Association of Disease Severity with Skin Microbiome and Filaggrin Gene Mutations in Adult Atopic Dermatitis 4 [Published Online January 17, 2018]

Total Page:16

File Type:pdf, Size:1020Kb

Association of Disease Severity with Skin Microbiome and Filaggrin Gene Mutations in Adult Atopic Dermatitis 4 [Published Online January 17, 2018] 1 Supplementary Online Content 2 3 Clausen M-L, Agner T, Lilje B, et al. Association of disease severity with skin microbiome and filaggrin gene mutations in adult atopic dermatitis 4 [published online January 17, 2018]. JAMA Dermatol. doi:10.1001/jamadermatol.2017.5440 5 6 eTable 1. Supplementary data 7 eFigure 2. Microbiome in relation to age 8 eFigure 3. Skin microbiome in relation to skin type 9 eFigure 4. Microbiome of all skin and nose samples 10 eFigure 5. Barplot of bacterial species in nose samples of AD patients and healthy controls 11 eTable 6. Distribution of clusters in skin and nasal samples 12 eFigure 7. Skin and nose microbiome in relation to disease severity (SCORAD) 13 This supplementary material has been provided by the authors to give readers additional information about their work. 14 15 © 2017 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/24/2021 16 Supplementary data 17 Table e1: d Bacteria; p Proteobacteria; c Betaproteobacteria; o Burkholderiales; f Burkholderiaceae; g Ralstonia; s solanacearum d Bacteria; p Proteobacteria; c Betaproteobacteria; o Burkholderiales; f Burkholderiaceae; g Burkholderia; s caledonica d Bacteria; p Proteobacteria; c Betaproteobacteria; o Burkholderiales; f Burkholderiaceae; g Burkholderia; s diazotrophica d Bacteria; p Proteobacteria; c Betaproteobacteria; o Burkholderiales; f Comamonadaceae; g Pelomonas; s saccharophila d Bacteria; p Proteobacteria; c Betaproteobacteria; o Burkholderiales; f Burkholderiaceae; g Burkholderia; s unclassified d Bacteria; p Proteobacteria; c Betaproteobacteria; o Burkholderiales; f Burkholderiaceae; g Ralstonia; s unclassified d Bacteria; p Proteobacteria; c Alphaproteobacteria; o Rhodobacterales; f Rhodobacteraceae; g Paracoccus; s huijuniae d Bacteria; p Proteobacteria; c Betaproteobacteria; o Burkholderiales; f Comamonadaceae; g Comamonas; s denitrificans d Bacteria; p Cyanobacteria/Chloroplast; c Chloroplast; o Chloroplast; f Streptophyta; g Pinus; s thunbergii d Bacteria; p Cyanobacteria/Chloroplast; c Chloroplast; o Chloroplast; f Streptophyta; g Daucus; s carota d Bacteria; p Proteobacteria; c Alphaproteobacteria; o Rhodobacterales; f Rhodobacteraceae; g Paracoccus; s unclassified d Bacteria; p Proteobacteria; c Alphaproteobacteria; o Rhodobacterales; f Rhodobacteraceae; g Paracoccus; s marcusii d Bacteria; p Cyanobacteria/Chloroplast; c Chloroplast; o Chloroplast; f Streptophyta; g Calycanthus; s floridus d Bacteria; p Cyanobacteria/Chloroplast; c Chloroplast; o Chloroplast; f Streptophyta; g Ricinus; s communis d Bacteria; p Actinobacteria; c Actinobacteria; o Actinomycetales; f Micrococcaceae; g Citricoccus; s nitrophenolicus d Bacteria; p Actinobacteria; c Actinobacteria; o Actinomycetales; f Microbacteriaceae; g Agromyces; s mediolanus d Bacteria; p Proteobacteria; c Alphaproteobacteria; o Rhodobacterales; f Rhodobacteraceae; g Paracoccus; s siganidrum d Bacteria; p Proteobacteria; c Alphaproteobacteria; o Sphingomonadales; f Sphingomonadaceae; g Sphingomonas; s unclassified d Bacteria; p Proteobacteria; c Gammaproteobacteria; o Pseudomonadales; f Pseudomonadaceae; g Pseudomonas; s fluorescens d Bacteria; p Proteobacteria; c Betaproteobacteria; o Burkholderiales; f Burkholderiaceae; g Burkholderia; s ferrariae d Bacteria; p Proteobacteria; c Alphaproteobacteria; o Rhizobiales; f Bradyrhizobiaceae; g Bradyrhizobium; s cytisi 18 19 © 2017 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/24/2021 20 Figure e2: Microbiome in relation to age 21 22 The relation between age and skin microbiome was analysed, and we found no relation (PERMANOVA test, p=0.99). 23 PCoA plot was used to illustrate differences between age groups. 24 © 2017 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/24/2021 25 Figure e3: Skin microbiome in relation to skin type 26 27 28 The relation between skin type (dry or moist) and the skin microbiome was analysed. No association of skin type was 29 found (p=0.29). 30 31 © 2017 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/24/2021 32 Figure e4: Microbiome of all skin and nose samples 33 34 Differences in microbiome between nose samples, and between skin samples, were analysed and plotted using PCoA. 35 Differences in microbiome were found, between AD nose and healthy control nose (p=0.001), between AD lesional and 36 AD non-lesional skin (p=0.001), and healthy control and AD non-lesional (p=0.001). 37 38 39 40 41 © 2017 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/24/2021 42 Figure e5: Barplot of bacterial species in nose samples of AD patients and healthy controls 43 44 Barplots of bacterial species in nose samples of AD patients and healthy controls, performed at genus level, except for 45 Staphylococcus, which was kept at species level. Hierarchical clustering was performed according to similarity of the © 2017 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/24/2021 46 microbiome, and five different clusters were identified (I-V). Disease severity (SCORAD) and filaggrin mutation status 47 are shown for AD patients. 48 49 © 2017 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/24/2021 50 Table e6: Distribution of clusters in skin and nasal samples. 51 Skin samples CLUSTER AD lesional skin AD non-lesional skin Healthy control skin I 18 (32%) 4 (7%) 0 II 1 (2%) 6 (11%) 1 (2%) III 3 (5%) 7 (12.5%) 1 (2%) IV 0 7 (12.5%) 7 (16%) V 34 (61%) 32 (57%) 36 (80%) 52 53 54 Hierarchical clustering of samples was performed according to similarity of the microbiome. Five different clusters 55 were identified in skin samples. For skin samples, differences in cluster distribution were found between AD lesional, 56 AD non-lesional and healthy control skin, with cluster V being the most dominant for both AD patients and healthy 57 controls. 58 59 © 2017 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/24/2021 60 Figure e7: Skin and nose microbiome in relation to disease severity (SCORAD) 61 © 2017 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/24/2021 62 Microbiome in relation to disease severity (SCORAD), for skin and nose samples in AD patients. Differences in 63 microbiome were found and relates to disease severity for all sampled areas of AD patients. Differences are illustrated 64 by PCoA plots. a) AD non-lesional skin (p=0.007); b) AD lesional skin (p=0.001); c) AD nose (p=0.005). 65 © 2017 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/24/2021.
Recommended publications
  • Multilayered Horizontal Operon Transfers from Bacteria Reconstruct a Thiamine Salvage Pathway in Yeasts
    Multilayered horizontal operon transfers from bacteria reconstruct a thiamine salvage pathway in yeasts Carla Gonçalvesa and Paula Gonçalvesa,1 aApplied Molecular Biosciences Unit-UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal Edited by Edward F. DeLong, University of Hawaii at Manoa, Honolulu, HI, and approved September 22, 2019 (received for review June 14, 2019) Horizontal acquisition of bacterial genes is presently recognized as nisms presumed to have facilitated a transition from bacterial an important contribution to the adaptation and evolution of operon transcription to eukaryotic-style gene expression were eukaryotic genomes. However, the mechanisms underlying ex- proposed, such as gene fusion giving rise to multifunctional pro- pression and consequent selection and fixation of the prokaryotic teins (6, 23, 24), increase in intergenic distances between genes to genes in the new eukaryotic setting are largely unknown. Here we generate room for eukaryotic promoters, and independent tran- show that genes composing the pathway for the synthesis of the scription producing mRNAs with poly(A) tails have been dem- essential vitamin B1 (thiamine) were lost in an ancestor of a yeast onstrated (22). In the best documented study, which concerns a lineage, the Wickerhamiella/Starmerella (W/S) clade, known to bacterial siderophore biosynthesis operon acquired by yeasts be- harbor an unusually large number of genes of alien origin. The longing to the Wickerhamiella/Starmerella (W/S) clade, the bacte- thiamine pathway was subsequently reassembled, at least twice, rial genes acquired as an operon were shown to be functional (22). by multiple HGT events from different bacterial donors involving Thiamine, commonly known as vitamin B1, is essential for all both single genes and entire operons.
    [Show full text]
  • The Burkholderia Genus: Between Mutualism and Pathogenicity
    The Burkholderia genus: between mutualism and pathogenicity El género Burkholderia: entre el mutualismo y la patogenicidad David Espinosa-Victoria*, Laboratorio Interacción Molecular Planta-Microorganismo, 1Programa de Edafo- logía Colegio de Postgraduados, Carretera México-Texcoco Km 36.5, Montecillo Estado de México, México, 56230; Lucía López-Reyes, Moisés Graciano Carcaño-Montiel, Laboratorio Microbiología de Suelos, Bene- mérita Universidad Autónoma de Puebla, Avenida San Claudio s/n, Ciudad Universitaria, La Hacienda, Puebla, Puebla, 72592; 1María Serret-López. *Autor para correspondencia: [email protected] Recibido: 28 de Abril, 2020. Aceptado: 04 de Junio, 2020. Espinosa-Victoria D, López-Reyes L, Carcaño-Montiel Abstract. Burkholderia is an ambivalent genus MG and Serret-López M. 2020. The Burkholderia ge- because some of its species establish symbiotic- nus: between mutualism and pathogenicity. Mexican Jo- mutualistic relationships with plants, and urnal of Phytopathology 38(3): 337-359. symbiotic-pathogenic relationships with plants, DOI: 10.18781/R.MEX.FIT.2004-5 animals, and humans. Since the phytopathogenic bacterium B. cepacia was reported as a nosocomial Primera publicación DOI: 17 de Junio, 2020. opportunist, associated with cystic fibrosis, the First DOI publication: June 17, 2020. concern about possible infections in humans arose. The objective of this contribution was to make an analysis of Burkholderia’s functional versatility Resumen. Burkholderia es un género ambivalen- and its effect on human health. Burkholderia te debido a que algunas de sus especies establecen harbored about 100 species and the B. cepacia relaciones simbiótico-mutualistas con las plantas, y complex (BCC) consisting of 22 species. At the simbiótico-patogénicas con plantas, animales y hu- beginning, the existence of two lineages within manos.
    [Show full text]
  • Comamonas: Relationship to Aquaspirillum Aquaticum, E
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1991, p. 427-444 Vol. 41, No. 3 0020-7713/91/030427- 18$02 .OO/O Copyright 0 1991, International Union of Microbiological Societies Polyphasic Taxonomic Study of the Emended Genus Comamonas: Relationship to Aquaspirillum aquaticum, E. Falsen Group 10, and Other Clinical Isolates A. WILLEMS,l B. POT,l E. FALSEN,2 P. VANDAMME,' M. GILLIS,l* K. KERSTERS,l AND J. DE LEY' Laboratorium voor Microbiologie en Microbiele Genetica, Rijksuniversiteit, B-9000 Ghent, Belgium, and Culture Collection, Department of Clinical Bacteriology, University of Goteborg, S-413 46 Goteborg, Sweden2 We used DNA-rRNA hybridization, DNA base composition, polyacrylamide gel electrophoresis of whole-cell proteins, DNA-DNA hybridization, numerical analysis of phenotypic features, and immunotyping to study the taxonomy of the genus Comamonas. The relationships of this genus to Aquaspirillum aquaticum and a group of clinical isolates (E. Falsen group 10 [EF lo]) were studied. Our DNA and rRNA hybridization results indicate that the genus Comamonas consists of at least the following five genotypic groups: (i) Comamonas acidovoruns, (ii) Comamonas fesfosferoni,(iii) Comamonas ferrigena, (iv) A. aquaticum and a number of EF 10 strains, and (v) other EF 10 strains, several unnamed clinical isolates, and some misnamed strains of Pseudomonas alcaligenes and Pseudomonas pseudoalcaligenes subsp. pseudoalcaligenes. The existence of these five groups was confirmed by the results of immunotyping and protein gel electrophoresis. A numerical analysis of morpho- logical, auxanographic, and biochemical data for the same organisms revealed the existence of three large phena. Two of these phena (C. acidovorans and C. tesfosferoni)correspond to two of the genotypic groups.
    [Show full text]
  • Response of Heterotrophic Stream Biofilm Communities to a Gradient of Resources
    The following supplement accompanies the article Response of heterotrophic stream biofilm communities to a gradient of resources D. J. Van Horn1,*, R. L. Sinsabaugh1, C. D. Takacs-Vesbach1, K. R. Mitchell1,2, C. N. Dahm1 1Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA 2Present address: Department of Microbiology & Immunology, University of British Columbia Life Sciences Centre, Vancouver BC V6T 1Z3, Canada *Email: [email protected] Aquatic Microbial Ecology 64:149–161 (2011) Table S1. Representative sequences for each OTU, associated GenBank accession numbers, and taxonomic classifications with bootstrap values (in parentheses), generated in mothur using 14956 reference sequences from the SILVA data base Treatment Accession Sequence name SILVA taxonomy classification number Control JF695047 BF8FCONT18Fa04.b1 Bacteria(100);Proteobacteria(100);Gammaproteobacteria(100);Pseudomonadales(100);Pseudomonadaceae(100);Cellvibrio(100);unclassified; Control JF695049 BF8FCONT18Fa12.b1 Bacteria(100);Proteobacteria(100);Alphaproteobacteria(100);Rhizobiales(100);Methylocystaceae(100);uncultured(100);unclassified; Control JF695054 BF8FCONT18Fc01.b1 Bacteria(100);Planctomycetes(100);Planctomycetacia(100);Planctomycetales(100);Planctomycetaceae(100);Isosphaera(50);unclassified; Control JF695056 BF8FCONT18Fc04.b1 Bacteria(100);Proteobacteria(100);Gammaproteobacteria(100);Xanthomonadales(100);Xanthomonadaceae(100);uncultured(64);unclassified; Control JF695057 BF8FCONT18Fc06.b1 Bacteria(100);Proteobacteria(100);Betaproteobacteria(100);Burkholderiales(100);Comamonadaceae(100);Ideonella(54);unclassified;
    [Show full text]
  • Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management G
    Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management G. Blomme, M. Dita, K. S. Jacobsen, L. P. Vicente, A. Molina, W. Ocimati, Stéphane Poussier, Philippe Prior To cite this version: G. Blomme, M. Dita, K. S. Jacobsen, L. P. Vicente, A. Molina, et al.. Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management. Frontiers in Plant Science, Frontiers, 2017, 8, pp.1-25. 10.3389/fpls.2017.01290. hal-01608050 HAL Id: hal-01608050 https://hal.archives-ouvertes.fr/hal-01608050 Submitted on 28 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fpls-08-01290 July 22, 2017 Time: 11:6 # 1 REVIEW published: 20 July 2017 doi: 10.3389/fpls.2017.01290 Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management Guy Blomme1*, Miguel Dita2, Kim Sarah Jacobsen3, Luis Pérez Vicente4, Agustin
    [Show full text]
  • Enrichment of Beneficial Cucumber Rhizosphere Microbes Mediated By
    Wen et al. Horticulture Research (2020) 7:154 Horticulture Research https://doi.org/10.1038/s41438-020-00380-3 www.nature.com/hortres ARTICLE Open Access Enrichment of beneficial cucumber rhizosphere microbes mediated by organic acid secretion Tao Wen1,JunYuan1, Xiaoming He2,YueLin2,QiweiHuang1 andQirongShen 1 Abstract Resistant cultivars have played important roles in controlling Fusarium wilt disease, but the roles of rhizosphere interactions among different levels of resistant cultivars are still unknown. Here, two phenotypes of cucumber, one resistant and one with increased susceptibility to Fusarium oxysporum f.sp. cucumerinum (Foc), were grown in the soil and hydroponically, and then 16S rRNA gene sequencing and nontargeted metabolomics techniques were used to investigate rhizosphere microflora and root exudate profiles. Relatively high microbial community evenness for the Foc-susceptible cultivar was detected, and the relative abundances of Comamonadaceae and Xanthomonadaceae were higher for the Foc-susceptible cultivar than for the other cultivar. FishTaco analysis revealed that specific functional traits, such as protein synthesis and secretion, bacterial chemotaxis, and small organic acid metabolism pathways, were significantly upregulated in the rhizobacterial community of the Foc-susceptible cultivar. A machine- learning approach in conjunction with FishTaco plus metabolic pathway analysis revealed that four organic acids (citric acid, pyruvate acid, succinic acid, and fumarate) were released at higher abundance by the Foc-susceptible cultivar compared with the resistant cultivar, which may be responsible for the recruitment of Comamonadaceae, a potential beneficial microbial group. Further validation demonstrated that Comamonadaceae can be “cultured” by these organic acids. Together, compared with the resistant cultivar, the susceptible cucumber tends to assemble beneficial microbes by secreting more organic acids.
    [Show full text]
  • Burkholderia Cenocepacia Integrates Cis-2-Dodecenoic Acid and Cyclic Dimeric Guanosine Monophosphate Signals to Control Virulence
    Burkholderia cenocepacia integrates cis-2-dodecenoic acid and cyclic dimeric guanosine monophosphate signals to control virulence Chunxi Yanga,b,c,d,1, Chaoyu Cuia,b,c,1, Qiumian Yea,b, Jinhong Kane, Shuna Fua,b, Shihao Songa,b, Yutong Huanga,b, Fei Hec, Lian-Hui Zhanga,c, Yantao Jiaf, Yong-Gui Gaod, Caroline S. Harwoodb,g,2, and Yinyue Denga,b,c,2 aState Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; bGuangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; cIntegrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; dSchool of Biological Sciences, Nanyang Technological University, Singapore 637551; eCenter for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; fState Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and gDepartment of Microbiology, University of Washington, Seattle, WA 98195 Contributed by Caroline S. Harwood, October 30, 2017 (sent for review June 1, 2017; reviewed by Maxwell J. Dow and Tim Tolker-Nielsen) Quorum sensing (QS) signals are used by bacteria to regulate N-octanoyl homoserine lactone (C8-HSL). The two QS systems biological functions in response to cell population densities. Cyclic have both distinct and overlapping effects on gene expression diguanosine monophosphate (c-di-GMP) regulates cell functions in (16, 17). response to diverse environmental chemical and physical signals One of the ways in which QS systems can act is by controlling that bacteria perceive. In Burkholderia cenocepacia, the QS signal levels of intracellular cyclic diguanosine monophosphate (c-di-GMP) receptor RpfR degrades intracellular c-di-GMP when it senses the in bacteria (18–21).
    [Show full text]
  • Microbial Community Response to Heavy and Light Crude Oil in the Great Lakes
    Microbial Community Response to Heavy and Light Crude Oil in the Great Lakes Stephen Techtmann 10/24/19 Microbial Sensors Techtmann Lab @ MTU Investigating the applications of environmental microbial communities Hydraulic Fracturing Related Antibiotic Resistance Oil Bioremediation Techtmann Lab @ MTU Overview • Background on oil biodegradation • Microbial response to light and heavy crude oil in the Great Lakes • Machine learning for prediction of contamination in the Great Lakes. Oil Spills Deepwater Horizon Enbridge Line 6B Deepwater Horizon Oil Spill • 4,1000,000 bbl of oil released • Light Sweet Crude oil released • April 20, 2010 • 1101.7 miles of shoreline oiled Atlas and Hazen 2011 Enbridge Line 6B Spill – Marshall MI • 20,082 bbl of oil released • Diluted Bitumen • July 26, 2010 • 70 miles of shoreline oiled https://www.mlive.com/news/kalamazoo/2010/07/state_of_emergency_declared_as.html Oil Transmissions Pipelines in the Great Lakes Region Line 5: • 645 miles from Superior WI to Sarnia Ontario • 540,000 barrels per day • Light crude and natural gas liquids (NGLs) Crude oil Oil types and API Gravity Microbes and Biotechnology (Bioremediation) Low cost input Microbe High value output Decreased Cost Contaminant Increased Efficiency Carbon dioxide or non- toxic daughter products Carbon dioxide Microbial Biomass Petroleum Microbe Daughter Products Water Microbial Ecology and Biotechnology Low cost input Microbe High value output Decreased Cost/Increased Efficiency Complex input Input A Microbe Microbe Output A Input B Microbe Output
    [Show full text]
  • APP201895 APP201895__Appli
    APPLICATION FORM DETERMINATION Determine if an organism is a new organism under the Hazardous Substances and New Organisms Act 1996 Send by post to: Environmental Protection Authority, Private Bag 63002, Wellington 6140 OR email to: [email protected] Application number APP201895 Applicant Neil Pritchard Key contact NPN Ltd www.epa.govt.nz 2 Application to determine if an organism is a new organism Important This application form is used to determine if an organism is a new organism. If you need help to complete this form, please look at our website (www.epa.govt.nz) or email us at [email protected]. This application form will be made publicly available so any confidential information must be collated in a separate labelled appendix. The fee for this application can be found on our website at www.epa.govt.nz. This form was approved on 1 May 2012. May 2012 EPA0159 3 Application to determine if an organism is a new organism 1. Information about the new organism What is the name of the new organism? Briefly describe the biology of the organism. Is it a genetically modified organism? Pseudomonas monteilii Kingdom: Bacteria Phylum: Proteobacteria Class: Gamma Proteobacteria Order: Pseudomonadales Family: Pseudomonadaceae Genus: Pseudomonas Species: Pseudomonas monteilii Elomari et al., 1997 Binomial name: Pseudomonas monteilii Elomari et al., 1997. Pseudomonas monteilii is a Gram-negative, rod- shaped, motile bacterium isolated from human bronchial aspirate (Elomari et al 1997). They are incapable of liquefing gelatin. They grow at 10°C but not at 41°C, produce fluorescent pigments, catalase, and cytochrome oxidase, and possesse the arginine dihydrolase system.
    [Show full text]
  • BEI Resources Product Information Sheet Catalog No. NR-51597 Pseudomonas Aeruginosa, Strain MRSN 23861
    Product Information Sheet for NR-51597 Pseudomonas aeruginosa, Strain MRSN P. aeruginosa is a Gram-negative, aerobic, rod-shaped bacterium with unipolar motility that thrives in many diverse 23861 environments including soil, water and certain eukaryotic hosts. It is a key emerging opportunistic pathogen in animals, Catalog No. NR-51597 including humans and plants. While it rarely infects healthy This reagent is the tangible property of the U.S. Government. individuals, P. aeruginosa causes severe acute and chronic nosocomial infections in immunocompromised or catheterized patients, especially in patients with cystic fibrosis, burns, For research use only. Not for human use. cancer or HIV.3-5 Infections of this type are often highly antibiotic resistant, difficult to eradicate and often lead to Contributor: death. The ability of P. aeruginosa to survive on minimal Multidrug-Resistant Organism Repository and Surveillance nutritional requirements, tolerate a variety of physical Network (MRSN), Bacterial Disease Branch, Walter Reed conditions and rapidly develop resistance during the course of Army Institute of Research, Silver Spring, Maryland, USA therapy has allowed it to persist in both community and 5,6 hospital settings. Manufacturer: BEI Resources Material Provided: Each vial contains approximately 0.5 mL of bacterial culture in Product Description: Tryptic Soy broth supplemented with 10% glycerol. Bacteria Classification: Pseudomonadaceae, Pseudomonas Species: Pseudomonas aeruginosa Note: If homogeneity is required for your intended use, please Strain: MRSN 23861 purify prior to initiating work. Original Source: Pseudomonas aeruginosa (P. aeruginosa), strain MRSN 23861 was isolated in 2014 from a human Packaging/Storage: respiratory sample as part of a surveillance program in the NR-51597 was packaged aseptically in cryovials.
    [Show full text]
  • A Salt Lake Extremophile, Paracoccus Bogoriensis Sp. Nov., Efficiently Produces Xanthophyll Carotenoids
    African Journal of Microbiology Research Vol. 3(8) pp. 426-433 August, 2009 Available online http://www.academicjournals.org/ajmr ISSN 1996-0808 ©2009 Academic Journals Full Length Research Paper A salt lake extremophile, Paracoccus bogoriensis sp. nov., efficiently produces xanthophyll carotenoids George O. Osanjo1*, Elizabeth W. Muthike2, Leah Tsuma3, Michael W. Okoth2, Wallace D. Bulimo3, Heinrich Lünsdorf4, Wolf-Rainer Abraham4, Michel Dion5, Kenneth N. Timmis4 , Peter N. Golyshin4 and Francis J. Mulaa3 1School of Pharmacy, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya. 2Department of Food Science, Technology and Nutrition, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya. 3Department of Biochemistry, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya. 4Division of Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. 5Université de Nantes, UMR CNRS 6204, Biotechnologie, Biocatalyse, Biorégulation, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, Nantes, F- 44322, France. Accepted 27 July, 2009 A Gram-negative obligate alkaliphilic bacterium (BOG6T) that secretes carotenoids was isolated from the outflow of Lake Bogoria hot spring located in the Kenyan Rift Valley. The bacterium is motile by means of a polar flagellum, and forms red colonies due to the production of xanthophyll carotenoid pigments. 16S rRNA gene sequence analysis showed this strain to cluster phylogenetically within the genus Paracoccus. Strain BOG6T is aerobic, positive for both catalase and oxidase, and non- methylotrophic. The major fatty acid of the isolate is C18: 1ω7c. It accumulated polyhydroxybutyrate granules. Strain BOG6T gave astaxanthin yield of 0.4 mg/g of wet cells indicating a potential for application in commercial production of carotenoids.
    [Show full text]
  • Ralstonia Solanacearum Race 3 Biovar 2 OriginalWebpage(SeeLink AtTheEndOfTheDocument)
    USDA-NRI Project: R. solanacearum race 3 biovar 2: detection, exclusion and analysis of a Select Agent Educational modules Ralstonia solanacearum race 3 biovar 2 Original webpage (see link at the end of the document) Author : Patrice G. Champoiseau of University of Florida Reviewers : Caitilyn Allen of University of Wisconsin; Jeffrey B. Jones , Carrie Harmon and Timur M. Momol of University of Florida Publication date : September 1 2, 2008 Supported by : The United States Department of Agriculture - National Research Initiative Program (2007 -2010) - See definitions of red-colored words in the glossary at the end of this document - Ralstonia solanacearum race 3 biovar 2 is the plant pathogen bacterium that causes brown rot (or bacterial wilt) of potato, Southern wilt of geranium, and bacterial wilt of tomato. R. solanacearum race 3 biovar 2 occurs in highlands in the tropics and in subtropical and some warm-temperate areas throughout the world. It has also occurred in cold-temperate regions in Europe, where several outbreaks of brown rot of potato have been reported in the last 30 years. It has been reported in more than 30 countries and almost all continents. In the United States, several introductions of R. solanacearum race 3 biovar 2 have already occurred as a result of importation of infested geranium cuttings from off-shore production sites, but the pathogen was apparently eradicated. However, because of the risk of its possible re-introduction through importation of infected plant material, and its potential to affect potato production in cold-temperate areas in the northern United States, R. solanacearum race 3 biovar 2 is considered a serious threat to the United States potato industry.
    [Show full text]