Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Technical Document for Bacteriophages of Xanthomonas Campestris Pv. Vesicatoria Also Referred to As a BRAD
US Environmental Protection Agency Office of Pesticide Programs BIOPESTICIDES REGISTRATION ACTION DOCUMENT (Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages ) (Chemical PC Codes 006449 and 006521) Xanthomonas campestris pv. vesicatoria and Pseduomonas syringae pv. tomato specific bacteriophages •••••••••••••••••••••••• BIOPESTICIDES REGISTRATION ACTION DOCUMENT (Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages ) (Chemical PC Codes 006449 and 006521) U.S. Environmental Protection Agency Office of Pesticide Programs Biopesticides and Pollution Prevention Division Xanthomonas campestris pv. vesicatoria and Pseduomonas syringae pv. tomato specific bacteriophages TABLE OF CONTENTS I. EXECUTIVE SUMMARY .............................................................................................Page3 II. OVERVIEW............................................................................................................................4 A. Use Profile.....................................................................................................................4 B. Regulatory History ......................................................................................................4 III. SCIENCE ASSESSMENT ....................................................................................................4 A. Physical and Chemical Properties Assessment .........................................................4 1. Product Identity and Mode -
INOCULUM DYNAMICS of Ralstonia Spp.: POTENTIAL SOURCES, PERSISTENCE in a LOCAL POPULATION and SELECTION of PHAGES to REDUCE BACTERIA SURVIVAL
JAQUELINE KIYOMI YAMADA INOCULUM DYNAMICS OF Ralstonia spp.: POTENTIAL SOURCES, PERSISTENCE IN A LOCAL POPULATION AND SELECTION OF PHAGES TO REDUCE BACTERIA SURVIVAL Thesis presented to the Plant Pathology Program of the Universidade Federal de Viçosa in partial fulfillment of the requirements for the degree of Doctor Scientiae. VIÇOSA MINAS GERAIS – BRASIL 2018 ) AGRADECIMENTOS Agradeço a Deus, pela vida, por estar presente em todos os momentos. Agradeço aos meus pais, Jorge e Helena, exemplos de honestidade e humildade, todas as minhas conquistas são fruto do sacrifício deles. À minha irmã, Michelle, por todo apoio. Obrigada Mi! Agradeço ao Filipe Constantino Borel, pelo companheirismo e carinho, fundamental para a conclusão dessa etapa da minha vida. Agradeço à Nina e Júlio Borel, pais de Filipe, por todo apoio. Agradeço à Universidade Federal de Viçosa, ao Departamento de Fitopatologia e à FAPEMIG pela oportunidade e pelo financiamento desse trabalho. Agradeço ao Professor Eduardo Seite Gomide Mizubuti pela oportunidade, paciência e conselhos. Agradeço ao Doutor Carlos Alberto Lopes, pela contribuição para o presente trabalho e pela amizade. Agradeço ao Professor José Rogério e ao Professor Francisco Murilo Zerbini por terem disponibilizados os laboratórios para realização desse trabalho. Agradeço ao Professor Sérgio Oliveira de Paula, em especial ao Roberto de Sousa Dias e ao Vinicius Duarte pela colaboração e pela amizade. Agradeço à Thaís Ribeiro Santiago e à Camila Geovanna Ferro, pelas sugestões e pela amizade. Agradeço a todos que colaboraram com as amostras de solo e água para este trabalho: Paulo E. F. de Macedo, Amanda Guedes, Carla Santin, Leandro H. Yamada, Filipe C. -
Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/318561956 Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management Article in Frontiers in Plant Science · July 2017 DOI: 10.3389/fpls.2017.01290 CITATIONS READS 11 902 8 authors, including: Guy Blomme Miguel A. Dita Bioversity International Brazilian Agricultural Research Corporation (EMBRAPA) 161 PUBLICATIONS 915 CITATIONS 57 PUBLICATIONS 1,288 CITATIONS SEE PROFILE SEE PROFILE Kim Sarah Jacobsen Luis F. Pérez-Vicente Royal Museum for Central Africa Instituto de Investigaciones de Sanidad Vegeta 33 PUBLICATIONS 231 CITATIONS 62 PUBLICATIONS 217 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Plantain agronomy in the humid tropics of southern Cameroon View project National Enset Research Project and Post Graduate student at Addiss Ababa University U View project All content following this page was uploaded by Kim Sarah Jacobsen on 20 July 2017. The user has requested enhancement of the downloaded file. fpls-08-01290 July 18, 2017 Time: 18:35 # 1 REVIEW published: 20 July 2017 doi: 10.3389/fpls.2017.01290 Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management Guy Blomme1*, Miguel Dita2, Kim Sarah Jacobsen3, Luis Pérez Vicente4, Agustin Molina5, Walter Ocimati6, Stephane Poussier7 and Philippe Prior8 1 Bioversity International, -
Whole Genome Characterization of Strains Belonging to the Ralstonia
Eur J Plant Pathol https://doi.org/10.1007/s10658-020-02190-8 Whole genome characterization of strains belonging to the Ralstonia solanacearum species complex and in silico analysis of TaqMan assays for detection in this heterogenous species complex Viola Kurm & Ilse Houwers & Claudia E. Coipan & Peter Bonants & Cees Waalwijk & Theo van der Lee & Balázs Brankovics & Jan van der Wolf Accepted: 17 December 2020 # The Author(s) 2021 Abstract Identification and classification of members of that the increasing availability of whole genome sequences the Ralstonia solanacearum species complex (RSSC) is is not only useful for classification of strains, but also shows challenging due to the heterogeneity of this complex. Whole potential for selection and evaluation of clade specific genome sequence data of 225 strains were used to classify nucleic acid-based amplification methods within the RSSC. strains based on average nucleotide identity (ANI) and multilocus sequence analysis (MLSA). Based on the ANI Keywords MLSA . ANI . in-silico analysis . Ralstonia score (>95%), 191 out of 192(99.5%) RSSC strains could solanacearum species complex . Phylogenetic be grouped into the three species R. solanacearum, R. classification pseudosolanacearum,andR. syzygii, and into the four phylotypes within the RSSC (I,II, III, and IV). R. solanacearum phylotype II could be split in two groups Introduction (IIA and IIB), from which IIB clustered in three subgroups (IIBa, IIBb and IIBc). This division by ANI was in accor- Bacteria belonging to the Ralstonia solanacearum spe- dance with MLSA. The IIB subgroups found by ANI and cies complex (RSSC) are the causative agents of dis- MLSA also differed in the number of SNPs in the primer eases in plants of many different botanical families. -
Xanthomonas Leaf Spot of Roses
EPLP-026 7/18 Xanthomonas Leaf Spot of Roses Madalyn Shires, Extension Graduate Student, Department of Plant Pathology and Microbiology Kevin Ong, Professor and Extension Plant Pathologist* Bacterial leaf spots occur worldwide and are usually caused by the bacteria Pseudomonas syringe and Xan- thomonas campestris, which can infect a wide range of host plants. Many plants in the Rosacea family, such as strawberry, Indian hawthorn, and peaches, are affected by bacterial leaf spots. Xanthomonas leaf spot of roses is a relatively new disease, first observed in Florida and Texas between 2004 and 2010. It has the potential to cause significant economic losses in commercial rose production. Cause The bacteria that cause the disease, members of the genus Xanthomonas, are tiny microorganisms that can move short distances in water with the help of a single Figure 2. As the infection worsens, the spots merge, causing necrosis flagellum, a hair-like structure that acts as a propeller. (death) on the leaf. A water-soaked appearance on infected leaves is also common. Source: Kevin Ong, Texas A&M AgriLife Extension Service Symptoms Xanthomonas leaf spot may look different form on the stems. In roses, chlorotic (yellowed) halos in various host plants, (Fig. 1) typically surround the small, brown, angular to but some of the most circular spots on the leaves. As the disease progresses common symptoms and the bacteria grows, the spots enlarge (Fig. 2). include the formation of spots between leaf veins Disease Movement (the centers of which The pathogen’s primary mode of transmission is may become necrotic splashing water, which allows it to spread to and infect and fall out) and a new leaves. -
Pangenomic Type III Effector Database of the Plant Pathogenic [I]Ralstonia Spp.[I]
A peer-reviewed version of this preprint was published in PeerJ on 6 August 2019. View the peer-reviewed version (peerj.com/articles/7346), which is the preferred citable publication unless you specifically need to cite this preprint. Sabbagh CRR, Carrere S, Lonjon F, Vailleau F, Macho AP, Genin S, Peeters N. 2019. Pangenomic type III effector database of the plant pathogenic Ralstonia spp. PeerJ 7:e7346 https://doi.org/10.7717/peerj.7346 Pangenomic type III effector database of the plant pathogenic Ralstonia spp. Cyrus Raja Rubenstein Sabbagh Equal first author, 1 , Sébastien Carrère Equal first author, 1 , Fabien Lonjon 2 , Fabienne Vailleau 1 , Alberto P Macho 3 , Stephane Genin 1 , Nemo Peeters Corresp. 1 1 LIPM, Université de Toulouse, INRA, CNRS, Castanet-tolosan, France 2 Department of Cell & Systems Biology, University of Toronto, Toronto, Canada 3 Shanghai center for plant stress biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China Corresponding Author: Nemo Peeters Email address: [email protected] Background. The bacterial plant pathogenic Ralstonia species belong to the beta- proteobacteria order and are soil-borne pathogens causing the vascular bacterial wilt disease, affecting a wide range of plant hosts. These bacteria form a heterogeneous group considered as a “species complex”,” gathering three newly defined species. Like many other Gram negative plant pathogens, Ralstonia pathogenicity relies on a type III secretion system, enabling bacteria to secrete/inject a large repertoire of type III effectors into their plant host cells. T3Es are thought to participate in generating a favorable environment for the pathogen (countering plant immunity and modifying the host metabolism and physiology). -