic Amplification -
Design and Development of Multi-Rotorcraft-Based Unmanned Prototypes of Personal Aerial Vehicle 141
140 Int’l J. of Aeronautical & Space Sciences, Vol. 10, No. 2, November 2009 Design and Development of Multi-rotorcraft-based Unmanned Prototypes of Personal Aerial Vehicle Muljowidodo* Center for Unmanned System Studies, Institut Teknologi Bandung, Indonesia Agus Budiyono** Smart Robot Center, Department of Aerospace-IT Engineering, Konkuk University, Seoul, Korea Abstract The paper presents the design, development and testing activities of the multi- rotorcraft-based unmanned aerial vehicle at the Center for Unmanned System Studies, Institut Teknologi Bandung (ITB), Indonesia. The multi-rotor system was selected as the design stepping stone for future development of personal aerial vehicle prototypes. A step-by-step design program is conducted to study the technology building blocks and critical issues associated with the design, development and operation of personal aerial vehicles. A number of multi-rotor configurations have been investigated providing basic guidelines for developing a stable unmanned aerial platform. The benefit of the presently selected configuration is highlighted and some preliminary testing results are presented. Key words : rotorcraft-based unmanned aerial vehicle, personal aerial vehicle Introduction The ideas of a personal aerial vehicle (PAV), by which ordinary people can travel to distant places easily and safely, has been around for at least 60 years [1]. With the increasing problem of ground traffic in many cities and the need to make air travel more effective and efficient, the ideas of PAV have been revisited by many research institutes. The fact that in the intervening time the PAV has yet to be adopted for broader market indicates that there exist critical barriers (economically and technologically) that need to be addressed.