Functional Metagenomics Using Pseudomonas Putida Expands the Known Diversity Of

Total Page:16

File Type:pdf, Size:1020Kb

Functional Metagenomics Using Pseudomonas Putida Expands the Known Diversity Of bioRxiv preprint doi: https://doi.org/10.1101/042705; this version posted March 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Functional metagenomics using Pseudomonas putida expands the known diversity of 2 polyhydroxyalkanoate synthases and enables the production of novel polyhydroxyalkanoate 3 copolymers 4 5 Jiujun Cheng and Trevor C. Charles* 6 7 Department of Biology and Centre for Bioengineering and Biotechnology, University of Waterloo, 8 Waterloo, Ontario, Canada N2L 3G1 9 10 *Corresponding author: 11 Dr. Trevor C. Charles 12 Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1. 13 E-mail: [email protected] 14 15 1 bioRxiv preprint doi: https://doi.org/10.1101/042705; this version posted March 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 16 17 Abstract 18 Bacterially produced biodegradable polyhydroxyalkanoates with versatile properties can be achieved 19 using different PHA synthase enzymes. This work aims to expand the diversity of known PHA 20 synthases via functional metagenomics, and demonstrates the use of these novel enzymes in PHA 21 production. Complementation of a PHA synthesis deficient Pseudomonas putida strain with a soil 22 metagenomic cosmid library retrieved 27 clones expressing either Class I, Class II or unclassified 23 PHA synthases, and many did not have close sequence matches to known PHA synthases. The 24 composition of PHA produced by these clones was dependent on both the supplied growth substrates 25 and the nature of the PHA synthase, with various combinations of SCL- and MCL-PHA. These data 26 demonstrate the ability to isolate diverse genes for PHA synthesis by functional metagenomics, and 27 their use for the production of a variety of PHA polymer and copolymer mixtures. 28 Keywords: 29 Functional metagenomics; soil metagenomic library; polyhydroxyalkanoate (PHA); bioplastics; 30 polyhydroxyalkanoate synthase; Pseudomonas putida; Sinorhizobium meliloti 31 2 bioRxiv preprint doi: https://doi.org/10.1101/042705; this version posted March 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 32 Introduction 33 Polyhydroxyalkanoates (PHAs) are natural polyesters biosynthesized by a variety of bacteria 34 under unbalanced growth conditions. They serve as reserves of carbon and reducing power and aid 35 in survival during starvation or stress conditions (Verlinden et al. 2007). These biodegradable and 36 environmentally friendly polymers can be used as alternative materials to conventional 37 petrochemical-based plastics. PHAs are classified into short-chain-length (SCL, C3-C5) and 38 medium-chain-length (MCL, ≥C6), and copolymers (SCL + MCL) based on the number of carbon 39 atoms per monomer. MCL-PHA is generally more useful than SCL-PHA due to it being less brittle 40 and more flexible. To produce PHA with versatile properties cost-effectively, strategies have 41 involved mining new PHA synthase enzymes (PhaC), engineering PhaC proteins and modifying the 42 metabolic pathways of the production strains (Keshavarz and Roy 2010; Schallmey et al. 2011; 43 Cheema et al. 2012; Park et al. 2012; Tripathi et al. 2013; Meng et al. 2014). 44 PHA molecules consist of over 150 possible constituent monomers of hydroxyl fatty acids 45 (Meng et al. 2014) (Steinbüchel and Lütke-Eversloh 2003). PHA synthase enzymes catalyze the 46 joining of the hydroxyl group of one monomer with the carboxyl group of another by an ester bond 47 to form PHA polymers. The monomeric composition of PHA is determined primarily by PhaC, 48 although the available carbon source and metabolic pathways also influence the properties of PHA 49 (Verlinden et al. 2007). PhaC proteins are grouped into four classes based on amino acid sequence, 50 substrate specificity and subunit composition (Rehm 2003). Class I and II PhaC consist of one 51 subunit (PhaC), but those in Class III and IV are composed of two subunits (PhaC+PhaE and 52 PhaC+PhaR, respectively). Class I and IV PhaCs synthesize SCL-PHA whereas Class II polymerize 53 MCL-PHA. Class III PhaCs can synthesize both SCL and MCL monomers. 3 bioRxiv preprint doi: https://doi.org/10.1101/042705; this version posted March 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 54 The key Class I PHA synthesis pathway genes include phaC (or phbC), phaA (or phbA) and 55 phaB (or phbB). The three genes are often, but not always, clustered in a single operon. The 56 acetoacetyl-CoA reductase (EC 2.3.1.9) encoded by the phaA and β-ketothiolase (EC 1.1.1.36) 57 encoded by the phaB convert acetyl-CoA to (R)-3-hydroxybutyryl-CoA (3HB-CoA) through 58 acetoacetyl-CoA. The Class-I PhaC (EC 2.3.1.-) then polymerizes 3HB-CoA into 59 polyhydroxybutyrate (PHB) (Rehm 2003). The Class II pha cluster is well conserved in 60 Pseudomonas and consists of two PHA synthase genes (phaC1 and phaC2) flanking a PHA 61 depolymerase gene (phaZ), and phaD encoding a transcriptional activator of pha genes. Phasin- 62 encoding phaF and phaI gene are transcribed divergently to other pha genes. MCL monomers ((R)- 63 3-hydroxylacyl-CoA) are derived from β-oxidation of fatty acids or fatty acid de novo synthesis from 64 unrelated carbon sources (Tortajada et al. 2013). 65 Traditional culture-based strategies for obtaining new biocatalysts are limited by the inability 66 to cultivate the majority of environmental microbes. While sequence-based metagenomics can 67 identify genes homologous to those present in available sequence databases, it is difficult to reliably 68 predict the function of truly new genes through homology-based analysis. In contrast, functional 69 metagenomics involves the construction of gene libraries from microbial community genomic DNA 70 and functional screening for novel enzymes of interest or potential industrial applications (Simon 71 and Daniel 2011). Functional metagenomics has the potential to identify truly novel sequences for a 72 given function. 73 In previous work, functional metagenomics was used to isolate new Class I PhaC from soil 74 metagenomic clones by Nile red staining and phenotypic screening in α-Proteobacteria 75 Sinorhizobium meliloti (Schallmey et al. 2011). In another study, phaC genes encoding both Class I 76 and II PhaC proteins were PCR amplified from oil-contaminated soil library clones (Cheema et al. 4 bioRxiv preprint doi: https://doi.org/10.1101/042705; this version posted March 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 77 2012). One of the isolated genes produced PHA copolymer when expressed in Pseudomonas putida. 78 Moreover, partial phaC genes were also obtained from metagenomic DNA via direct PCR 79 amplification (Foong et al. 2014; Pärnänen et al. 2015; Tai et al. 2015). Building on these previous 80 studies, we constructed a PHA- strain of P. putida KT2440 to use as a surrogate host and 81 functionally identified phaC genes after screening millions of agricultural wheat soil metagenomic 82 clones. A total of 27 PHA+ clones were obtained. Accumulation and monomer composition of PHA 83 directed by seven of these clones were further examined. 84 85 Methods 86 Bacterial strains, plasmids, cosmids and growth conditions 87 Bacterial strains, plasmids and cosmids are listed in Table 1. E. coli strains were grown at 88 37°C in LB (Lennox) medium (1% tryptone (w/v), 0.5% yeast extract (w/v), and 0.5% NaCl (w/v), 89 pH 7). Pseudomonas strains were grown at 30°C in LB or 0.1N M63 minimal medium (Escapa et al. 90 2011) supplemented with 0.5% sodium octanoate (w/v), 0.5% nonanoic acid (v/v) or 1% gluconic 91 acid (w/v). S. meliloti was grown in LB or YM medium (Schallmey et al. 2011). Antibiotics were 92 used at the following concentrations: streptomycin, 200 µg/ml for S. meliloti and 100 µg/ml for E. 93 coli; kanamycin, 100 µg/ml for Pseudomonas and 50 µg/ml for E. coli; neomycin, 200 µg/ml; 94 rifampicin, 100 µg/ml; gentamicin, 10 µg/ml for E. coli and 100 for P. putida; and tetracycline 20 95 µg/ml for E. coli or 40 µg/ml for P. putida. 96 97 Construction of PHA- strain PpUW2 98 DNA oligonucleotides are listed in Table 2. A RifR spontaneous mutant PpUW1 of P. putida 99 KT2440 was generated by plating a culture of strain KT2440 on a LB Rif plate, followed by single 5 bioRxiv preprint doi: https://doi.org/10.1101/042705; this version posted March 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 100 colony purification. To construct the PHA deficient strain PpUW2 (phaC1ZC2) of P. putida PpUW1, 101 a 943-bp DNA fragment containing 5´-phaC1 region (766 bp) was PCR amplified using P.
Recommended publications
  • Community Structure Analysis 9
    Biodegradation of Polystyrene Foam by the Microorganisms from Landfill Pat Pataranutaporn ! Assistant prof. Savaporn Supaphol prof. Amornrat Phongdara Sureeporn Nualkaew Hi, I would like to invite you to take a look on my research Pat Introduction !3 “Styrofoam” Polystyrene Disadvantage Physical Properties ! • chemical formula is (C8H8)n • Non-biodegradable in the environment • monomer styrene • Made from non-renewable petroleum products • Thermoplastic • Chronic, low-level exposure risks undetermined • blowing agents Introduction !4 Bacteria nutritional requirements ! ‣ Energy source Biodegradation ‣ Carbon source Possibly work? ‣ Nitrogen source ‣ Minerals ‣ Water ‣ Growth factors Polystyrene structure http://faculty.ccbcmd.edu/courses/bio141/ lecguide/unit6/metabolism/growth/factors.html Introduction !5 Aims of the research ‣To identify the microbe that able to growth in the condition that polystyrene is a sole carbon source ! ‣To study the changing of microbe community structure in the selective culture which polystyrene is a sole carbon source ! ‣To observe the biodegradability of polystyrene To analyse the by product of polystyrene after degradation Methodology Methodology !7 Agar cultivation Community fingerprint 2 16s Ribosomal RNA Microbe Screening months later identification sampling Cultivation Molecular cloning Phylogenetic tree Degradability observation (SEM) Methodology Microbe sampling & cultivation !8 Agar cultivation Community fingerprint 2 16s Ribosomal RNA Microbe Screening months later identification sampling Cultivation
    [Show full text]
  • Rapport Nederlands
    Moleculaire detectie van bacteriën in dekaarde Dr. J.J.P. Baars & dr. G. Straatsma Plant Research International B.V., Wageningen December 2007 Rapport nummer 2007-10 © 2007 Wageningen, Plant Research International B.V. Alle rechten voorbehouden. Niets uit deze uitgave mag worden verveelvoudigd, opgeslagen in een geautomatiseerd gegevensbestand, of openbaar gemaakt, in enige vorm of op enige wijze, hetzij elektronisch, mechanisch, door fotokopieën, opnamen of enige andere manier zonder voorafgaande schriftelijke toestemming van Plant Research International B.V. Exemplaren van dit rapport kunnen bij de (eerste) auteur worden besteld. Bij toezending wordt een factuur toegevoegd; de kosten (incl. verzend- en administratiekosten) bedragen € 50 per exemplaar. Plant Research International B.V. Adres : Droevendaalsesteeg 1, Wageningen : Postbus 16, 6700 AA Wageningen Tel. : 0317 - 47 70 00 Fax : 0317 - 41 80 94 E-mail : [email protected] Internet : www.pri.wur.nl Inhoudsopgave pagina 1. Samenvatting 1 2. Inleiding 3 3. Methodiek 8 Algemene werkwijze 8 Bestudeerde monsters 8 Monsters uit praktijkteelten 8 Monsters uit proefteelten 9 Alternatieve analyse m.b.v. DGGE 10 Vaststellen van verschillen tussen de bacterie-gemeenschappen op myceliumstrengen en in de omringende dekaarde. 11 4. Resultaten 13 Monsters uit praktijkteelten 13 Monsters uit proefteelten 16 Alternatieve analyse m.b.v. DGGE 23 Vaststellen van verschillen tussen de bacterie-gemeenschappen op myceliumstrengen en in de omringende dekaarde. 25 5. Discussie 28 6. Conclusies 33 7. Suggesties voor verder onderzoek 35 8. Gebruikte literatuur. 37 Bijlage I. Bacteriesoorten geïsoleerd uit dekaarde en van mycelium uit commerciële teelten I-1 Bijlage II. Bacteriesoorten geïsoleerd uit dekaarde en van mycelium uit experimentele teelten II-1 1 1.
    [Show full text]
  • Università Degli Studi Di Padova Dipartimento Di Biomedicina Comparata Ed Alimentazione
    UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI BIOMEDICINA COMPARATA ED ALIMENTAZIONE SCUOLA DI DOTTORATO IN SCIENZE VETERINARIE Curriculum Unico Ciclo XXVIII PhD Thesis INTO THE BLUE: Spoilage phenotypes of Pseudomonas fluorescens in food matrices Director of the School: Illustrious Professor Gianfranco Gabai Department of Comparative Biomedicine and Food Science Supervisor: Dr Barbara Cardazzo Department of Comparative Biomedicine and Food Science PhD Student: Andreani Nadia Andrea 1061930 Academic year 2015 To my family of origin and my family that is to be To my beloved uncle Piero Science needs freedom, and freedom presupposes responsibility… (Professor Gerhard Gottschalk, Göttingen, 30th September 2015, ProkaGENOMICS Conference) Table of Contents Table of Contents Table of Contents ..................................................................................................................... VII List of Tables............................................................................................................................. XI List of Illustrations ................................................................................................................ XIII ABSTRACT .............................................................................................................................. XV ESPOSIZIONE RIASSUNTIVA ............................................................................................ XVII ACKNOWLEDGEMENTS ....................................................................................................
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7476,532 B2 Schneider Et Al
    USOO7476532B2 (12) United States Patent (10) Patent No.: US 7476,532 B2 Schneider et al. (45) Date of Patent: Jan. 13, 2009 (54) MANNITOL INDUCED PROMOTER Makrides, S.C., "Strategies for achieving high-level expression of SYSTEMIS IN BACTERAL, HOST CELLS genes in Escherichia coli,” Microbiol. Rev. 60(3):512-538 (Sep. 1996). (75) Inventors: J. Carrie Schneider, San Diego, CA Sánchez-Romero, J., and De Lorenzo, V., "Genetic engineering of nonpathogenic Pseudomonas strains as biocatalysts for industrial (US); Bettina Rosner, San Diego, CA and environmental process.” in Manual of Industrial Microbiology (US) and Biotechnology, Demain, A, and Davies, J., eds. (ASM Press, Washington, D.C., 1999), pp. 460-474. (73) Assignee: Dow Global Technologies Inc., Schneider J.C., et al., “Auxotrophic markers pyrF and proC can Midland, MI (US) replace antibiotic markers on protein production plasmids in high cell-density Pseudomonas fluorescens fermentation.” Biotechnol. (*) Notice: Subject to any disclaimer, the term of this Prog., 21(2):343-8 (Mar.-Apr. 2005). patent is extended or adjusted under 35 Schweizer, H.P.. "Vectors to express foreign genes and techniques to U.S.C. 154(b) by 0 days. monitor gene expression in Pseudomonads. Curr: Opin. Biotechnol., 12(5):439-445 (Oct. 2001). (21) Appl. No.: 11/447,553 Slater, R., and Williams, R. “The expression of foreign DNA in bacteria.” in Molecular Biology and Biotechnology, Walker, J., and (22) Filed: Jun. 6, 2006 Rapley, R., eds. (The Royal Society of Chemistry, Cambridge, UK, 2000), pp. 125-154. (65) Prior Publication Data Stevens, R.C., “Design of high-throughput methods of protein pro duction for structural biology.” Structure, 8(9):R177-R185 (Sep.
    [Show full text]
  • Changes in Acetylene Reduction Activities and Nifh Genes Associated with Field-Grown Sweet Potatoes with Different Nursery Farmers and Cultivars
    horticulturae Article Changes in Acetylene Reduction Activities and nifH Genes Associated with Field-Grown Sweet Potatoes with Different Nursery Farmers and Cultivars Kazuhito Itoh * , Keisuke Ohashi, Nao Yakai, Fumihiko Adachi and Shohei Hayashi Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan * Correspondence: [email protected]; Tel.: +81-852-32-6521 Received: 17 May 2019; Accepted: 25 July 2019; Published: 27 July 2019 Abstract: Sweet potato cultivars obtained from different nursery farmers were cultivated in an experimental field from seedling-stage to harvest, and the acetylene reduction activity (ARA) of different parts of the plant as well as the nifH genes associated with the sweet potatoes were examined. The relationship between these parameters and the plant weights, nitrogen contents, and natural abundance of 15N was also considered. The highest ARA was detected in the tubers and in September. Fragments of a single type of nitrogenase reductase gene (nifH) were amplified, and most of them had similarities with those of Enterobacteriaceae in γ-Proteobacteria. In sweet potatoes from one nursery farm, Dickeya nifH was predominantly detected in all of the cultivars throughout cultivation. In sweet potatoes from another farm, on the other hand, a transition to Klebsiella and Phytobacter nifH was observed after the seedling stage. The N2-fixing ability contributed to plant growth, and competition occurred between autochthonous and allochthonous bacterial communities in sweet potatoes. Keywords: sweet potato; endophyte; nitrogen fixation; nifH gene 1. Introduction The sweet potato (Ipomoea batatas L.) is a dicotyledonous plant that belongs to the family Convolvulaceae and is a subsistence crop with huge economic importance, especially in developing countries.
    [Show full text]
  • Linkages of Soil Nutrients and Diazotrophic Microbiome Under
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 October 2018 doi:10.20944/preprints201810.0382.v1 1 Article 2 Linkages of Soil Nutrients and Diazotrophic 3 Microbiome under Sugarcane-Legume Intercropping 4 Manoj Kumar Solanki1,4†, Chang-Ning Li1,2† Fei-Yong Wang1,2,3, Zhen Wang3, Tao-Ju Lan1, 5 Rajesh Kumar Singh1,3, Pratiksha Singh3, Li-Tao Yang3, Yang-Rui Li1, 2* 6 1 Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, 7 Nanning 530007, Guangxi, China; [email protected] (M.K.S.), [email protected] (T.J.L.), 8 [email protected] (R.K.S.) 9 2 Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology 10 and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Institute, Guangxi 11 Academy of Agricultural Sciences, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, 12 Nanning 530007, Guangxi, China; [email protected] (F.Y.W.), [email protected] (C.N.L.) 13 3 Agricultural College, State key Laboratory for Conservation and Utilization of Subtropical Agro- 14 bioresources, Guangxi University, Nanning 530004, Guangxi, China; [email protected] (Z.W.), 15 [email protected] (P.S.), [email protected] (L.T.Y.) 16 4 Agricultural Research Organization, Department of Postharvest and Food Sciences, The Volcani Center, 68 17 HaMaccabim Road, Rishon LeZion 7505101, Israel 18 19 *Yang-Rui Li, [email protected]; Tel: +86–771–3247689; Fax +86–771–3235318. 20 † These authors contributed equally to the work. 21 22 Abstract: Intercropping significantly improves land use efficiency and soil fertility. This study 23 examines the impact of three cultivation systems (monoculture sugarcane, peanut-sugarcane and 24 soybean-sugarcane intercropping) on soil properties and diazotrophs.
    [Show full text]
  • Appendix 1. Validly Published Names, Conserved and Rejected Names, And
    Appendix 1. Validly published names, conserved and rejected names, and taxonomic opinions cited in the International Journal of Systematic and Evolutionary Microbiology since publication of Volume 2 of the Second Edition of the Systematics* JEAN P. EUZÉBY New phyla Alteromonadales Bowman and McMeekin 2005, 2235VP – Valid publication: Validation List no. 106 – Effective publication: Names above the rank of class are not covered by the Rules of Bowman and McMeekin (2005) the Bacteriological Code (1990 Revision), and the names of phyla are not to be regarded as having been validly published. These Anaerolineales Yamada et al. 2006, 1338VP names are listed for completeness. Bdellovibrionales Garrity et al. 2006, 1VP – Valid publication: Lentisphaerae Cho et al. 2004 – Valid publication: Validation List Validation List no. 107 – Effective publication: Garrity et al. no. 98 – Effective publication: J.C. Cho et al. (2004) (2005xxxvi) Proteobacteria Garrity et al. 2005 – Valid publication: Validation Burkholderiales Garrity et al. 2006, 1VP – Valid publication: Vali- List no. 106 – Effective publication: Garrity et al. (2005i) dation List no. 107 – Effective publication: Garrity et al. (2005xxiii) New classes Caldilineales Yamada et al. 2006, 1339VP VP Alphaproteobacteria Garrity et al. 2006, 1 – Valid publication: Campylobacterales Garrity et al. 2006, 1VP – Valid publication: Validation List no. 107 – Effective publication: Garrity et al. Validation List no. 107 – Effective publication: Garrity et al. (2005xv) (2005xxxixi) VP Anaerolineae Yamada et al. 2006, 1336 Cardiobacteriales Garrity et al. 2005, 2235VP – Valid publica- Betaproteobacteria Garrity et al. 2006, 1VP – Valid publication: tion: Validation List no. 106 – Effective publication: Garrity Validation List no. 107 – Effective publication: Garrity et al.
    [Show full text]
  • Production and Chromatographic Analysis of Polyhydroxybutyrate from Waste Product Streams by Azohydromonas Lata
    Hochschule Rhein-Waal Rhine-Waal University of Applied Sciences Faculty of Life Sciences Production and Chromatographic Analysis of Polyhydroxybutyrate from waste product streams by Azohydromonas lata A Thesis Submitted in Partial Fulfilment of the Requirements of the Degree of Bachelor of Science in Bioengineering By Dominic Kösters Matriculation Number: 19056 Supervisors: Prof. Dr. Joachim Fensterle Prof. Dr. Peter Simon Submission Date: 04.11.2019 i Executive Summary As conventional plastic production receives much criticism for being harmful to both humans and the environment, this work focused on establishing a batch fermentation based on waste substrates from local industries to produce polyhydroxybutyrate (PHB) with Azohydromonas lata (A. lata). Additionally, the produced PHB was characterised by qualitative and quantitative gas chromatography coupled to a mass spectrometer (GC- MS) and gel permeation chromatography (GPC). Multiple substrates, including rhubarb waste, pea waste, and dairy industry wastewater (KAAS medium), were tested for successful fermentation. Rhubarb and pea waste could not be used as a fermentation substrate due to obstacles in upstream processing. KAAS medium was prepared by centrifugation and sterile filtration and tested in a 1 L and 4 L fermentation yielding non- competitive biomass and PHB concentrations with 0.09 g/L and 0.004 g/L, respectively. A 3 L fermentation with pure saccharose as the carbon source served as a model for comparison and analysis and resulted in a measured biomass concentration of 3.58 g/L with a PHB content of 1.43 g/L after Soxhlet extraction. The GPC analysis led to no conclusive elograms and results due to issues in non-destructively extracting and solving the PHB.
    [Show full text]
  • Évaluation Des Risques Sanitaires Liés À L'exposition Par Ingestion
    Évaluation des risques sanitaires liés à l’exposition par ingestion de Pseudomonades dans les eaux destinées à la consommation humaine (hors eaux conditionnées) Rapport Octobre 2010 Édition scientifique Évaluation des risques sanitaires liés à l’exposition par ingestion de Pseudomonades dans les eaux destinées à la consommation humaine (hors eaux conditionnées) Rapport Octobre 2010 Édition scientifique Sommaire COMPOSITION DU GROUPE DE TRAVAIL……………………………………………………….………..5 LISTE DES SIGLES ET ACRONYMES……………………………………………………………………….6 GLOSSAIRE………………………………………………………………………………………..….…………7 I. INTRODUCTION…………………………………………………………………………….………..…....9 II. PSEUDOMONADES: GÉNÉRALITÉS ......................................................................................... 11 1. Taxonomie : état des lieux (octobre 2009) 2. Caractéristiques des Pseudomonades 3. Écologie bactérienne 3.1. Habitat .................................................................................................................................... 12 3.2. Les biofilms ............................................................................................................................. 13 III. SURVIE ET CROISSANCE DES PSEUDOMONADES DANS LES EAUX ................................. 14 1. Survie et croissance dans les eaux 1.1. Eaux conditionnées ................................................................................................................ 14 1.2. Eau de distribution publique (EDP) .......................................................................................
    [Show full text]
  • Beneficial Effects of 2, 4-Diacetylphloroglucinol-Producing Pseudomonads on the Marine Alga Saccharina Latissima
    Vol. 67: 239–249, 2012 AQUATIC MICROBIAL ECOLOGY Published online November 2 doi: 10.3354/ame01595 Aquat Microb Ecol Beneficial effects of 2,4-diacetylphloroglucinol- producing pseudomonads on the marine alga Saccharina latissima Kerstin Nagel, Imke Schneemann, Inga Kajahn, Antje Labes, Jutta Wiese, Johannes F. Imhoff* Kieler Wirkstoff-Zentrum (KiWiZ) am Helmholtz-Zentrum für Ozeanforschung (GEOMAR), Am Kiel-Kanal 44, 24106 Kiel, Germany ABSTRACT: Pseudomonas strains were shown to be regularly associated with the brown macroalga Saccharina latissima from the Baltic Sea, studied over several years, and were identi- fied as producers of the antimicrobially active compound 2,4-diacetylphloroglucinol. These find- ings support the assumption of a stable association between the Pseudomonas spp. strains and S. latissima in the Baltic Sea. The metabolite profile of the Pseudomonas spp. comprised mono acetyl - phloroglucinol, 2,4-diacetylphloroglucinol, pyoluteorin and several rhizoxins, which exhibited broad-spectrum antibiotic activities against Gram-positive and Gram-negative bacteria as well as against fungi. Because the antibiotic activities included the inhibition of the 2 algal pathogens Pseudoalteromonas elyakovii and Algicola bacteriolytica, we propose a beneficial effect of these marine pseudomonads on their host S. latissima. KEY WORDS: Pseudomonas protegens · Alga–bacteria association · 2,4-diacetylphloroglucinol · Pyoluteorin · Rhizoxin · Brown macroalgae Resale or republication not permitted without written consent of the publisher
    [Show full text]
  • 1 Genomic Evidence for the Degradation of Terrestrial Organic Matter by Pelagic Arctic
    bioRxiv preprint doi: https://doi.org/10.1101/325027; this version posted May 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Genomic evidence for the degradation of terrestrial organic matter by pelagic Arctic 2 Ocean Chloroflexi bacteria 3 4 David Colatriano1, Patricia Tran1, Celine Guéguen2, William J. Williams3, Connie Lovejoy4, 5, and 5 David A. Walsh1* 6 7 1 Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, 8 Quebec,H4B 1R6, Canada 9 2 Department of Chemistry and School of the Environment, Trent University, 1600 West bank 10 Drive, Peterborough, Ontario, K9J 7B8, Canada 11 3 Fisheries and Oceans Canada, Institute of Ocean Sciences, 9860 West Saanich Road, 12 Sidney, British Columbia, V8V 4L1, Canada 13 4 Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)and Québec- 14 Océan, Université Laval, Québec, G1K 7P4, Canada 15 5.Takuvik Joint International Laboratory (UMI 3376), Université Laval (Canada) - CNRS 16 (France), Université Laval, Québec QC G1V 0A6, Canada 17 18 19 *Corresponding author: Phone: (514) 848-2424 (ext. 3477) 20 E-mail: [email protected] 21 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/325027; this version posted May 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 24 Abstract 25 The Arctic Ocean currently receives a large supply of global river discharge and terrestrial 26 dissolved organic matter.
    [Show full text]
  • Expressed Nifh Genes of Endophytic Bacteria Detected in Field-Grown Sweet Potatoes (Ipomoea Batatas L.)
    Microbes Environ. Vol. 23, No. 1, 89–93, 2008 http://wwwsoc.nii.ac.jp/jsme2/ doi:10.1264/jsme2.23.89 Expressed nifH Genes of Endophytic Bacteria Detected in Field-Grown Sweet Potatoes (Ipomoea batatas L.) JUNKO TERAKADO-TONOOKA1,2*, YOSHINARI OHWAKI1, HIROMOTO YAMAKAWA3, FUKUYO TANAKA1, TADAKATSU YONEYAMA4, and SHINSUKE FUJIHARA1 1National Agricultural Research Center, Kannondai 3–1–1, Tsukuba, Ibaraki 305–8666, Japan; 2JSPS Research Fellow, Japan Society for the Promotion of Science, Ichi-ban-cho 8, Chiyoda-ku, Tokyo 102–8472, Japan; 3National Agricultural Research Center, Hokuriku Research Center, Inada 1–2–1, Jyoetsu, Nigata 943–0193, Japan; and 4Department of Applied Biological Chemistry, University of Tokyo, Yayoi 1–1–1, Bunkyo-ku, Tokyo 113–8657, Japan (Received November 2, 2007—Accepted December 27, 2007) We examined the nitrogenase reductase (nifH) genes of endophytic diazotrophic bacteria expressed in field-grown sweet potatoes (Ipomoea batatas L.) by reverse transcription (RT)-PCR. Gene fragments corresponding to nifH were amplified from mRNA obtained from the stems and storage roots of field-grown sweet potatoes several months after planting. Sequence analysis revealed that these clones were homologous to the nifH sequences of Bradyrhizobium, Pelomonas, and Bacillus sp. in the DNA database. Investigation of the nifH genes amplified from the genomic DNA extracted from these sweet potatoes also showed high similarity to various α-proteobacteria including Bradyrhizobium, β-proteobacteria, and cyanobacteria. These results suggest that bradyrhizobia colonize and express nifH genes not only in the root nodules of leguminous plants but also in sweet potatoes as diazotrophic endophytes. Key words: endophyte, sweet potato, nitrogen fixation, nifH, RT-PCR The sweet potato (Ipomoea batatas L.) is known for its identify active diazotrophic bacteria, we examined the ability to grow well in nitrogen (N)-poor soils16).
    [Show full text]