View a Copy of This Licence, Visit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Small Cell Ovarian Carcinoma: Genomic Stability and Responsiveness to Therapeutics
Gamwell et al. Orphanet Journal of Rare Diseases 2013, 8:33 http://www.ojrd.com/content/8/1/33 RESEARCH Open Access Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics Lisa F Gamwell1,2, Karen Gambaro3, Maria Merziotis2, Colleen Crane2, Suzanna L Arcand4, Valerie Bourada1,2, Christopher Davis2, Jeremy A Squire6, David G Huntsman7,8, Patricia N Tonin3,4,5 and Barbara C Vanderhyden1,2* Abstract Background: The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. Method: The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. Results: BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing. -
Analysis of Chromatin-State Plasticity Identifies Cell-Type–Specific Regulators of H3k27me3 Patterns
Analysis of chromatin-state plasticity identifies cell-type–specific regulators of H3K27me3 patterns Luca Pinelloa,1, Jian Xub,1, Stuart H. Orkinb,c,2, and Guo-Cheng Yuana,2 aDepartment of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Heath, Boston, MA 02215; bDivision of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115; and cHoward Hughes Medical Institute, Boston, MA 02115 Contributed by Stuart H. Orkin, December 6, 2013 (sent for review August 13, 2013) Chromatin states are highly cell-type–specific, but the underlying a significant fraction of H3K27me3 is located in distal regions. mechanisms for the establishment and maintenance of their ge- It has been proposed that distal H3K27me3 marks poised nome-wide patterns remain poorly understood. Here we present enhancers, which can be activated through replacing H3K27me3 a computational approach for investigation of chromatin-state by H3K27ac (15, 16). An important question is whether there is plasticity. We applied this approach to investigate an ENCODE a general principle controlling the plastic changes of H3K27me3 ChIP-seq dataset profiling the genome-wide distributions of the patterns across different cell types. H3K27me3 mark in 19 human cell lines. We found that the high To systematically investigate the mechanisms modulating plasticity regions (HPRs) can be divided into two functionally and chromatin-state plasticity, we developed and validated a compu- mechanistically distinct subsets, which correspond to CpG island tational approach to identify distinct lineage-restricted regulators (CGI) proximal or distal regions, respectively. -
Chromosomal Aberrations in Head and Neck Squamous Cell Carcinomas in Norwegian and Sudanese Populations by Array Comparative Genomic Hybridization
825-843 12/9/08 15:31 Page 825 ONCOLOGY REPORTS 20: 825-843, 2008 825 Chromosomal aberrations in head and neck squamous cell carcinomas in Norwegian and Sudanese populations by array comparative genomic hybridization ERIC ROMAN1,2, LEONARDO A. MEZA-ZEPEDA3, STINE H. KRESSE3, OLA MYKLEBOST3,4, ENDRE N. VASSTRAND2 and SALAH O. IBRAHIM1,2 1Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 91; 2Department of Oral Sciences - Periodontology, Faculty of Medicine and Dentistry, University of Bergen, Årstadveien 17, 5009 Bergen; 3Department of Tumor Biology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Montebello, 0310 Oslo; 4Department of Molecular Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway Received January 30, 2008; Accepted April 29, 2008 DOI: 10.3892/or_00000080 Abstract. We used microarray-based comparative genomic logical parameters showed little correlation, suggesting an hybridization to explore genome-wide profiles of chromosomal occurrence of gains/losses regardless of ethnic differences and aberrations in 26 samples of head and neck cancers compared clinicopathological status between the patients from the two to their pair-wise normal controls. The samples were obtained countries. Our findings indicate the existence of common from Sudanese (n=11) and Norwegian (n=15) patients. The gene-specific amplifications/deletions in these tumors, findings were correlated with clinicopathological variables. regardless of the source of the samples or attributed We identified the amplification of 41 common chromosomal carcinogenic risk factors. regions (harboring 149 candidate genes) and the deletion of 22 (28 candidate genes). Predominant chromosomal alterations Introduction that were observed included high-level amplification at 1q21 (harboring the S100A gene family) and 11q22 (including Head and neck squamous cell carcinoma (HNSCC), including several MMP family members). -
Rabbit Mab A
C 0 2 - t GFI1b (D3G2) Rabbit mAb a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 9 4 Web: [email protected] 8 www.cellsignal.com 5 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: WB, F H M R Mk Endogenous 35, 42 Rabbit IgG Q5VTD9 8328 Product Usage Information Application Dilution Western Blotting 1:1000 Flow Cytometry 1:400 - 1:1600 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity GFI1b (D3G2) Rabbit mAb recognizes endogenous levels of total GFI1b protein. Species Reactivity: Human, Mouse, Rat, Monkey Source / Purification Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Tyr119 of human GFI1b protein. Background GFI1b and its homolog GFI1 are transcriptional repressors and important regulators of erythroid and megakaryocytic development and differentiation (1,2). GFI1b negatively regulates transcription by recruiting chromatin regulatory proteins including CoREST, the histone demethylase LSD1 and HDACs 1 and 2, which associate with GFI1b via its SNAG repression domain (3). GFI1b has also been shown to control the differentiation of erythroid and megakaryocytic progenitors by regulating TGF-β signaling at the bipotent progenitor stage (4). Inactivation of GFI1b in mice leads to embryonic lethality due to failure to produce functional erythrocytes and megakaryocytes (2). -
Gfi1b (NM 008114) Mouse Tagged ORF Clone – MG204861 | Origene
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for MG204861 Gfi1b (NM_008114) Mouse Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: Gfi1b (NM_008114) Mouse Tagged ORF Clone Tag: TurboGFP Symbol: Gfi1b Synonyms: Gfi-1B Vector: pCMV6-AC-GFP (PS100010) E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: Neomycin ORF Nucleotide >MG204861 representing NM_008114 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGCCACGGTCCTTTCTAGTGAAGAGTAAGAAGGCACACACTTACCACCAGCCCCGGGCACAGGGTGATG AGCTGGTCTGGCCTCCTGCTGTAATTCCTGTGGCAAAAGAGCATAGCCAGAGTGCCAGCCCTCTTCTCAG CACACCGCTTCCAAGCCAGACCTTGGACTGGAACACAATCAAACAGGAGCGGGAGATGTTGCTGAACCAG AGCCTTCCCAAGATGGCCTCAGCCCCAGAGGGGCCTCTCGTGACACCCCAACCCCAGGATGGGGAATCAC CACTCTCTGAGTCACCCCCTTTCTACAAGCCCAGCTTCTCCTGGGATACCTTGGCCTCCTCCTACAGCCA CAGCTACACACAGACCCCCTCCACCATGCAGTCCGCCTTCCTGGAGCGCTCCGTGAGGCTGTACGGCAGC CCCCTCGTGCCCAGCACAGAGTCTCCCTTGGACTTCCGCCTCCGCTACTCTCCAGGCATGGACACTTACC ACTGTGTCAAGTGCAACAAGGTGTTCTCCACCCCTCATGGGCTAGAAGTGCATGTCCGCCGCTCTCACAG CGGAACCCGGCCCTTTGCCTGTGATGTCTGTGGCAAAACCTTTGGCCACGCTGTGAGCTTGGAGCAGCAT ACTCACGTCCACTCACAGGAGCGAAGCTTCGAGTGCCGGATGTGTGGCAAAGCCTTCAAGCGTTCATCCA CCCTGTCCACCCACCTGCTCATCCACTCGGACACTCGGCCCTACCCCTGCCAGTTCTGTGGGAAGCGCTT CCACCAGAAGTCGGACATGAAGAAACACACCTACATCCACACAGGTGAGAAGCCCCACAAGTGCCAGGTG TGTGGGAAAGCCTTCAGCCAGAGCTCCAACCTCATCACCCACAGCCGCAAGCACACAGGCTTCAAGCCGT -
Emergence of the Noncoding Cancer Genome: a Target of Genetic and Epigenetic Alterations
Published OnlineFirst October 19, 2016; DOI: 10.1158/2159-8290.CD-16-0745 REVIEW Emergence of the Noncoding Cancer Genome: A Target of Genetic and Epigenetic Alterations Stanley Zhou 1 , 2 , Aislinn E. Treloar 1 , 2 , and Mathieu Lupien 1 , 2 , 3 ABSTRACT The emergence of whole-genome annotation approaches is paving the way for the comprehensive annotation of the human genome across diverse cell and tissue types exposed to various environmental conditions. This has already unmasked the positions of thou- sands of functional cis-regulatory elements integral to transcriptional regulation, such as enhancers, promoters, and anchors of chromatin interactions that populate the noncoding genome. Recent studies have shown that cis-regulatory elements are commonly the targets of genetic and epigenetic altera- tions associated with aberrant gene expression in cancer. Here, we review these fi ndings to showcase the contribution of the noncoding genome and its alteration in the development and progression of can- cer. We also highlight the opportunities to translate the biological characterization of genetic and epi- genetic alterations in the noncoding cancer genome into novel approaches to treat or monitor disease. Signifi cance: The majority of genetic and epigenetic alterations accumulate in the noncoding genome throughout oncogenesis. Discriminating driver from passenger events is a challenge that holds great promise to improve our understanding of the etiology of different cancer types. Advancing our under- standing of the noncoding cancer genome may thus identify new therapeutic opportunities and acceler- ate our capacity to fi nd improved biomarkers to monitor various stages of cancer development. Cancer Discov; 6(11); 1215–29. -
A Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic Buffering of Doxorubicin Sean M
Santos and Hartman Cancer & Metabolism (2019) 7:9 https://doi.org/10.1186/s40170-019-0201-3 RESEARCH Open Access A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin Sean M. Santos and John L. Hartman IV* Abstract Background: The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. Methods: Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. Results: Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context. -
A Chemosensitization Screen Identifies TP53RK, a Kinase That Restrains Apoptosis After Mitotic Stress
Published OnlineFirst July 20, 2010; DOI: 10.1158/0008-5472.CAN-10-0015 Published OnlineFirst on July 20, 2010 as 10.1158/0008-5472.CAN-10-0015 Tumor and Stem Cell Biology Cancer Research A Chemosensitization Screen Identifies TP53RK, a Kinase that Restrains Apoptosis after Mitotic Stress David Peterson1, James Lee2, Xingye C. Lei3, William F. Forrest3, David P. Davis2, Peter K. Jackson1, and Lisa D. Belmont1 Abstract Taxanes are very effective at causing mitotic arrest; however, there is variability among cancer cells in the apoptotic response to mitotic arrest. The variability in clinical efficacy of taxane-based therapy is likely a re- flection of this variability in apoptotic response, thus elucidation of the molecular mechanism of the apoptotic response to mitotic stress could lead to improved clinical strategies. To identify genes whose expression in- fluences the rate and extent of apoptosis after mitotic arrest, we screened a kinase-enriched small interfering RNA library for effects on caspase activation in response to maximally effective doses of paclitaxel, a PLK1 inhibitor, or cisplatin. Small interfering RNA oligonucleotides directed against an atypical protein kinase, TP53RK, caused the greatest increase in caspase-3/7 activation in response to antimitotic agents. Time-lapse microscopy revealed that cells entered mitosis with normal kinetics, but died after entry into mitosis in the presence of paclitaxel more rapidly when TP53RK was depleted. Because expression levels of TP53RK vary in cancers, TP53RK levels could provide a molecular marker to predict response to antimitotic agents. TP53RK inhibition may also sensitize cancers to taxanes. Cancer Res; 70(15); 6325–35. -
Rna-Sequencing Applications: Gene Expression Quantification and Methylator Phenotype Identification
The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2013 RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION Guoshuai Cai Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Bioinformatics Commons, Computational Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Cai, Guoshuai, "RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION" (2013). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 386. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/386 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION -
Wppi: Weighting Protein-Protein Interactions
Package ‘wppi’ September 23, 2021 Type Package Title Weighting protein-protein interactions Version 1.1.2 Description Protein-protein interaction data is essential for omics data analysis and modeling. Database knowledge is general, not specific for cell type, physiological condition or any other context determining which connections are functional and contribute to the signaling. Functional annotations such as Gene Ontology and Human Phenotype Ontology might help to evaluate the relevance of interactions. This package predicts functional relevance of protein-protein interactions based on functional annotations such as Human Protein Ontology and Gene Ontology, and prioritizes genes based on network topology, functional scores and a path search algorithm. License MIT + file LICENSE URL https://github.com/AnaGalhoz37/wppi BugReports https://github.com/AnaGalhoz37/wppi/issues biocViews GraphAndNetwork, Network, Pathways, Software, GeneSignaling, GeneTarget, SystemsBiology, Transcriptomics, Annotation Encoding UTF-8 VignetteBuilder knitr Depends R(>= 4.1) Imports dplyr, igraph, logger, methods, magrittr, Matrix, OmnipathR(>= 2.99.8), progress, purrr, rlang, RCurl, stats, tibble, tidyr Suggests knitr, testthat, rmarkdown RoxygenNote 7.1.1 NeedsCompilation no git_url https://git.bioconductor.org/packages/wppi git_branch master git_last_commit 6aa91be git_last_commit_date 2021-07-15 1 2 common_neighbors Date/Publication 2021-09-23 Author Ana Galhoz [cre, aut] (<https://orcid.org/0000-0001-7402-5292>), Denes Turei [aut] (<https://orcid.org/0000-0002-7249-9379>), Michael P. Menden [aut] (<https://orcid.org/0000-0003-0267-5792>), Albert Krewinkel [ctb, cph] (pagebreak Lua filter) Maintainer Ana Galhoz <[email protected]> R topics documented: common_neighbors . .2 count_genes . .3 filter_annot_with_network . .4 functional_annot . .5 graph_from_op . .6 in_omnipath . .6 prioritization_genes . .7 process_annot . -
Namyoung Jung
EPIGENETIC BASIS OF STEM CELL IDENTITY IN NORMAL AND MALIGNANT HEMATOPOIETIC DEVELOPMENT by Namyoung Jung A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2015 © 2015 Namyoung Jung All Rights Reserved Abstract Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by subpopulations of leukemia-initiating or leukemia stem cells (LSC) that give rise to clonally related non-stem leukemic blasts. The LSC model proposes that since LSC and their blast progeny are clonally related, their functional properties must be due to epigenetic differences. In addition, the cell of origin of LSC among normal hematopoietic stem and progenitor cells (HSPCs) has yet to be clearly demonstrated. In order to investigate the role of epigenetics in LSC function and hematopoietic development, we profiled DNA methylation and gene expression of CD34+CD38-, CD34+CD38+ and CD34- cells from 15 AML patients, along with 6 well-defined HSPC populations from 5 normal bone marrows using Illumina Infinium HumanMethylation450 BeadChip and Affymetrix Human Genome U133 Plus 2.0 Array. To define LSC and blast functionally, we performed engraftment assays on the three subpopulations from 15 AML patients and defined 20 LSCs and 24 blast samples. We identified the key functional LSC epigenetic signature able to distinguish LSC from blasts that consisted of 84 differential methylations regions (DMRs) in 70 genes that correlated with differential gene expression. HOXA cluster genes were enriched within the LSC epigenetic signature. We found that most of these DMRs involve epigenetic alteration independent of underlying mutations, although several are downstream targets of genetic mutation in epigenome modifying enzymes and upstream regulators. -
Screen for Kinases Affecting Amyloidogenic Cleavage by BACE1
Screen for kinases affecting amyloidogenic cleavage by BACE1 Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) an der Universität Konstanz Mathematisch-Naturwissenschaftliche Sektion Fachbereich Biologie vorgelegt von Stephan Penzkofer Konstanz, Juli 2011 Tag der mündlichen Prüfung: 24.10.2011 1. Referent: Professor Dr. Marcel Leist 2. Referent: Professor Dr. Daniel Dietrich Summary: The Amyloid β peptide (Aβ) is suspected to be a causal agent for Alzheimer’s disease (AD). Therefore a screen for kinases downregulating the initial step of its production, the cleavage of the Amyloid Precursor Protein (APP) by Beta-site of APP Cleaving Enzyme 1 (BACE1), was conducted in this study. Briefly, HEK293 cells were colipofected with one of in total 1357 siRNAs against 60% of the human kinome and either an APP construct with only the β-cleavage site left or normally cleavable APP as control. Remaining β-cleavage was for logistic reasons firstly measured with an activity-test for secreted alkaline phosphatase (SEAP) fused to both types of APP and subjected to Aβ-ELISA when interesting. Before the screen, the APP-constructs were characterized in the cell types HEK293 and CGCs with regards to cleavage, especially by BACE1. The screen resulted in 38 hits of which one, Testis Specific Serine Kinase 3, was confirmed once more. In a second, bioinformatic project, an initially suspected APLP-like pseudogenic-like sequence in C3orf52 was refuted. Further, analysis of C3orf52 gene expression data hints on a role in myeloid leukemia. Lastly, the phylogenetic relationship of the APP family paralogs was examined, also in comparison to neighboring gene families, and found in the topology (APLP1)(APLP2/APP).