Expressed Nifh Genes of Endophytic Bacteria Detected in Field-Grown Sweet Potatoes (Ipomoea Batatas L.)

Total Page:16

File Type:pdf, Size:1020Kb

Expressed Nifh Genes of Endophytic Bacteria Detected in Field-Grown Sweet Potatoes (Ipomoea Batatas L.) Microbes Environ. Vol. 23, No. 1, 89–93, 2008 http://wwwsoc.nii.ac.jp/jsme2/ doi:10.1264/jsme2.23.89 Expressed nifH Genes of Endophytic Bacteria Detected in Field-Grown Sweet Potatoes (Ipomoea batatas L.) JUNKO TERAKADO-TONOOKA1,2*, YOSHINARI OHWAKI1, HIROMOTO YAMAKAWA3, FUKUYO TANAKA1, TADAKATSU YONEYAMA4, and SHINSUKE FUJIHARA1 1National Agricultural Research Center, Kannondai 3–1–1, Tsukuba, Ibaraki 305–8666, Japan; 2JSPS Research Fellow, Japan Society for the Promotion of Science, Ichi-ban-cho 8, Chiyoda-ku, Tokyo 102–8472, Japan; 3National Agricultural Research Center, Hokuriku Research Center, Inada 1–2–1, Jyoetsu, Nigata 943–0193, Japan; and 4Department of Applied Biological Chemistry, University of Tokyo, Yayoi 1–1–1, Bunkyo-ku, Tokyo 113–8657, Japan (Received November 2, 2007—Accepted December 27, 2007) We examined the nitrogenase reductase (nifH) genes of endophytic diazotrophic bacteria expressed in field-grown sweet potatoes (Ipomoea batatas L.) by reverse transcription (RT)-PCR. Gene fragments corresponding to nifH were amplified from mRNA obtained from the stems and storage roots of field-grown sweet potatoes several months after planting. Sequence analysis revealed that these clones were homologous to the nifH sequences of Bradyrhizobium, Pelomonas, and Bacillus sp. in the DNA database. Investigation of the nifH genes amplified from the genomic DNA extracted from these sweet potatoes also showed high similarity to various α-proteobacteria including Bradyrhizobium, β-proteobacteria, and cyanobacteria. These results suggest that bradyrhizobia colonize and express nifH genes not only in the root nodules of leguminous plants but also in sweet potatoes as diazotrophic endophytes. Key words: endophyte, sweet potato, nitrogen fixation, nifH, RT-PCR The sweet potato (Ipomoea batatas L.) is known for its identify active diazotrophic bacteria, we examined the ability to grow well in nitrogen (N)-poor soils16). It is also expression of nifH genes in sweet potato tissues by means of known that the total amount of N in sweet potato exceeds the RT-PCR targeted at the nifH gene. In a comparison with the amount of N applied as chemical fertilizer. Our previous nifH expressed in plants, we also analyzed the diversity of research found that two cultivars of sweet potatoes (cultivars the nifH genes amplified from genomic DNA isolated from Beniazuma and Ayamurasaki) grown in an upland field sweet potatoes grown under the same field conditions. (light-colored Andosol) in Tsukuba, Japan, absorbed 103 to 135 kg N ha−1 without the application of any chemical N fer- Materials and Methods tilizer (unpublished data, 2006). The sweet potato may have Sample collection special mechanisms for enhancing soil N mineralization and/ Sweet potatoes (Ipomoea batatas L, cultivars Beniazuma and or acquiring N derived from atmospheric N2. Recently, nitro- Ayamurasaki) were planted in the experimental field of the National gen fixation by endophytic diazotrophs has been observed in Agricultural Research Center, Tsukuba, Japan, from June to Octo- a wide variety of plants30). Our previous experiment using a ber. Beniazuma is a sweet and starchy cultivar that is the most pop- 15N natural abundance technique indicated that endophytic ular sweet potato in Japan. Ayamurasaki is a purple sweet potato with high anthocyanin content. Beniazuma was grown in light-col- N2 fixation contributes as much as 40% of the N intake of the 41) ored Andosol (Total N 0.54%, pH 6.1; in 2006) in 2002 and 2004 sweet potato to N nutrition . By using a cultivation tech- and Ayamurasaki was grown in gray lowland soil (Total N 0.13%, nique with an N-free culture medium, endophytic diaz- pH 6.2; in 2006) in 2005 and 2006. The applied fertilizer was N (30 −1 −1 −1 otrophic bacteria such as Klebsiella, Pantoea, and Gluconac- kg ha ), P2O5 (100 kg ha ), and K2O (100 kg ha ). The plants etobacter have been isolated from various cultivars of sweet were harvested and dissected into stems and storage roots in August 1,4,9) potatoes . Moreover, the presence of a variety of N2-fixing and/or October of each year. The samples were washed with tap bacteria in the African sweet potato has also been proven by water and surface layers of the stems and storage roots were polymerase chain reaction (PCR) amplification of the nifH removed with a sterilized peeler. Then, the remaining tissues were washed with sterilized water and frozen with liquid nitrogen. gene, indicating that many species of bacteria which have not yet been isolated from sweet potatoes by conventional cul- DNA and RNA isolation ture techniques might exist as diazotrophic endophytes29). In For the isolation of DNA and RNA, 5 g fresh weight of frozen many diazotrophs, nitrogenase activities correspond well to tissue was ground to a fine powder with a mortar and pestle in liquid the levels of nifH transcription under various nitrogen. Total DNA was isolated by cetyltrimethylammonium bro- conditions11,12,20,32). Therefore, the detection and sequence mide (CTAB) treatment followed by chloroform-isoamyl alcohol extraction and ethanol precipitation21). RNA was extracted using the analysis of nifH amplified from mRNA can provide valuable phenol-sodium dodecyl sulfate (SDS) method34,36) and further puri- information on the identification of nitrogen-fixing bacteria fied using an RNeasy plant Mini Kit (Qiagen Sciences, Inc., Ger- as well as evidence for their nitrogen fixation in situ. To mantown, MD, USA) following the manufacturer’s instructions. Purified RNA was incubated with Dnase I (Takara Bio, Inc., Otsu, * Corresponding author. E-mail: [email protected]; Tel: +81–29– Japan) at 37°C for 30 min. Reverse transcription was conducted 838–8814; Fax: +81–29–838–8814. using a Gene Amp Gold RNA PCR Core Kit (Applied Biosystems, 90 TERAKADO-TONOOKA et al. Foster City, CA, USA). Each 20 µl of reaction mixture contained the rhizobial species. In African sweet potatoes, about 50% 100 ng of total RNA, 1×RT-PCR buffer, 2.5 mM MgCl2, 1 mM of nifH genes derived from rhizobia, such as Shinorhizobium, dNTP mixture, 1.25 mM Random Hexamer, 10 mM DTT, 10 U Rhizobium, Mesorhizobium, or relatives belonging to the α- RNase inhibitor, and 15 U reverse transcriptase. Reverse transcrip- proteobacteria29). These results indicate that bradyrhizobia tion was carried out at 25°C for 10 min and 42°C for 12 min. and rhizobia may be the potential endophytic diazotrophs in PCR amplification sweet potatoes. The extracted DNA and transcribed cDNA were analyzed by Sequences with high similarity to β-proteobacteria nested PCR using four degenerate oligonucleotide primers, which (Herbaspirillum seropedicae, Burkholderia vietnamiensis, were designed to match the nifH gene sequences of a broad range Burkholderia unamae, Pelomonas saccharophila, and Azo- of bacteria: nifH1 (5'-TGYGAYCCNAARGCNGA-3'), nifH2 (5'- hydromonas australica) were also found in stems and storage ADNGCCATCATYTCNCC-3')44), nifH3 (5'-ATRTTRTTNGCNG- CRTA-3') and nifH4 (5'-TTYTAYGGNAARGGNGG-3')43). For roots (Table 1). H. seropedicae has been isolated as a diaz- nested PCR, the primers PolF (5'-TGCGAYCCSAARGCBGA- otrophic endophyte in many crops including rice, sugarcane, CTC-3') and PolR (5'-ATSGCCATCATYTCRCCGGA-3') were maize, sorghum, and banana24,37). The B. vietnamiensis spe- used based on the conserved sequence of nifH26). One microliter cies were isolated from rhizosphere soil of rice plants13) and (100 ng) of DNA or cDNA was added to 14 µL of the first-round confirmed as diazotrophic endophytes8). P. saccharophila × µ PCR mixture (1.5 mM MgCl2, 1 PCR Gold buffer, 800 M dNTPs, and A. australica are frequently isolated from soils as diaz- 1 µM each of primers, and 0.5 U of Amplitaq Gold DNA poly- 40) merase LD; all from Applied Biosystems). PCR was carried out otrophic bacteria . with 40 cycles of denaturation at 95°C (1 min), annealing at 53°C (1 Sequences similar to cyanobacteria (Anabaena sp., Nostoc min), and extension at 72°C (1 min). A second round of nested PCR commune, Tolypothrix sp. and Microcoleus sp.) were found was performed with 1 µL of the first-round product and 14 µL of primarily in sweet potato stems (Table 1). Cyanobacteria are the PCR mixture under the same conditions as those applied in the blue-green algae that are a diverse group of gram-negative first step of PCR. photosynthetic prokaryotes. Some filamentous bacteria Cloning and sequencing including Anabaena and Nostoc can form a symbiotic rela- The amplified DNA fragments corresponding to the anticipated tionship with certain plants such as Azolla, Gunnera and fix 22) size of approximately 360 bp were cloned into E. coli cells using N2 . TOPO TA cloning kits (Invitrogen, Carlsbad, CA, USA) following In the present study, nifH sequences similar to those the protocol recommended by the manufacturer. Sequencing was belonging to γ-proteobacteria groups such as Gluconaceto- performed by Hokkaido System Science Co., Ltd. (Sapporo, Japan) bacter, Klebsiella, and Pantoea were not recovered from the and submitted to the DNA Data Bank of Japan (DDBJ) nucleotide stems or storage roots of sweet potatoes although these bac- sequence database under accession numbers AB265689, AB365413–AB365434, AB373745–AB373747. teria have been isolated in the sweet potato using a culture- dependent technique1,4,9). In African sweet potatoes, nifH Phylogenetic analysis sequences simlar to K. pneumonia were also detected29). We A homology-based search of the GenBank-EMBL-DDBJ DNA confirmed that the gene fragments corresponding to nifH can database was performed with the BLAST program using the nifH be amplified from bacterial DNA under the same PCR condi- gene fragment. The nucleotide sequences were aligned using the tions (data not shown), indicating that these diazotrophic CLUSTAL W program and a phylogenetic tree of nifH sequences was constructed using Tree View 1.6.6 with the neighbor-joining bacteria are not predominant under the present cultivation method33). conditions.
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Response of Heterotrophic Stream Biofilm Communities to a Gradient of Resources
    The following supplement accompanies the article Response of heterotrophic stream biofilm communities to a gradient of resources D. J. Van Horn1,*, R. L. Sinsabaugh1, C. D. Takacs-Vesbach1, K. R. Mitchell1,2, C. N. Dahm1 1Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA 2Present address: Department of Microbiology & Immunology, University of British Columbia Life Sciences Centre, Vancouver BC V6T 1Z3, Canada *Email: [email protected] Aquatic Microbial Ecology 64:149–161 (2011) Table S1. Representative sequences for each OTU, associated GenBank accession numbers, and taxonomic classifications with bootstrap values (in parentheses), generated in mothur using 14956 reference sequences from the SILVA data base Treatment Accession Sequence name SILVA taxonomy classification number Control JF695047 BF8FCONT18Fa04.b1 Bacteria(100);Proteobacteria(100);Gammaproteobacteria(100);Pseudomonadales(100);Pseudomonadaceae(100);Cellvibrio(100);unclassified; Control JF695049 BF8FCONT18Fa12.b1 Bacteria(100);Proteobacteria(100);Alphaproteobacteria(100);Rhizobiales(100);Methylocystaceae(100);uncultured(100);unclassified; Control JF695054 BF8FCONT18Fc01.b1 Bacteria(100);Planctomycetes(100);Planctomycetacia(100);Planctomycetales(100);Planctomycetaceae(100);Isosphaera(50);unclassified; Control JF695056 BF8FCONT18Fc04.b1 Bacteria(100);Proteobacteria(100);Gammaproteobacteria(100);Xanthomonadales(100);Xanthomonadaceae(100);uncultured(64);unclassified; Control JF695057 BF8FCONT18Fc06.b1 Bacteria(100);Proteobacteria(100);Betaproteobacteria(100);Burkholderiales(100);Comamonadaceae(100);Ideonella(54);unclassified;
    [Show full text]
  • Community Structure Analysis 9
    Biodegradation of Polystyrene Foam by the Microorganisms from Landfill Pat Pataranutaporn ! Assistant prof. Savaporn Supaphol prof. Amornrat Phongdara Sureeporn Nualkaew Hi, I would like to invite you to take a look on my research Pat Introduction !3 “Styrofoam” Polystyrene Disadvantage Physical Properties ! • chemical formula is (C8H8)n • Non-biodegradable in the environment • monomer styrene • Made from non-renewable petroleum products • Thermoplastic • Chronic, low-level exposure risks undetermined • blowing agents Introduction !4 Bacteria nutritional requirements ! ‣ Energy source Biodegradation ‣ Carbon source Possibly work? ‣ Nitrogen source ‣ Minerals ‣ Water ‣ Growth factors Polystyrene structure http://faculty.ccbcmd.edu/courses/bio141/ lecguide/unit6/metabolism/growth/factors.html Introduction !5 Aims of the research ‣To identify the microbe that able to growth in the condition that polystyrene is a sole carbon source ! ‣To study the changing of microbe community structure in the selective culture which polystyrene is a sole carbon source ! ‣To observe the biodegradability of polystyrene To analyse the by product of polystyrene after degradation Methodology Methodology !7 Agar cultivation Community fingerprint 2 16s Ribosomal RNA Microbe Screening months later identification sampling Cultivation Molecular cloning Phylogenetic tree Degradability observation (SEM) Methodology Microbe sampling & cultivation !8 Agar cultivation Community fingerprint 2 16s Ribosomal RNA Microbe Screening months later identification sampling Cultivation
    [Show full text]
  • Taxonomy JN869023
    Species that differentiate periods of high vs. low species richness in unattached communities Species Taxonomy JN869023 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 JN674641 Bacteria; Bacteroidetes; [Saprospirae]; [Saprospirales]; Chitinophagaceae; Sediminibacterium JN869030 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 U51104 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; Limnohabitans JN868812 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae JN391888 Bacteria; Planctomycetes; Planctomycetia; Planctomycetales; Planctomycetaceae; Planctomyces HM856408 Bacteria; Planctomycetes; Phycisphaerae; Phycisphaerales GQ347385 Bacteria; Verrucomicrobia; [Methylacidiphilae]; Methylacidiphilales; LD19 GU305856 Bacteria; Proteobacteria; Alphaproteobacteria; Rickettsiales; Pelagibacteraceae GQ340302 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales JN869125 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae New.ReferenceOTU470 Bacteria; Cyanobacteria; ML635J-21 JN679119 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae HM141858 Bacteria; Acidobacteria; Holophagae; Holophagales; Holophagaceae; Geothrix FQ659340 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; auto67_4W AY133074 Bacteria; Elusimicrobia; Elusimicrobia; Elusimicrobiales FJ800541 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; R4-41B JQ346769 Bacteria; Acidobacteria; [Chloracidobacteria]; RB41; Ellin6075
    [Show full text]
  • Changes of Diazotrophic Communities in Response to Cropping Systems in a Mollisol of Northeast China
    Changes of diazotrophic communities in response to cropping systems in a Mollisol of Northeast China Jiaxun Zou1,2,*, Qin Yao1,*, Junjie Liu1, Yansheng Li1, Fuqiang Song2, Xiaobing Liu1 and Guanghua Wang1 1 Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China 2 College of Life Science, Heilongjiang University, Harbin, China * These authors contributed equally to this work. ABSTRACT Nitrogen-fixing microorganisms play important roles in N cycling. However, knowledge related to the changes in the diazotrophic community in response to cropping systems is still rudimentary. In this study, the nifH gene was used to reveal the abundance and community compositions of diazotrophs in the cropping systems of continuous cropping of corn (CC) and soybean (SS) and soybean-corn rotation for growing corn (CSC) and soybean (SCS) in a black soil of Northeast China. The results showed that the abundance of the nifH gene was significantly higher in cropping soybean than in cropping corn under the same cropping system, while remarkably increased in the rotation system under the same crop. The Shannon index in the CC treatment was significantly higher than that in the other treatments, but the OTU number and Chao1 index had no significant change among the four treatments. Bradyrhizobium japonicum was the dominant diazotrophic species, and its relative abundance was at the lowest value in the CC treatment. In contrast, Skermanella sp. had the highest relative abundance in the CC treatment. A PCoA showed that the diazotrophic communities were separated between different cropping systems, and the variation caused by continuous corn cropping was the largest.
    [Show full text]
  • Sparus Aurata) and Sea Bass (Dicentrarchus Labrax)
    Gut bacterial communities in geographically distant populations of farmed sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) Eleni Nikouli1, Alexandra Meziti1, Efthimia Antonopoulou2, Eleni Mente1, Konstantinos Ar. Kormas1* 1 Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece 2 Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece * Corresponding author; Tel.: +30-242-109-3082, Fax: +30-242109-3157, E-mail: [email protected], [email protected] Supplementary material 1 Table S1. Body weight of the Sparus aurata and Dicentrarchus labrax individuals used in this study. Chania Chios Igoumenitsa Yaltra Atalanti Sample Body weight S. aurata D. labrax S. aurata D. labrax S. aurata D. labrax S. aurata D. labrax S. aurata D. labrax (g) 1 359 378 558 420 433 448 481 346 260 785 2 355 294 579 442 493 556 516 397 240 340 3 376 275 468 554 450 464 540 415 440 500 4 392 395 530 460 440 483 492 493 365 860 5 420 362 483 479 542 492 406 995 6 521 505 506 461 Mean 380.40 340.80 523.17 476.67 471.60 487.75 504.50 419.67 326.25 696.00 SEs 11.89 23.76 17.36 19.56 20.46 23.85 8.68 21.00 46.79 120.29 2 Table S2. Ingredients of the diets used at the time of sampling. Ingredient Sparus aurata Dicentrarchus labrax (6 mm; 350-450 g)** (6 mm; 450-800 g)** Crude proteins (%) 42 – 44 37 – 39 Crude lipids (%) 19 – 21 20 – 22 Nitrogen free extract (NFE) (%) 20 – 26 19 – 25 Crude cellulose (%) 1 – 3 2 – 4 Ash (%) 5.8 – 7.8 6.2 – 8.2 Total P (%) 0.7 – 0.9 0.8 – 1.0 Gross energy (MJ/Kg) 21.5 – 23.5 20.6 – 22.6 Classical digestible energy* (MJ/Kg) 19.5 18.9 Added vitamin D3 (I.U./Kg) 500 500 Added vitamin E (I.U./Kg) 180 100 Added vitamin C (I.U./Kg) 250 100 Feeding rate (%), i.e.
    [Show full text]
  • International Code of Nomenclature of Prokaryotes
    2019, volume 69, issue 1A, pages S1–S111 International Code of Nomenclature of Prokaryotes Prokaryotic Code (2008 Revision) Charles T. Parker1, Brian J. Tindall2 and George M. Garrity3 (Editors) 1NamesforLife, LLC (East Lansing, Michigan, United States) 2Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (Braunschweig, Germany) 3Michigan State University (East Lansing, Michigan, United States) Corresponding Author: George M. Garrity ([email protected]) Table of Contents 1. Foreword to the First Edition S1–S1 2. Preface to the First Edition S2–S2 3. Preface to the 1975 Edition S3–S4 4. Preface to the 1990 Edition S5–S6 5. Preface to the Current Edition S7–S8 6. Memorial to Professor R. E. Buchanan S9–S12 7. Chapter 1. General Considerations S13–S14 8. Chapter 2. Principles S15–S16 9. Chapter 3. Rules of Nomenclature with Recommendations S17–S40 10. Chapter 4. Advisory Notes S41–S42 11. References S43–S44 12. Appendix 1. Codes of Nomenclature S45–S48 13. Appendix 2. Approved Lists of Bacterial Names S49–S49 14. Appendix 3. Published Sources for Names of Prokaryotic, Algal, Protozoal, Fungal, and Viral Taxa S50–S51 15. Appendix 4. Conserved and Rejected Names of Prokaryotic Taxa S52–S57 16. Appendix 5. Opinions Relating to the Nomenclature of Prokaryotes S58–S77 17. Appendix 6. Published Sources for Recommended Minimal Descriptions S78–S78 18. Appendix 7. Publication of a New Name S79–S80 19. Appendix 8. Preparation of a Request for an Opinion S81–S81 20. Appendix 9. Orthography S82–S89 21. Appendix 10. Infrasubspecific Subdivisions S90–S91 22. Appendix 11. The Provisional Status of Candidatus S92–S93 23.
    [Show full text]
  • Taxonomic Hierarchy of the Phylum Proteobacteria and Korean Indigenous Novel Proteobacteria Species
    Journal of Species Research 8(2):197-214, 2019 Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2 1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea *Correspondent: [email protected] The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju.
    [Show full text]
  • Changes in Acetylene Reduction Activities and Nifh Genes Associated with Field-Grown Sweet Potatoes with Different Nursery Farmers and Cultivars
    horticulturae Article Changes in Acetylene Reduction Activities and nifH Genes Associated with Field-Grown Sweet Potatoes with Different Nursery Farmers and Cultivars Kazuhito Itoh * , Keisuke Ohashi, Nao Yakai, Fumihiko Adachi and Shohei Hayashi Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan * Correspondence: [email protected]; Tel.: +81-852-32-6521 Received: 17 May 2019; Accepted: 25 July 2019; Published: 27 July 2019 Abstract: Sweet potato cultivars obtained from different nursery farmers were cultivated in an experimental field from seedling-stage to harvest, and the acetylene reduction activity (ARA) of different parts of the plant as well as the nifH genes associated with the sweet potatoes were examined. The relationship between these parameters and the plant weights, nitrogen contents, and natural abundance of 15N was also considered. The highest ARA was detected in the tubers and in September. Fragments of a single type of nitrogenase reductase gene (nifH) were amplified, and most of them had similarities with those of Enterobacteriaceae in γ-Proteobacteria. In sweet potatoes from one nursery farm, Dickeya nifH was predominantly detected in all of the cultivars throughout cultivation. In sweet potatoes from another farm, on the other hand, a transition to Klebsiella and Phytobacter nifH was observed after the seedling stage. The N2-fixing ability contributed to plant growth, and competition occurred between autochthonous and allochthonous bacterial communities in sweet potatoes. Keywords: sweet potato; endophyte; nitrogen fixation; nifH gene 1. Introduction The sweet potato (Ipomoea batatas L.) is a dicotyledonous plant that belongs to the family Convolvulaceae and is a subsistence crop with huge economic importance, especially in developing countries.
    [Show full text]
  • Linkages of Soil Nutrients and Diazotrophic Microbiome Under
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 October 2018 doi:10.20944/preprints201810.0382.v1 1 Article 2 Linkages of Soil Nutrients and Diazotrophic 3 Microbiome under Sugarcane-Legume Intercropping 4 Manoj Kumar Solanki1,4†, Chang-Ning Li1,2† Fei-Yong Wang1,2,3, Zhen Wang3, Tao-Ju Lan1, 5 Rajesh Kumar Singh1,3, Pratiksha Singh3, Li-Tao Yang3, Yang-Rui Li1, 2* 6 1 Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, 7 Nanning 530007, Guangxi, China; [email protected] (M.K.S.), [email protected] (T.J.L.), 8 [email protected] (R.K.S.) 9 2 Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology 10 and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Institute, Guangxi 11 Academy of Agricultural Sciences, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, 12 Nanning 530007, Guangxi, China; [email protected] (F.Y.W.), [email protected] (C.N.L.) 13 3 Agricultural College, State key Laboratory for Conservation and Utilization of Subtropical Agro- 14 bioresources, Guangxi University, Nanning 530004, Guangxi, China; [email protected] (Z.W.), 15 [email protected] (P.S.), [email protected] (L.T.Y.) 16 4 Agricultural Research Organization, Department of Postharvest and Food Sciences, The Volcani Center, 68 17 HaMaccabim Road, Rishon LeZion 7505101, Israel 18 19 *Yang-Rui Li, [email protected]; Tel: +86–771–3247689; Fax +86–771–3235318. 20 † These authors contributed equally to the work. 21 22 Abstract: Intercropping significantly improves land use efficiency and soil fertility. This study 23 examines the impact of three cultivation systems (monoculture sugarcane, peanut-sugarcane and 24 soybean-sugarcane intercropping) on soil properties and diazotrophs.
    [Show full text]
  • Appendix 1. Validly Published Names, Conserved and Rejected Names, And
    Appendix 1. Validly published names, conserved and rejected names, and taxonomic opinions cited in the International Journal of Systematic and Evolutionary Microbiology since publication of Volume 2 of the Second Edition of the Systematics* JEAN P. EUZÉBY New phyla Alteromonadales Bowman and McMeekin 2005, 2235VP – Valid publication: Validation List no. 106 – Effective publication: Names above the rank of class are not covered by the Rules of Bowman and McMeekin (2005) the Bacteriological Code (1990 Revision), and the names of phyla are not to be regarded as having been validly published. These Anaerolineales Yamada et al. 2006, 1338VP names are listed for completeness. Bdellovibrionales Garrity et al. 2006, 1VP – Valid publication: Lentisphaerae Cho et al. 2004 – Valid publication: Validation List Validation List no. 107 – Effective publication: Garrity et al. no. 98 – Effective publication: J.C. Cho et al. (2004) (2005xxxvi) Proteobacteria Garrity et al. 2005 – Valid publication: Validation Burkholderiales Garrity et al. 2006, 1VP – Valid publication: Vali- List no. 106 – Effective publication: Garrity et al. (2005i) dation List no. 107 – Effective publication: Garrity et al. (2005xxiii) New classes Caldilineales Yamada et al. 2006, 1339VP VP Alphaproteobacteria Garrity et al. 2006, 1 – Valid publication: Campylobacterales Garrity et al. 2006, 1VP – Valid publication: Validation List no. 107 – Effective publication: Garrity et al. Validation List no. 107 – Effective publication: Garrity et al. (2005xv) (2005xxxixi) VP Anaerolineae Yamada et al. 2006, 1336 Cardiobacteriales Garrity et al. 2005, 2235VP – Valid publica- Betaproteobacteria Garrity et al. 2006, 1VP – Valid publication: tion: Validation List no. 106 – Effective publication: Garrity Validation List no. 107 – Effective publication: Garrity et al.
    [Show full text]
  • Functional Metagenomics Using Pseudomonas Putida Expands the Known Diversity Of
    bioRxiv preprint doi: https://doi.org/10.1101/042705; this version posted March 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Functional metagenomics using Pseudomonas putida expands the known diversity of 2 polyhydroxyalkanoate synthases and enables the production of novel polyhydroxyalkanoate 3 copolymers 4 5 Jiujun Cheng and Trevor C. Charles* 6 7 Department of Biology and Centre for Bioengineering and Biotechnology, University of Waterloo, 8 Waterloo, Ontario, Canada N2L 3G1 9 10 *Corresponding author: 11 Dr. Trevor C. Charles 12 Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1. 13 E-mail: [email protected] 14 15 1 bioRxiv preprint doi: https://doi.org/10.1101/042705; this version posted March 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 16 17 Abstract 18 Bacterially produced biodegradable polyhydroxyalkanoates with versatile properties can be achieved 19 using different PHA synthase enzymes. This work aims to expand the diversity of known PHA 20 synthases via functional metagenomics, and demonstrates the use of these novel enzymes in PHA 21 production. Complementation of a PHA synthesis deficient Pseudomonas putida strain with a soil 22 metagenomic cosmid library retrieved 27 clones expressing either Class I, Class II or unclassified 23 PHA synthases, and many did not have close sequence matches to known PHA synthases.
    [Show full text]