Wppi: Weighting Protein-Protein Interactions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Chromatin-State Plasticity Identifies Cell-Type–Specific Regulators of H3k27me3 Patterns
Analysis of chromatin-state plasticity identifies cell-type–specific regulators of H3K27me3 patterns Luca Pinelloa,1, Jian Xub,1, Stuart H. Orkinb,c,2, and Guo-Cheng Yuana,2 aDepartment of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Heath, Boston, MA 02215; bDivision of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115; and cHoward Hughes Medical Institute, Boston, MA 02115 Contributed by Stuart H. Orkin, December 6, 2013 (sent for review August 13, 2013) Chromatin states are highly cell-type–specific, but the underlying a significant fraction of H3K27me3 is located in distal regions. mechanisms for the establishment and maintenance of their ge- It has been proposed that distal H3K27me3 marks poised nome-wide patterns remain poorly understood. Here we present enhancers, which can be activated through replacing H3K27me3 a computational approach for investigation of chromatin-state by H3K27ac (15, 16). An important question is whether there is plasticity. We applied this approach to investigate an ENCODE a general principle controlling the plastic changes of H3K27me3 ChIP-seq dataset profiling the genome-wide distributions of the patterns across different cell types. H3K27me3 mark in 19 human cell lines. We found that the high To systematically investigate the mechanisms modulating plasticity regions (HPRs) can be divided into two functionally and chromatin-state plasticity, we developed and validated a compu- mechanistically distinct subsets, which correspond to CpG island tational approach to identify distinct lineage-restricted regulators (CGI) proximal or distal regions, respectively. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Rabbit Mab A
C 0 2 - t GFI1b (D3G2) Rabbit mAb a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 9 4 Web: [email protected] 8 www.cellsignal.com 5 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: WB, F H M R Mk Endogenous 35, 42 Rabbit IgG Q5VTD9 8328 Product Usage Information Application Dilution Western Blotting 1:1000 Flow Cytometry 1:400 - 1:1600 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity GFI1b (D3G2) Rabbit mAb recognizes endogenous levels of total GFI1b protein. Species Reactivity: Human, Mouse, Rat, Monkey Source / Purification Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Tyr119 of human GFI1b protein. Background GFI1b and its homolog GFI1 are transcriptional repressors and important regulators of erythroid and megakaryocytic development and differentiation (1,2). GFI1b negatively regulates transcription by recruiting chromatin regulatory proteins including CoREST, the histone demethylase LSD1 and HDACs 1 and 2, which associate with GFI1b via its SNAG repression domain (3). GFI1b has also been shown to control the differentiation of erythroid and megakaryocytic progenitors by regulating TGF-β signaling at the bipotent progenitor stage (4). Inactivation of GFI1b in mice leads to embryonic lethality due to failure to produce functional erythrocytes and megakaryocytes (2). -
Functional Mechanisms Underlying Pleiotropic Risk Alleles at the 19P13.1 Breast&Ndash;Ovarian Cancer Susceptibility Locus
ARTICLE Received 16 Jun 2015 | Accepted 20 Jul 2016 | Published 7 Sep 2016 DOI: 10.1038/ncomms12675 OPEN Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus Kate Lawrenson et al.# A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P ¼ 9.2 Â 10 À 20), ER-negative BC (P ¼ 1.1 Â 10 À 13), BRCA1-associated BC (P ¼ 7.7 Â 10 À 16) and triple negative BC (P-diff ¼ 2 Â 10 À 5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P ¼ 2 Â 10 À 3) and ABHD8 (Po2 Â 10 À 3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 30-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk. Correspondence and requests for materials should be addressed to A.C.A. (email: [email protected]). #A full list of authors and their affiliations appears at the end of the paper. -
Gfi1b (NM 008114) Mouse Tagged ORF Clone – MG204861 | Origene
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for MG204861 Gfi1b (NM_008114) Mouse Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: Gfi1b (NM_008114) Mouse Tagged ORF Clone Tag: TurboGFP Symbol: Gfi1b Synonyms: Gfi-1B Vector: pCMV6-AC-GFP (PS100010) E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: Neomycin ORF Nucleotide >MG204861 representing NM_008114 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGCCACGGTCCTTTCTAGTGAAGAGTAAGAAGGCACACACTTACCACCAGCCCCGGGCACAGGGTGATG AGCTGGTCTGGCCTCCTGCTGTAATTCCTGTGGCAAAAGAGCATAGCCAGAGTGCCAGCCCTCTTCTCAG CACACCGCTTCCAAGCCAGACCTTGGACTGGAACACAATCAAACAGGAGCGGGAGATGTTGCTGAACCAG AGCCTTCCCAAGATGGCCTCAGCCCCAGAGGGGCCTCTCGTGACACCCCAACCCCAGGATGGGGAATCAC CACTCTCTGAGTCACCCCCTTTCTACAAGCCCAGCTTCTCCTGGGATACCTTGGCCTCCTCCTACAGCCA CAGCTACACACAGACCCCCTCCACCATGCAGTCCGCCTTCCTGGAGCGCTCCGTGAGGCTGTACGGCAGC CCCCTCGTGCCCAGCACAGAGTCTCCCTTGGACTTCCGCCTCCGCTACTCTCCAGGCATGGACACTTACC ACTGTGTCAAGTGCAACAAGGTGTTCTCCACCCCTCATGGGCTAGAAGTGCATGTCCGCCGCTCTCACAG CGGAACCCGGCCCTTTGCCTGTGATGTCTGTGGCAAAACCTTTGGCCACGCTGTGAGCTTGGAGCAGCAT ACTCACGTCCACTCACAGGAGCGAAGCTTCGAGTGCCGGATGTGTGGCAAAGCCTTCAAGCGTTCATCCA CCCTGTCCACCCACCTGCTCATCCACTCGGACACTCGGCCCTACCCCTGCCAGTTCTGTGGGAAGCGCTT CCACCAGAAGTCGGACATGAAGAAACACACCTACATCCACACAGGTGAGAAGCCCCACAAGTGCCAGGTG TGTGGGAAAGCCTTCAGCCAGAGCTCCAACCTCATCACCCACAGCCGCAAGCACACAGGCTTCAAGCCGT -
Prognostic Significance of Autophagy-Relevant Gene Markers in Colorectal Cancer
ORIGINAL RESEARCH published: 15 April 2021 doi: 10.3389/fonc.2021.566539 Prognostic Significance of Autophagy-Relevant Gene Markers in Colorectal Cancer Qinglian He 1, Ziqi Li 1, Jinbao Yin 1, Yuling Li 2, Yuting Yin 1, Xue Lei 1 and Wei Zhu 1* 1 Department of Pathology, Guangdong Medical University, Dongguan, China, 2 Department of Pathology, Dongguan People’s Hospital, Southern Medical University, Dongguan, China Background: Colorectal cancer (CRC) is a common malignant solid tumor with an extremely low survival rate after relapse. Previous investigations have shown that autophagy possesses a crucial function in tumors. However, there is no consensus on the value of autophagy-associated genes in predicting the prognosis of CRC patients. Edited by: This work screens autophagy-related markers and signaling pathways that may Fenglin Liu, Fudan University, China participate in the development of CRC, and establishes a prognostic model of CRC Reviewed by: based on autophagy-associated genes. Brian M. Olson, Emory University, United States Methods: Gene transcripts from the TCGA database and autophagy-associated gene Zhengzhi Zou, data from the GeneCards database were used to obtain expression levels of autophagy- South China Normal University, China associated genes, followed by Wilcox tests to screen for autophagy-related differentially Faqing Tian, Longgang District People's expressed genes. Then, 11 key autophagy-associated genes were identified through Hospital of Shenzhen, China univariate and multivariate Cox proportional hazard regression analysis and used to Yibing Chen, Zhengzhou University, China establish prognostic models. Additionally, immunohistochemical and CRC cell line data Jian Tu, were used to evaluate the results of our three autophagy-associated genes EPHB2, University of South China, China NOL3, and SNAI1 in TCGA. -
Emergence of the Noncoding Cancer Genome: a Target of Genetic and Epigenetic Alterations
Published OnlineFirst October 19, 2016; DOI: 10.1158/2159-8290.CD-16-0745 REVIEW Emergence of the Noncoding Cancer Genome: A Target of Genetic and Epigenetic Alterations Stanley Zhou 1 , 2 , Aislinn E. Treloar 1 , 2 , and Mathieu Lupien 1 , 2 , 3 ABSTRACT The emergence of whole-genome annotation approaches is paving the way for the comprehensive annotation of the human genome across diverse cell and tissue types exposed to various environmental conditions. This has already unmasked the positions of thou- sands of functional cis-regulatory elements integral to transcriptional regulation, such as enhancers, promoters, and anchors of chromatin interactions that populate the noncoding genome. Recent studies have shown that cis-regulatory elements are commonly the targets of genetic and epigenetic altera- tions associated with aberrant gene expression in cancer. Here, we review these fi ndings to showcase the contribution of the noncoding genome and its alteration in the development and progression of can- cer. We also highlight the opportunities to translate the biological characterization of genetic and epi- genetic alterations in the noncoding cancer genome into novel approaches to treat or monitor disease. Signifi cance: The majority of genetic and epigenetic alterations accumulate in the noncoding genome throughout oncogenesis. Discriminating driver from passenger events is a challenge that holds great promise to improve our understanding of the etiology of different cancer types. Advancing our under- standing of the noncoding cancer genome may thus identify new therapeutic opportunities and acceler- ate our capacity to fi nd improved biomarkers to monitor various stages of cancer development. Cancer Discov; 6(11); 1215–29. -
Familial Cortical Myoclonus Caused by Mutation in NOL3 by Jonathan Foster Rnsseil DISSERTATION Submitted in Partial Satisfaction
Familial Cortical Myoclonus Caused by Mutation in NOL3 by Jonathan Foster Rnsseil DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biomedical Sciences in the Copyright 2013 by Jonathan Foster Russell ii I dedicate this dissertation to Mom and Dad, for their adamantine love and support iii No man has earned the right to intellectual ambition until he has learned to lay his course by a star which he has never seen—to dig by the divining rod for springs which he may never reach. In saying this, I point to that which will make your study heroic. For I say to you in all sadness of conviction, that to think great thoughts you must be heroes as well as idealists. Only when you have worked alone – when you have felt around you a black gulf of solitude more isolating than that which surrounds the dying man, and in hope and in despair have trusted to your own unshaken will – then only will you have achieved. Thus only can you gain the secret isolated joy of the thinker, who knows that, a hundred years after he is dead and forgotten, men who never heard of him will be moving to the measure of his thought—the subtile rapture of a postponed power, which the world knows not because it has no external trappings, but which to his prophetic vision is more real than that which commands an army. -Oliver Wendell Holmes, Jr. iv ACKNOWLEDGMENTS I am humbled by the efforts of many, many others who were essential for this work. -
Functional Mechanisms Underlying Pleiotropic Risk Alleles at the 19P13.1 Breast&Ndash;Ovarian Cancer Susceptibility Locus
UC Office of the President Recent Work Title Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus Permalink https://escholarship.org/uc/item/1rx2f44n Author Lawrenson, Kate Publication Date 2016-09-07 DOI 10.1038/ncomms12675 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE Received 16 Jun 2015 | Accepted 20 Jul 2016 | Published 7 Sep 2016 DOI: 10.1038/ncomms12675 OPEN Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus Kate Lawrenson et al.# A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P ¼ 9.2 Â 10 À 20), ER-negative BC (P ¼ 1.1 Â 10 À 13), BRCA1-associated BC (P ¼ 7.7 Â 10 À 16) and triple negative BC (P-diff ¼ 2 Â 10 À 5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P ¼ 2 Â 10 À 3) and ABHD8 (Po2 Â 10 À 3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 30-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk. -
BABAM1 (H3): 293T Lysate: Sc-128160
SANTA CRUZ BIOTECHNOLOGY, INC. BABAM1 (h3): 293T Lysate: sc-128160 BACKGROUND RECOMMENDED SUPPORT REAGENTS Consisting of around 63 million bases with over 1,400 genes, chromosome 19 To ensure optimal results, the following support reagents are recommended: makes up over 2% of human genomic DNA. Chromosome 19 includes a diver- 1) Western Blotting: use m-IgGκ BP-HRP: sc-516102 or m-IgGκ BP-HRP (Cruz sity of interesting genes and is recognized for having the greatest gene den- Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz Marker™ sity of the human chromosomes. It is the genetic home for a number of im- Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: munoglobulin superfamily members including the killer cell and leukocyte Ig- sc-516214 and Western Blotting Luminol Reagent: sc-2048. like receptors, a number of ICAMs, the CEACAM and PSG family, and Fcα receptors. Key genes for eye color and hair color also map to chromosome DATA 19. Peutz-Jeghers syndrome, spinocerebellar ataxia type 6, the stroke disor- der CADASIL, hypercholesterolemia and Insulin-dependent diabetes have AB been linked to chromosome 19. Translocations with chromosome 19 and 90 K – chromosome 14 can be seen in some lymphoproliferative disorders and typi- 55 K – < BABAM1 cally involve the proto-oncogene BCL3. 43 K – 34 K – REFERENCES 23 K – 1. Zimmermann, W., et al. 1988. Chromosomal localization of the carcinoem- bryonic antigen gene family and differential expression in various tumors. BABAM1 (H-10): sc-398570. Western blot analysis of Cancer Res. 48: 2550-2554. BABAM1 expression in non-transfected: sc-117752 (A) and human BABAM1 transfected: sc-128160 (B) 293T 2. -
DNA Methylation Profiles Correlated to Striped Bass Sperm Fertility L
Woods III et al. BMC Genomics (2018) 19:244 https://doi.org/10.1186/s12864-018-4548-6 RESEARCH ARTICLE Open Access DNA methylation profiles correlated to striped bass sperm fertility L. Curry Woods III1†, Yaokun Li2*†, Yi Ding1†,JiananLiu1, Benjamin J. Reading3,S.AdamFuller4 and Jiuzhou Song1* Abstract Background: Striped bass (Morone saxatilis) spermatozoa are used to fertilize in vitro the eggs of white bass (M. chrysops) to produce the preferred hybrid for the striped bass aquaculture industry. Currently, only one source of domestic striped bass juveniles is available to growers that is not obtained from wild-caught parents and is thus devoid of any genetic improvement in phenotypic traits of importance to aquaculture. Sperm epigenetic modification has been predicted to be associated with fertility, which could switch genes on and off without changing the DNA sequence itself. DNA methylation is one of the most common epigenetic modification types and changes in sperm epigenetics can be correlated to sub-fertility or infertility in male striped bass. The objective of this study was to find the differentially methylated regions (DMRs) between high-fertility and sub-fertility male striped bass, which could potentially regulate the fertility performance. Results: In our present study, we performed DNA methylation analysis of high-fertility and sub-fertility striped bass spermatozoa through MBD-Seq methods. A total of 171 DMRs were discovered in striped bass sperm correlated to fertility. Based on the annotation of these DMRs, we conducted a functional classification analysis and two important groups of genes including the WDR3/UTP12 and GPCR families, were discovered to be related to fertility performance of striped bass. -
MOCHI Enables Discovery of Heterogeneous Interactome Modules in 3D Nucleome
Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press MOCHI enables discovery of heterogeneous interactome modules in 3D nucleome Dechao Tian1,# , Ruochi Zhang1,# , Yang Zhang1, Xiaopeng Zhu1, and Jian Ma1,* 1Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA #These two authors contributed equally *Correspondence: [email protected] Contact To whom correspondence should be addressed: Jian Ma School of Computer Science Carnegie Mellon University 7705 Gates-Hillman Complex 5000 Forbes Avenue Pittsburgh, PA 15213 Phone: +1 (412) 268-2776 Email: [email protected] 1 Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract The composition of the cell nucleus is highly heterogeneous, with different constituents forming complex interactomes. However, the global patterns of these interwoven heterogeneous interactomes remain poorly understood. Here we focus on two different interactomes, chromatin interaction network and gene regulatory network, as a proof-of-principle, to identify heterogeneous interactome modules (HIMs), each of which represents a cluster of gene loci that are in spatial contact more frequently than expected and that are regulated by the same group of transcription factors. HIM integrates transcription factor binding and 3D genome structure to reflect “transcriptional niche” in the nucleus. We develop a new algorithm MOCHI to facilitate the discovery of HIMs based on network motif clustering in heterogeneous interactomes. By applying MOCHI to five different cell types, we found that HIMs have strong spatial preference within the nucleus and exhibit distinct functional properties. Through integrative analysis, this work demonstrates the utility of MOCHI to identify HIMs, which may provide new perspectives on the interplay between transcriptional regulation and 3D genome organization.