Legionnaires' Disease

Total Page:16

File Type:pdf, Size:1020Kb

Legionnaires' Disease Prevention Port Waterborne Disease Management in Healthcare Settings Healthcare-associated Infections and Emerging Infectious Diseases Workshops January 28, 2020: Metairie February 4, 2020: Bossier City February 5, 2020: Lafayette “ The speaker does not have a financial or non-financial relationship with a commercial interest that would create a conflict of interest with this presentation. ” Disclosure Statement Objectives By the end of this presentation, attendees will be able to: Describe transmission, burden, and prevention measures Legionella pneumophila and Pseudomonas aeruginosa Describe a Water Management Plan Legionella pneumophila Gram-negative rod-shaped bacteria found naturally in the environment worldwide, usually in aquatic environments at least 60 different species, ~20 implicated in human disease Natural Habitat Occurs worldwide Prefers WARM WATERS with scale, sediment, metallic ions, and commensal flora Max multiplication from 25ºC to 45ºC (77-113F) Reduction at >50ºC (122F) No growth above 58.8ºC (138F) Found in 1-30% of home hot water systems Transmission Generally is not present in sufficient numbers in environment to cause disease Inhalation of water contaminated with Legionella aerosols generated by cooling towers, showers, faucets, spas, respiratory therapy equipment, and fountains Aspiration of contaminated potable water also proposed NO Person-to-person transmission Burden of Disease CDC estimates: 8,000 –18,000 cases in the U.S. annually 130-300 in LA Many infections not diagnosed or reported ~50 cases/year reported in Louisiana Class B reportable; 1 Business Day Reported Legionella Cases Louisiana, 1990-2017 Reported Legionella Cases and Incidence Rates per 100,000 Population Louisiana, 1990-2016 Burden of Disease 80% of reported cases are SPORADIC Outbreaks in hospitals, cruise ships, hotels, and other large buildings complex water systems Legionellosis Disease occurs in 3 forms: Legionnaires’ Disease (LD) Incubation 2-10 days Pneumonia illness accompanied by fever, cough, chills, myalgia, or respiratory failure 10% of people who get sick with Legionnaires’ disease die; 25% of healthcare associated cases Pontiac Fever (PF) Incubation 1-2 days; lasts 2-5 days Flu-like illness (fever, chills, malaise) without pneumonia Self-limiting, does not benefit from abx Extrapulmonary legionellosis (XPL) Disease outside the lungs (for example, associated with endocarditis, wound infection, joint infection) Risk Factors Recent travel with an overnight stay outside of the home, including stay in a healthcare facility Exposure to hot tubs Recent repairs or maintenance work on domestic plumbing Renal or hepatic failure Diabetes Chronic lung disease Systemic malignancy Smoking (current or historical) Immune system disorders Age ≥50 years Diagnosis Culture: Isolation of Legionella from respiratory secretions, lung tissue, pleural fluid, or a normally sterile site +Detects all species and serogroups +Clinical & environmental samples can be molecularly compared -Technically difficult & slow -May be affected by abx Urinary Antigen: Detection L. pneumophila serogroup 1 antigens in the urine +Rapid -Can only identify Lp1 -Cannot molecularly compare to environmental samples Diagnosis Nucleic Assay: detection of Legionella species by PCR Seroconversion: Four-fold rise in ab titer to Legionella by indirect immunoflourescent antibody assay (IFA) +Less affected by abx -1 elevated ab titer does NOT confirm case of recent Legionellosis: 5-10% of population have single acute titers ≥1:256 Healthcare Associated Cases Presumptive: Patient had 10 or more days of continuous stay at a healthcare facility during the 14 days before onset of symptoms. Possible: Patient had exposure to a healthcare facility for a portion of the 14 days prior to onset. Outbreak Definitions Dependent on the circumstances behind the cases exposure Travel-associated: CDC defines travel-associated outbreaks as two or more Legionnaires’ disease cases associated with the same travel accommodation in a 12-month period. Healthcare-associated: ≥1 case of presumptive healthcare-associated Legionnaires’ disease at any time or ≥2 cases of possible healthcare- associated Legionnaires’ disease within 12 months of each other Community-associated: You have identified one or more cases of Legionnaires’ disease at a correctional facility or other facility where people cannot leave the premises or you have analyzed available data and found an increase in Legionnaires’ disease in a certain geographic area Prevention Measures Grows poorly at < 20°C (68°F) and > 50°C (122°F) Killed at temperatures > 58.8°C (138°F) Susceptible to chlorine and bromine disinfectants, ozone, heavy metal ions, and UV light Nebulizer, respiratory therapy equipment: Use sterile water, do not let water stand, clean regularly Prevention Measures Hot water systems: flushing for >5min at temp > 65°C hyperchlorination but causes corrosion May grow back unless hot water maintained at ≥ 50°C but risk of scalding users cold water at ≤ 20°C residual chlorine at ≥ 1-2 mg/L of free chlorine remove scale and sediments www.menti.com Mentimeter Question #1 1. Go to www.menti.com on either your mobile device or computer’s web browser. What is the threshold of healthcare acquired 2. Use the code shown on the Legionellosis cases to be considered an outbreak? screen to participate in live polling for this activity. a) 1 presumptive healthcare acquired case 3. See results. b) 2 presumptive healthcare acquired cases Enter Code c) 2 possible healthcare acquired cases in 12 months d) 4 possible healthcare acquired cases in 12 months e) a&c f) b&d Pseudomonas Bacteria commonly found in soil and water Most common causing infection Pseudomonas aeruginosa Causes infections in the blood, lungs (pneumonia), or other parts of the body after surgery Transmission Live in the environment and can be spread to people in healthcare settings when they are exposed to water or soil that is contaminated with these germs. Person to person through: contaminated hands Equipment Surfaces Burden of Disease In 2017, multidrug-resistant Pseudomonas aeruginosa caused an estimated 32,600 infections among hospitalized patients and 2,700 estimated deaths in the United States Cases Over Time Who is at risk? Those most at risk include patients in hospitals, especially those: on breathing machines (ventilators) with devices such as catheters with wounds from surgery or burns Prevention Measures Patients and caregivers should: Keep their hands clean to avoid getting sick and spreading germs that can cause infections Wash their hands with soap and water or use alcohol-based hand sanitizer, particularly before and after caring for wounds or touching a medical device Remind healthcare providers and caregivers to clean their hands before touching the patient or handling medical devices Allow healthcare staff to clean their room daily when in a healthcare setting Water Management Plan Limits germ growth by: Keeping hot water temperatures high enough Making sure disinfectant amounts are right Keeping water flowing (preventing stagnation) Operating and maintaining equipment to prevent slime (biofilm), organic debris, and corrosion Monitoring factors external to buildings, such as construction, water main breaks, and changes in municipal water quality Water Management Plan - Components 1. Establish a water management program team Water Management Plan - Components 2. Describe the building water systems using flow diagrams and a written description Include details like where the building connects to the municipal water supply, how water is distributed, and where hot tubs, water heaters or boilers, and cooling towers are located. Water Management Plan - Components 3. Identify areas where Legionella could grow and spread Identify where potentially hazardous conditions could occur in your building water systems, such as areas where water temperature could promote Legionella growth or where water flow might be low. Healthcare facilities think about: Areas where medical procedures may expose patients to water droplets, such as hydrotherapy Areas where patients are more vulnerable to infection, such as bone marrow transplant units, oncology floors, or intensive care units Water Management Plan - Components 4. Decide where you need to apply control measures and how to monitor them. Establish control measures and limits for each hazardous condition, as well as plans for where and how to monitor them. Control measures are actions you take in your building water systems to limit growth and spread of Legionella, such as heating, adding disinfectant, or cleaning. Control limits are the maximum value, minimum value, or range of values that are acceptable for the control measures that you are monitoring to reduce the risk for Legionella growth and spread. Water Management Plan - Components 5. Establish ways to intervene when control limits are not met. Determine what corrective actions or contingency responses to take when control measures are outside of the control limits you established. Construction on a Daily flushing of floor both hot/cold water Increase frequency Documents all of temperature and activities chlorine monitoring Water Management Plan - Components 6. Make sure the program is running as designed and is effective. Verification: Are we doing what we said we would do? Validation: Is our program actually working? Update the program when necessary. Water Management Plan - Components 7. Document and communicate all activities. Document all the activities and communicate with building occupants, employees, and colleagues on a continual basis. If an event triggers you to review or update your water management program, remember to Update the flow diagrams, associated control points, control limits, and corrective actions Update the written description of your building water systems Train those responsible for implementing and monitoring the updated program Water Management Plan - Toolkit https://www.cdc.gov/legionella/downloads/toolkit.pdf Questions? Raychel Berkheimer, MPH Waterborne Disease Coordinator [email protected] 504-568-8307.
Recommended publications
  • Legionnaires' Disease, Pontiac Fever, Legionellosis and Legionella
    Legionnaires’ Disease, Pontiac Fever, Legionellosis and Legionella Q: What is Legionellosis and who is at risk? Legionellosis is an infection caused by Legionella bacteria. Legionellosis can present as two distinct illnesses: Pontiac fever (a self-limited flu-like mild respiratory illness), and Legionnaires’ Disease (a more severe illness involving pneumonia). People of any age can get Legionellosis, but the disease occurs most frequently in persons over 50 years of age. The disease most often affects those who smoke heavily, have chronic lung disease, or have underlying medical conditions that lower their immune system, such as diabetes, cancer, or renal dysfunction. Persons taking certain drugs that lower their immune system, such as steroids, have an increased risk of being affected by Legionellosis. Many people may be infected with Legionella bacteria without developing any symptoms, and others may be treated without having to be hospitalized. Q: What is Legionella? Legionella bacteria are found naturally in freshwater environments such as creeks, ponds and lakes, as well as manmade structures such as plumbing systems and cooling towers. Legionella can multiply in warm water (77°F to 113°F). Legionella pneumophila is responsible for over 90 percent of Legionnaires’ Disease cases and several different species of Legionella are responsible for Pontiac Fever. Q: How is Legionella spread and how does someone acquire Legionellosis (Legionnaires’ Disease/Pontiac Fever)? Legionella bacteria become a health concern when they grow and spread in manmade structures such as plumbing systems, hot water tanks, cooling towers, hot tubs, decorative fountains, showers and faucets. Legionellosis is acquired after inhaling mists from a contaminated water source containing Legionella bacteria.
    [Show full text]
  • Burkholderia Cenocepacia Intracellular Activation of the Pyrin
    Activation of the Pyrin Inflammasome by Intracellular Burkholderia cenocepacia Mikhail A. Gavrilin, Dalia H. A. Abdelaziz, Mahmoud Mostafa, Basant A. Abdulrahman, Jaykumar Grandhi, This information is current as Anwari Akhter, Arwa Abu Khweek, Daniel F. Aubert, of September 29, 2021. Miguel A. Valvano, Mark D. Wewers and Amal O. Amer J Immunol 2012; 188:3469-3477; Prepublished online 24 February 2012; doi: 10.4049/jimmunol.1102272 Downloaded from http://www.jimmunol.org/content/188/7/3469 Supplementary http://www.jimmunol.org/content/suppl/2012/02/24/jimmunol.110227 Material 2.DC1 http://www.jimmunol.org/ References This article cites 71 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/188/7/3469.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 29, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Activation of the Pyrin Inflammasome by Intracellular Burkholderia cenocepacia Mikhail A.
    [Show full text]
  • Multiple Legionella Pneumophila Effector Virulence Phenotypes
    Multiple Legionella pneumophila effector virulence PNAS PLUS phenotypes revealed through high-throughput analysis of targeted mutant libraries Stephanie R. Shamesa,1, Luying Liua, James C. Haveya, Whitman B. Schofielda,b, Andrew L. Goodmana,b, and Craig R. Roya,2 aDepartment of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519; and bMicrobial Sciences Institute, Yale University School of Medicine, New Haven, CT 06519 Edited by Ralph R. Isberg, Howard Hughes Medical Institute/Tufts University School of Medicine, Boston, MA, and approved October 20, 2017 (received for review May 23, 2017) Legionella pneumophila is the causative agent of a severe pneu- poorly understood. Initial forward genetic screens aimed at identi- monia called Legionnaires’ disease. A single strain of L. pneumo- fying avirulent mutants of L. pneumophila were successful in identi- phila encodes a repertoire of over 300 different effector proteins fying essential components of the Dot/Icm system, but these screens that are delivered into host cells by the Dot/Icm type IV secretion did not identify effector proteins translocated by the Dot/Icm system system during infection. The large number of L. pneumophila ef- (10, 11). It is appreciated that most effectors are not essential for fectors has been a limiting factor in assessing the importance of intracellular replication (12), which is why the genes encoding ef- individual effectors for virulence. Here, a transposon insertion se- fector proteins that are important for virulence were difficult to quencing technology called INSeq was used to analyze replication identify by standard screening strategies that assess intracellular of a pool of effector mutants in parallel both in a mouse model of replication using binary assays that measure plaque formation or infection and in cultured host cells.
    [Show full text]
  • Legionella Pneumophila Lifecycle Critical Review Part I Uptake Into Host Cells
    water Review Knowledge to Predict Pathogens: Legionella pneumophila Lifecycle Critical Review Part I Uptake into Host Cells Alexis L. Mraz 1 and Mark H. Weir 1,2,* 1 Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA; [email protected] 2 Risk Modeling Division, Applied Research Center, NSF International, Ann Arbor, MI 48105, USA * Correspondence: [email protected]; Tel.: +1-614-292-4066 Received: 16 December 2017; Accepted: 29 January 2018; Published: 31 January 2018 Abstract: Legionella pneumophila (L. pneumophila) is an infectious disease agent of increasing concern due to its ability to cause Legionnaires’ Disease, a severe community pneumonia, and the difficulty in controlling it within water systems. L. pneumophila thrives within the biofilm of premise plumbing systems, utilizing protozoan hosts for protection from disinfectants and other environmental stressors. While there is a great deal of information regarding how L. pneumophila interacts with protozoa and human macrophages (host for human infection), the ability to use this data in a model to attempt to predict a concentration of L. pneumophila in a water system is not known. The lifecycle of L. pneumophila within host cells involves three processes: uptake, growth, and egression from the host cell. The complexity of these three processes would risk conflation of the concepts; therefore, this review details the available information regarding how L. pneumophila invades host cells (uptake) within the context of data needed to model this process, while a second review will focus on growth and egression. The overall intent of both reviews is to detail how the steps in L.
    [Show full text]
  • EVALUATION of the P45 MOBILE INTEGRATIVE ELEMENT and ITS ROLE IN
    EVALUATION OF THE p45 MOBILE INTEGRATIVE ELEMENT AND ITS ROLE IN Legionella pneumophila VIRULENCE A Dissertation by LANETTE M. CHRISTENSEN Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Jeffrey D. Cirillo Committee Members, James Samuel Jon Skare Farida Sohrabji Head of Program, Warren Zimmer May 2018 Major Subject: Medical Sciences Copyright 2018 Lanette Christensen ABSTRACT Legionella pneumophila are aqueous environmental bacilli that live within protozoal species and cause a potentially fatal form of pneumonia called Legionnaires’ disease. Not all L. pneumophila strains have the same capacity to cause disease in humans. The majority of strains that cause clinically relevant Legionnaires’ disease harbor the p45 mobile integrative genomic element. Contribution of the p45 element to L. pneumophila virulence and ability to withstand environmental stress were addressed in this study. The L. pneumophila Philadelphia-1 (Phil-1) mobile integrative element, p45, was transferred into the attenuated strain Lp01 via conjugation, designating p45 an integrative conjugative element (ICE). The resulting trans-conjugate, Lp01+p45, was compared with strains Phil-1 and Lp01 to assess p45 in virulence using a guinea pig model infected via aerosol. The p45 element partially recovered the loss of virulence in Lp01 compared to that of Phil-1 evident in morbidity, mortality, and bacterial burden in the lungs at the time of death. This phenotype was accompanied by enhanced expression of type II interferon in the lungs and spleens 48 hours after infection, independent of bacterial burden.
    [Show full text]
  • Legionellosis Investigation Form
    LEGIONELLOSIS INVESTIGATION FORM BASIC DEMOGRAPHIC DATA Last Name:________________________________ First Name:_______________________________ Middle Name:________________________ DOB: __ __ / __ __ /__ __ __ __ Age: _______ years months Current Sex: Female Male Unknown Is the patient deceased? No Unknown Yes Date of Death: __ __ / __ __ /__ __ __ __ Street Address 1:_____________________________________________________________ Street Address 2:______________________________ City:_______________________________________ State:_______ Zip Code:_______________ County:_______________________________ Home Phone: (__ __ __) ‐ __ __ __ ‐ __ __ __ __ Cell Phone: (__ __ __) ‐ __ __ __ ‐ __ __ __ __ Work Phone: (__ __ __) ‐ __ __ __ ‐ __ __ __ __ Ext. _______ Ethnicity: Hispanic or Latino Not Hispanic or Latino Unknown Race: American Indian/Alaska Native Asian Black/African American Native Hawaiian/Other Pacific Islander White Unknown INVESTIGATION SUMMARY Investigation Start Date: __ __ / __ __ /__ __ __ __ Investigation Status: Open Closed Investigator:__________________________________ REPORTING SOURCE Date of Report: __ __ / __ __ /__ __ __ __ Reporting Source:_______________________________________________________________________ CLINICAL Physician’s Name:_______________________________________________________ Phone Number: (__ __ __) ‐ __ __ __ ‐ __ __ __ __ Ext. _______ Was patient hospitalized for this illness? No Unknown Yes If yes: Hospital Name:_______________________________________________ Admission Date: __ __
    [Show full text]
  • Legionella Pneumophila
    Gião et al. BMC Microbiology 2011, 11:57 http://www.biomedcentral.com/1471-2180/11/57 RESEARCHARTICLE Open Access Interaction of legionella pneumophila and helicobacter pylori with bacterial species isolated from drinking water biofilms Maria S Gião1,2*, Nuno F Azevedo1,2,3, Sandra A Wilks1, Maria J Vieira2, Charles W Keevil1 Abstract Background: It is well established that Legionella pneumophila is a waterborne pathogen; by contrast, the mode of Helicobacter pylori transmission remains unknown but water seems to play an important role. This work aims to study the influence of five microorganisms isolated from drinking water biofilms on the survival and integration of both of these pathogens into biofilms. Results: Firstly, both pathogens were studied for auto- and co-aggregation with the species isolated from drinking water; subsequently the formation of mono and dual-species biofilms by L. pneumophila or H. pylori with the same microorganisms was investigated. Neither auto- nor co-aggregation was observed between the microorganisms tested. For biofilm studies, sessile cells were quantified in terms of total cells by SYTO 9 staining, viable L. pneumophila or H. pylori cells were quantified using 16 S rRNA-specific peptide nucleic acid (PNA) probes and cultivable cells by standard culture techniques. Acidovorax sp. and Sphingomonas sp. appeared to have an antagonistic effect on L. pneumophila cultivability but not on the viability (as assessed by rRNA content using the PNA probe), possibly leading to the formation of viable but noncultivable (VBNC) cells, whereas Mycobacterium chelonae increased the cultivability of this pathogen. The results obtained for H. pylori showed that M.
    [Show full text]
  • Structural Analysis of the Legionella Pneumophila Dot/Icm Type IV Secretion System Core Complex
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.28.271460; this version posted August 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Structural analysis of the Legionella pneumophila Dot/Icm Type IV Secretion System 2 Core Complex 3 4 Clarissa L. Durie1†, Michael J. Sheedlo2†, Jeong Min Chung1, Brenda G. Byrne3, Min Su1, 5 Thomas Knight3, Michele S. Swanson3*, D. Borden Lacy2,4*, and Melanie D. Ohi1,5* 6 †These authors contributed equally to this work 7 *To whom correspondence should be addressed 8 9 Author Affiliations 10 Life Sciences Institute, University of Michigan, Ann Arbor MI, USA1 11 Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 12 Nashville TN, USA2 13 Department of Microbiology and Immunology, University of Michigan, Ann Arbor MI, USA3 14 The Veterans Affairs Tennessee Valley Healthcare System, Nashville TN, USA4 15 Department of Cell and Developmental Biology, University of Michigan, Ann Arbor MI, USA5 16 17 Abstract 18 Legionella pneumophila is an opportunistic pathogen that causes the potentially fatal 19 pneumonia Legionnaires’ Disease. This infection and subsequent pathology require the Dot/Icm 20 Type IV Secretion System (T4SS) to deliver effector proteins into host cells. Compared to 21 prototypical T4SSs, the Dot/Icm assembly is much larger, containing ~27 different components 22 including a core complex reported to be composed of five proteins: DotC, DotD, DotF, DotG, 23 and DotH.
    [Show full text]
  • Growth of Legionella Pneumophila Inacanthamoeba Castellanii
    INFECTION AND IMMUNITY, Aug. 1994, p. 3254-3261 Vol. 62, No. 8 0019-9567/94/$04.00+0 Copyright C 1994, American Society for Microbiology Growth of Legionella pneumophila in Acanthamoeba castellanii Enhances Invasion JEFFREY D. CIRILLO, STANLEY FALKOW, AND LUCY S. TOMPKINS* Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, Califomia 94305 Received 4 March 1994/Returned for modification 12 April 1994/Accepted 29 April 1994 Legionella pneumophila is considered to be a facultative intracellular parasite. Therefore, the ability of these bacteria to enter, i.e., invade, eukaryotic cells is expected to be a key pathogenic determinant. We compared the invasive ability of bacteria grown under standard laboratory conditions with that of bacteria grown in Acanthamoeba castellanii, one of the protozoan species that serves as a natural host for L. pneumophila in the environment. Amoeba-grown L. pneumophila cells were found to be at least 100-fold more invasive for epithelial cells and 10-fold more invasive for macrophages and A. castellanii than were L. pneumophila cells grown on agar. Comparison of agar- and amoeba-grown L. pneumophila cells by light and electron microscopy demonstrated dramatic differences in the morphology and structure of the bacteria. Analyses of protein expression in the two strains of bacteria suggest that these phenotypic differences may be due to the expression of new proteins in amoeba-grown L. pneumophila cells. In addition, the amoeba-grown bacteria were found to enter macrophages via coiling phagocytosis at a higher frequency than agar-grown bacteria did. Replication of L. pneumophila in protozoans present in domestic water supplies may be necessary to produce bacteria that are competent to enter mammalian cells and produce human disease.
    [Show full text]
  • Intracellular Survival and Expression of Virulence Determinants of Legionella Pneumophila
    J. Hacker, M. Ott, B. Ludwig, U. Rdest Intracellular Survival and Expression of Virulence Determinants of Legionella pneumophila lntroduction Summary: Legionella pneumophila, the causative agent of Legionnaires' disease is able to live and multiply Legionella pneumophila is a gram-negative, aerobic inhab­ within macrophages as weil as within protozoan organ­ itant of freshwater and soil environments. It is also a fac­ isms. Legionella strains inhibit phagosome-lysosome fu­ ultative intracellular pathogen that invades and grows ~n sion and phagosome acidification. By using two differ­ human alveolar macrophages leading to acute broncho­ ent cell culture systems, one derived from human mac­ pneumonia referred to as legionellosis [1,2]. In addition, rophages and the other from human.embryo lung fibro:­ L. pneumophila isolates are able to live and multiply within blastic cells, it is demonstrated that Legionella strains protozoan organisms such as environmental amoebae [3). lose their virulence following cultivation in the labora­ As analyzed by Borwitz and co-workers, live Legionella tory. In order to study the mechanisms involved in in­ strains enter eukaryotic cells by a common mechanism, tracellular survival of Legionella a genomic library of termed coiled phagocytosis; furthermore they induce the strain Legionella pneumophila Philadelphia I was estab­ formation of a novel ribosome-lined phagosome, inhibit lished in Escherichia coli K-12. By cosmid cloning tech­ phagosome-lysosome fusion and inhibit phagosome acid­ nique we were able to clone five putative virulence fac­ ification [4,5). The bacterial factors responsible for intra­ tors, two of which exhibit hemolytic activities and three cellular survival of legionellae are still unknown.
    [Show full text]
  • The Structural Complexity of the Gammaproteobacteria Flagellar Motor Is Related to the 2 Type of Its Torque-Generating Stators 3
    bioRxiv preprint doi: https://doi.org/10.1101/369397; this version posted July 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The structural complexity of the Gammaproteobacteria flagellar motor is related to the 2 type of its torque-generating stators 3 4 Mohammed Kaplan1, Debnath Ghosal1, Poorna Subramanian1, Catherine M. Oikonomou1, Andreas Kjær1*, Sahand 5 Pirbadian2, Davi R. Ortega1, Mohamed Y. El-Naggar2 and Grant J. Jensen1,3,4 6 1Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125. 7 2Department of Physics and Astronomy, Biological Sciences, and Chemistry, University of Southern California, Los 8 Angeles, CA 90089. 9 3Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125. 10 *Present address: Rex Richards Building, South Parks Road, Oxford OX1 3QU 11 4Corresponding author: [email protected]. 12 Abstract: 13 14 The bacterial flagellar motor is a cell-envelope-embedded macromolecular machine that functions as a propeller to 15 move the cell. Rather than being an invariant machine, the flagellar motor exhibits significant variability between 16 species, allowing bacteria to adapt to, and thrive in, a wide range of environments. For instance, different torque- 17 generating stator modules allow motors to operate in conditions with different pH and sodium concentrations and 18 some motors are adapted to drive motility in high-viscosity environments. How such diversity evolved is unknown.
    [Show full text]
  • The Role of Lipids in Legionella-Host Interaction
    International Journal of Molecular Sciences Review The Role of Lipids in Legionella-Host Interaction Bozena Kowalczyk, Elzbieta Chmiel and Marta Palusinska-Szysz * Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; [email protected] (B.K.); [email protected] (E.C.) * Correspondence: [email protected] Abstract: Legionella are Gram-stain-negative rods associated with water environments: either nat- ural or man-made systems. The inhalation of aerosols containing Legionella bacteria leads to the development of a severe pneumonia termed Legionnaires’ disease. To establish an infection, these bacteria adapt to growth in the hostile environment of the host through the unusual structures of macromolecules that build the cell surface. The outer membrane of the cell envelope is a lipid bilayer with an asymmetric composition mostly of phospholipids in the inner leaflet and lipopolysaccha- rides (LPS) in the outer leaflet. The major membrane-forming phospholipid of Legionella spp. is phosphatidylcholine (PC)—a typical eukaryotic glycerophospholipid. PC synthesis in Legionella cells occurs via two independent pathways: the N-methylation (Pmt) pathway and the Pcs pathway. The utilisation of exogenous choline by Legionella spp. leads to changes in the composition of lipids and proteins, which influences the physicochemical properties of the cell surface. This phenotypic plastic- ity of the Legionella cell envelope determines the mode of interaction with the macrophages, which results in a decrease in the production of proinflammatory cytokines and modulates the interaction with antimicrobial peptides and proteins. The surface-exposed O-chain of Legionella pneumophila sg1 LPS consisting of a homopolymer of 5-acetamidino-7-acetamido-8-O-acetyl-3,5,7,9-tetradeoxy-L- glycero-D-galacto-non-2-ulosonic acid is probably the first component in contact with the host cell that anchors the bacteria in the host membrane.
    [Show full text]