Burkholderia Cenocepacia Intracellular Activation of the Pyrin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Legionnaires' Disease, Pontiac Fever, Legionellosis and Legionella
Legionnaires’ Disease, Pontiac Fever, Legionellosis and Legionella Q: What is Legionellosis and who is at risk? Legionellosis is an infection caused by Legionella bacteria. Legionellosis can present as two distinct illnesses: Pontiac fever (a self-limited flu-like mild respiratory illness), and Legionnaires’ Disease (a more severe illness involving pneumonia). People of any age can get Legionellosis, but the disease occurs most frequently in persons over 50 years of age. The disease most often affects those who smoke heavily, have chronic lung disease, or have underlying medical conditions that lower their immune system, such as diabetes, cancer, or renal dysfunction. Persons taking certain drugs that lower their immune system, such as steroids, have an increased risk of being affected by Legionellosis. Many people may be infected with Legionella bacteria without developing any symptoms, and others may be treated without having to be hospitalized. Q: What is Legionella? Legionella bacteria are found naturally in freshwater environments such as creeks, ponds and lakes, as well as manmade structures such as plumbing systems and cooling towers. Legionella can multiply in warm water (77°F to 113°F). Legionella pneumophila is responsible for over 90 percent of Legionnaires’ Disease cases and several different species of Legionella are responsible for Pontiac Fever. Q: How is Legionella spread and how does someone acquire Legionellosis (Legionnaires’ Disease/Pontiac Fever)? Legionella bacteria become a health concern when they grow and spread in manmade structures such as plumbing systems, hot water tanks, cooling towers, hot tubs, decorative fountains, showers and faucets. Legionellosis is acquired after inhaling mists from a contaminated water source containing Legionella bacteria. -
Crystal Structures of the Burkholderia Multivorans Hopanoid Transporter Hpnn
Crystal structures of the Burkholderia multivorans hopanoid transporter HpnN Nitin Kumara,1, Chih-Chia Sub,1, Tsung-Han Choub, Abhijith Radhakrishnana, Jared A. Delmarb, Kanagalaghatta R. Rajashankarc,d, and Edward W. Yua,b,2 aDepartment of Chemistry, Iowa State University, Ames, IA 50011; bDepartment of Physics and Astronomy, Iowa State University, IA 50011; cNortheastern Collaborative Access Team, Argonne National Laboratory, Argonne, IL 60439; and dDepartment of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850 Edited by Eric Gouaux, Oregon Health and Science University, Portland, OR, and approved May 15, 2017 (received for review November 30, 2016) Strains of the Burkholderia cepacia complex (Bcc) are Gram-negative critical line of defense against antimicrobial agents in Burkholderia opportunisitic bacteria that are capable of causing serious diseases, species is the permeability barrier of the outer membrane. Most of mainly in immunocompromised individuals. Bcc pathogens are in- these species contain a modified lipopolysaccharide, which results in trinsically resistant to multiple antibiotics, including β-lactams, ami- polymyxin resistance (13). In addition, the permeability of the major noglycosides, fluoroquinolones, and polymyxins. They are major outer membrane porin channel Omp38 appears to be low for an- pathogens in patients with cystic fibrosis (CF) and can cause severe tibiotics (14). The presence of a large number of multidrug efflux necrotizing pneumonia, which is often fatal. Hopanoid biosynthesis pumps, belonging to the resistance-nodulation-cell division (RND) is one of the major mechanisms involved in multiple antimicrobial superfamily, also plays a major role in the intrinsic resistance to a resistance of Bcc pathogens. The hpnN gene of B. -
Multilayered Horizontal Operon Transfers from Bacteria Reconstruct a Thiamine Salvage Pathway in Yeasts
Multilayered horizontal operon transfers from bacteria reconstruct a thiamine salvage pathway in yeasts Carla Gonçalvesa and Paula Gonçalvesa,1 aApplied Molecular Biosciences Unit-UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal Edited by Edward F. DeLong, University of Hawaii at Manoa, Honolulu, HI, and approved September 22, 2019 (received for review June 14, 2019) Horizontal acquisition of bacterial genes is presently recognized as nisms presumed to have facilitated a transition from bacterial an important contribution to the adaptation and evolution of operon transcription to eukaryotic-style gene expression were eukaryotic genomes. However, the mechanisms underlying ex- proposed, such as gene fusion giving rise to multifunctional pro- pression and consequent selection and fixation of the prokaryotic teins (6, 23, 24), increase in intergenic distances between genes to genes in the new eukaryotic setting are largely unknown. Here we generate room for eukaryotic promoters, and independent tran- show that genes composing the pathway for the synthesis of the scription producing mRNAs with poly(A) tails have been dem- essential vitamin B1 (thiamine) were lost in an ancestor of a yeast onstrated (22). In the best documented study, which concerns a lineage, the Wickerhamiella/Starmerella (W/S) clade, known to bacterial siderophore biosynthesis operon acquired by yeasts be- harbor an unusually large number of genes of alien origin. The longing to the Wickerhamiella/Starmerella (W/S) clade, the bacte- thiamine pathway was subsequently reassembled, at least twice, rial genes acquired as an operon were shown to be functional (22). by multiple HGT events from different bacterial donors involving Thiamine, commonly known as vitamin B1, is essential for all both single genes and entire operons. -
The Burkholderia Genus: Between Mutualism and Pathogenicity
The Burkholderia genus: between mutualism and pathogenicity El género Burkholderia: entre el mutualismo y la patogenicidad David Espinosa-Victoria*, Laboratorio Interacción Molecular Planta-Microorganismo, 1Programa de Edafo- logía Colegio de Postgraduados, Carretera México-Texcoco Km 36.5, Montecillo Estado de México, México, 56230; Lucía López-Reyes, Moisés Graciano Carcaño-Montiel, Laboratorio Microbiología de Suelos, Bene- mérita Universidad Autónoma de Puebla, Avenida San Claudio s/n, Ciudad Universitaria, La Hacienda, Puebla, Puebla, 72592; 1María Serret-López. *Autor para correspondencia: [email protected] Recibido: 28 de Abril, 2020. Aceptado: 04 de Junio, 2020. Espinosa-Victoria D, López-Reyes L, Carcaño-Montiel Abstract. Burkholderia is an ambivalent genus MG and Serret-López M. 2020. The Burkholderia ge- because some of its species establish symbiotic- nus: between mutualism and pathogenicity. Mexican Jo- mutualistic relationships with plants, and urnal of Phytopathology 38(3): 337-359. symbiotic-pathogenic relationships with plants, DOI: 10.18781/R.MEX.FIT.2004-5 animals, and humans. Since the phytopathogenic bacterium B. cepacia was reported as a nosocomial Primera publicación DOI: 17 de Junio, 2020. opportunist, associated with cystic fibrosis, the First DOI publication: June 17, 2020. concern about possible infections in humans arose. The objective of this contribution was to make an analysis of Burkholderia’s functional versatility Resumen. Burkholderia es un género ambivalen- and its effect on human health. Burkholderia te debido a que algunas de sus especies establecen harbored about 100 species and the B. cepacia relaciones simbiótico-mutualistas con las plantas, y complex (BCC) consisting of 22 species. At the simbiótico-patogénicas con plantas, animales y hu- beginning, the existence of two lineages within manos. -
Francisella Spp. Infections in Farmed and Wild Fish. ICES CM 2008/D:07
ICES CM 2008/D:07 Francisella spp. infections in farmed and wild fish Duncan J. Colquhoun1, Adam Zerihun2 and Jarle Mikalsen3 National Veterinary Institute, Section for Fish Health, Ullevaalsveien 68, 0454 Oslo, Norway 1 tel: +47 23 21 61 41; fax: +47 23 21 61 01; e-mail: [email protected] 2 tel: +47 23 21 61 08; fax: +47 23 21 61 01; e-mail: [email protected] 3 tel: +47 23 21 61 55; fax: +47 23 21 61 01; e-mail: [email protected] Abstract Bacteria within the genus Francisella are non-motile, Gram-negative, strictly aerobic, facultatively intracellular cocco-bacilli. While the genus includes pathogens of warm-blooded animals including humans, and potential bioterror agents, there is also increasing evidence of a number of as yet unrecognised environmental species. Due to their nutritionally fastidious nature, bacteria of the genus Francisella are generally difficult to culture, and growth is also commonly inhibited by the presence of other bacteria within sample material. For these reasons, Francisella-related fish disease may be under-diagnosed. Following the discovery in 2004/2005 that a granulomatous disease in farmed and wild Atlantic cod (Gadus morhua) is caused by a previously undescribed member of this genus (Francisella philomiragia subsp. noatunensis), similar diseases have been identified in fish in at least seven countries around the world. These infections affect both freshwater and marine fish species and involve bacteria more or less closely related to F. philomiragia subsp. philomiragia, an opportunistic human pathogen. Recent work relating to characterisation of the disease/s, classification of fish pathogenic Francisella spp. -
Burkholderia Cenocepacia Integrates Cis-2-Dodecenoic Acid and Cyclic Dimeric Guanosine Monophosphate Signals to Control Virulence
Burkholderia cenocepacia integrates cis-2-dodecenoic acid and cyclic dimeric guanosine monophosphate signals to control virulence Chunxi Yanga,b,c,d,1, Chaoyu Cuia,b,c,1, Qiumian Yea,b, Jinhong Kane, Shuna Fua,b, Shihao Songa,b, Yutong Huanga,b, Fei Hec, Lian-Hui Zhanga,c, Yantao Jiaf, Yong-Gui Gaod, Caroline S. Harwoodb,g,2, and Yinyue Denga,b,c,2 aState Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; bGuangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; cIntegrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; dSchool of Biological Sciences, Nanyang Technological University, Singapore 637551; eCenter for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; fState Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and gDepartment of Microbiology, University of Washington, Seattle, WA 98195 Contributed by Caroline S. Harwood, October 30, 2017 (sent for review June 1, 2017; reviewed by Maxwell J. Dow and Tim Tolker-Nielsen) Quorum sensing (QS) signals are used by bacteria to regulate N-octanoyl homoserine lactone (C8-HSL). The two QS systems biological functions in response to cell population densities. Cyclic have both distinct and overlapping effects on gene expression diguanosine monophosphate (c-di-GMP) regulates cell functions in (16, 17). response to diverse environmental chemical and physical signals One of the ways in which QS systems can act is by controlling that bacteria perceive. In Burkholderia cenocepacia, the QS signal levels of intracellular cyclic diguanosine monophosphate (c-di-GMP) receptor RpfR degrades intracellular c-di-GMP when it senses the in bacteria (18–21). -
Francisella Tularensis 6/06 Tularemia Is a Commonly Acquired Laboratory Colony Morphology Infection; All Work on Suspect F
Francisella tularensis 6/06 Tularemia is a commonly acquired laboratory Colony Morphology infection; all work on suspect F. tularensis cultures .Aerobic, fastidious, requires cysteine for growth should be performed at minimum under BSL2 .Grows poorly on Blood Agar (BA) conditions with BSL3 practices. .Chocolate Agar (CA): tiny, grey-white, opaque A colonies, 1-2 mm ≥48hr B .Cysteine Heart Agar (CHA): greenish-blue colonies, 2-4 mm ≥48h .Colonies are butyrous and smooth Gram Stain .Tiny, 0.2–0.7 μm pleomorphic, poorly stained gram-negative coccobacilli .Mostly single cells Growth on BA (A) 48 h, (B) 72 h Biochemical/Test Reactions .Oxidase: Negative A B .Catalase: Weak positive .Urease: Negative Additional Information .Can be misidentified as: Haemophilus influenzae, Actinobacillus spp. by automated ID systems .Infective Dose: 10 colony forming units Biosafety Level 3 agent (once Francisella tularensis is . Growth on CA (A) 48 h, (B) 72 h suspected, work should only be done in a certified Class II Biosafety Cabinet) .Transmission: Inhalation, insect bite, contact with tissues or bodily fluids of infected animals .Contagious: No Acceptable Specimen Types .Tissue biopsy .Whole blood: 5-10 ml blood in EDTA, and/or Inoculated blood culture bottle Swab of lesion in transport media . Gram stain Sentinel Laboratory Rule-Out of Francisella tularensis Oxidase Little to no growth on BA >48 h Small, grey-white opaque colonies on CA after ≥48 h at 35/37ºC Positive Weak Negative Positive Catalase Tiny, pleomorphic, faintly stained, gram-negative coccobacilli (red, round, and random) Perform all additional work in a certified Class II Positive Biosafety Cabinet Weak Negative Positive *Oxidase: Negative Urease *Catalase: Weak positive *Urease: Negative *Oxidase, Catalase, and Urease: Appearances of test results are not agent-specific. -
Genomic Plasticity of the Causative Agent of Melioidosis, Burkholderia Pseudomallei
Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei Matthew T. G. Holdena, Richard W. Titballb,c, Sharon J. Peacockd,e, Ana M. Cerden˜ o-Ta´ rragaa, Timothy Atkinsb, Lisa C. Crossmana, Tyrone Pittf, Carol Churchera, Karen Mungalla, Stephen D. Bentleya, Mohammed Sebaihiaa, Nicholas R. Thomsona, Nathalie Basona, Ifor R. Beachamg, Karen Brooksa, Katherine A. Brownh, Nat F. Browng, Greg L. Challisi, Inna Cherevacha, Tracy Chillingwortha, Ann Cronina, Ben Crossetth, Paul Davisa, David DeShazerj, Theresa Feltwella, Audrey Frasera, Zahra Hancea, Heidi Hausera, Simon Holroyda, Kay Jagelsa, Karen E. Keithh, Mark Maddisona, Sharon Moulea, Claire Pricea, Michael A. Quaila, Ester Rabbinowitscha, Kim Rutherforda, Mandy Sandersa, Mark Simmondsa, Sirirurg Songsivilaik, Kim Stevensa, Sarinna Tumapae, Monkgol Vesaratchaveste, Sally Whiteheada, Corin Yeatsa, Bart G. Barrella, Petra C. F. Oystonb, and Julian Parkhilla,l aWellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom; bDefence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom; cDepartment of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom; dNuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom; eFaculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; fLaboratory of Hospital Infection, Division of Nosocomial Infection Prevention and Control, Central Public Health Laboratory, London NW9 5HT, United Kingdom; gSchool of Health Science, Griffith University, Gold Coast, Queensland 9726, Australia; hDepartment of Biological Sciences, Centre for Molecular Microbiology and Infection, Flowers Building, Imperial College, London SW7 2AZ, United Kingdom; iDepartment of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; jU.S. -
Original Article COMPARISON of MAST BURKHOLDERIA CEPACIA, ASHDOWN + GENTAMICIN, and BURKHOLDERIA PSEUDOMALLEI SELECTIVE AGAR
European Journal of Microbiology and Immunology 7 (2017) 1, pp. 15–36 Original article DOI: 10.1556/1886.2016.00037 COMPARISON OF MAST BURKHOLDERIA CEPACIA, ASHDOWN + GENTAMICIN, AND BURKHOLDERIA PSEUDOMALLEI SELECTIVE AGAR FOR THE SELECTIVE GROWTH OF BURKHOLDERIA SPP. Carola Edler1, Henri Derschum2, Mirko Köhler3, Heinrich Neubauer4, Hagen Frickmann5,6,*, Ralf Matthias Hagen7 1 Department of Dermatology, German Armed Forces Hospital of Hamburg, Hamburg, Germany 2 CBRN Defence, Safety and Environmental Protection School, Science Division 3 Bundeswehr Medical Academy, Munich, Germany 4 Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Jena, Germany 5 Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, Hamburg, Germany 6 Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany 7 Department of Preventive Medicine, Bundeswehr Medical Academy, Munich, Germany Received: November 18, 2016; Accepted: December 5, 2016 Reliable identification of pathogenic Burkholderia spp. like Burkholderia mallei and Burkholderia pseudomallei in clinical samples is desirable. Three different selective media were assessed for reliability and selectivity with various Burkholderia spp. and non- target organisms. Mast Burkholderia cepacia agar, Ashdown + gentamicin agar, and B. pseudomallei selective agar were compared. A panel of 116 reference strains and well-characterized clinical isolates, comprising 30 B. pseudomallei, 20 B. mallei, 18 other Burkholderia spp., and 48 nontarget organisms, was used for this assessment. While all B. pseudomallei strains grew on all three tested selective agars, the other Burkholderia spp. showed a diverse growth pattern. Nontarget organisms, i.e., nonfermentative rod-shaped bacteria, other species, and yeasts, grew on all selective agars. -
Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes Ricinus Ticks in Pomerania (Poland)
pathogens Article Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes ricinus Ticks in Pomerania (Poland) Lucyna Kirczuk 1 , Mariusz Piotrowski 2 and Anna Rymaszewska 2,* 1 Department of Hydrobiology, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] 2 Department of Genetics and Genomics, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] * Correspondence: [email protected] Abstract: Tick-borne pathogens are an important medical and veterinary issue worldwide. Environ- mental monitoring in relation to not only climate change but also globalization is currently essential. The present study aimed to detect tick-borne pathogens of the genera Anaplasma, Rickettsia and Francisella in Ixodes ricinus ticks collected from the natural environment, i.e., recreational areas and pastures used for livestock grazing. A total of 1619 specimens of I. ricinus were collected, including ticks of all life stages (adults, nymphs and larvae). The study was performed using the PCR technique. Diagnostic gene fragments msp2 for Anaplasma, gltA for Rickettsia and tul4 for Francisella were ampli- fied. No Francisella spp. DNA was detected in I. ricinus. DNA of A. phagocytophilum was detected in 0.54% of ticks and Rickettsia spp. in 3.69%. Nucleotide sequence analysis revealed that only one species of Rickettsia, R. helvetica, was present in the studied tick population. The present results are a Citation: Kirczuk, L.; Piotrowski, M.; part of a large-scale analysis aimed at monitoring the level of tick infestation in Northwest Poland. -
Francisella Tularensis Subspecies Holarctica and Tularemia in Germany
microorganisms Review Francisella tularensis Subspecies holarctica and Tularemia in Germany 1, 2, 3 1 1 Sandra Appelt y, Mirko Faber y , Kristin Köppen , Daniela Jacob , Roland Grunow and Klaus Heuner 3,* 1 Centre for Biological Threats and Special Pathogens (ZBS 2), Robert Koch Institute, 13353 Berlin, Germany; [email protected] (S.A.); [email protected] (D.J.); [email protected] (R.G.) 2 Gastrointestinal Infections, Zoonoses and Tropical Infections (Division 35), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353 Berlin, Germany; [email protected] 3 Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, 13353 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-301-8754-2226 These authors contributed equally to this work. y Received: 27 August 2020; Accepted: 18 September 2020; Published: 22 September 2020 Abstract: Tularemia is a zoonotic disease caused by Francisella tularensis a small, pleomorphic, facultative intracellular bacterium. In Europe, infections in animals and humans are caused mainly by Francisella tularensis subspecies holarctica. Humans can be exposed to the pathogen directly and indirectly through contact with sick animals, carcasses, mosquitoes and ticks, environmental sources such as contaminated water or soil, and food. So far, F. tularensis subsp. holarctica is the only Francisella species known to cause tularemia in Germany. On the basis of surveillance data, outbreak investigations, and literature, we review herein the epidemiological situation—noteworthy clinical cases next to genetic diversity of F. tularensis subsp. holarctica strains isolated from patients. In the last 15 years, the yearly number of notified cases of tularemia has increased steadily in Germany, suggesting that the disease is re-emerging. -
Multiple Legionella Pneumophila Effector Virulence Phenotypes
Multiple Legionella pneumophila effector virulence PNAS PLUS phenotypes revealed through high-throughput analysis of targeted mutant libraries Stephanie R. Shamesa,1, Luying Liua, James C. Haveya, Whitman B. Schofielda,b, Andrew L. Goodmana,b, and Craig R. Roya,2 aDepartment of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519; and bMicrobial Sciences Institute, Yale University School of Medicine, New Haven, CT 06519 Edited by Ralph R. Isberg, Howard Hughes Medical Institute/Tufts University School of Medicine, Boston, MA, and approved October 20, 2017 (received for review May 23, 2017) Legionella pneumophila is the causative agent of a severe pneu- poorly understood. Initial forward genetic screens aimed at identi- monia called Legionnaires’ disease. A single strain of L. pneumo- fying avirulent mutants of L. pneumophila were successful in identi- phila encodes a repertoire of over 300 different effector proteins fying essential components of the Dot/Icm system, but these screens that are delivered into host cells by the Dot/Icm type IV secretion did not identify effector proteins translocated by the Dot/Icm system system during infection. The large number of L. pneumophila ef- (10, 11). It is appreciated that most effectors are not essential for fectors has been a limiting factor in assessing the importance of intracellular replication (12), which is why the genes encoding ef- individual effectors for virulence. Here, a transposon insertion se- fector proteins that are important for virulence were difficult to quencing technology called INSeq was used to analyze replication identify by standard screening strategies that assess intracellular of a pool of effector mutants in parallel both in a mouse model of replication using binary assays that measure plaque formation or infection and in cultured host cells.