Hydrogenophaga Electricum Sp. Nov., Isolated from Anodic Biofilms of an Acetate-Fed Microbial Fuel Cell

Total Page:16

File Type:pdf, Size:1020Kb

Hydrogenophaga Electricum Sp. Nov., Isolated from Anodic Biofilms of an Acetate-Fed Microbial Fuel Cell J. Gen. Appl. Microbiol., 59, 261‒266 (2013) Full Paper Hydrogenophaga electricum sp. nov., isolated from anodic biofilms of an acetate-fed microbial fuel cell Zen-ichiro Kimura and Satoshi Okabe* Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060‒8628, Japan (Received October 25, 2012; Accepted April 2, 2013) A Gram-negative, non-spore-forming, rod-shaped bacterial strain, AR20T, was isolated from an- odic biofilms of an acetate-fed microbial fuel cell in Japan and subjected to a polyphasic taxo- nomic study. Strain AR20T grew optimally at pH 7.0‒8.0 and 25°C. It contained Q-8 as the pre- dominant ubiquinone and C16:0, summed feature 3 (C16:1ω7c and/or iso-C15:02OH), and C18:1ω7c as the major fatty acids. The DNA G+C content was 67.1 mol%. A neighbor-joining phylogenetic tree revealed that strain AR20T clustered with three type strains of the genus Hydrogenophaga (H. flava, H. bisanensis and H. pseudoflava). Strain AR20T exhibited 16S rRNA gene sequence similarity values of 95.8‒97.7% to the type strains of the genus Hydrogenophaga. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain AR20T is considered a novel species of the genus Hydrogenophaga, for which the name Hydrogenophaga electricum sp. nov. is pro- posed. The type strain is AR20T (= KCTC 32195T = NBRC 109341T). Key Words—Hydrogenophaga electricum; hydrogenotrophic exoelectrogen; microbial fuel cell Introduction the MFC was analyzed. Results showed that bacteria belonging to the genera Geobacter and Hydrogenoph- Microbial fuel cells (MFCs) are devices that are able aga were abundantly present in the anodic biofilm to directly convert the chemical energy of organic community (Kimura and Okabe, 2013). We isolated a compounds into electric energy with microorganisms bacterium closely related to the genus Hydrogenopha- (Bullen et al., 2006; Davis and Higson, 2007; Kim et al., ga (H. electricum strain AR20T). 1999). Electricity generation in a mediator-less MFC is The genus Hydrogenophaga was proposed by Wil- linked to the ability of certain bacteria, called exoelec- lems et al. (1989) with the reclassification of Pseudo- trogens, to transfer electrons outside the cell to the monas species as Hydrogenophaga flava, H. pallero- anode electrode in the MFC (Logan, 2006). In our pre- nii, H. pseudoflava and H. taeniospiralis. Subsequently, vious study, a MFC fed with acetate was constructed five other species, Hydrogenophaga intermedia (Cont- with activated sludge as a source of microorganisms, zen et al., 2000), H. atypical, H. defluvii (Kämpfer et al., and the microbial community of the anodic biofilm in 2005), H. caeni (Chung et al., 2007) and H. bisanensis (Yoon et al., 2008) have been described. Phylogenetic analysis based on 16S rRNA gene sequences showed * Corresponding author: Satoshi Okabe, Division of Environ- that the genus Hydrogenophaga falls within the family mental Engineering, Faculty of Engineering, Hokkaido Univer- sity, North-13, West-8, Kita-ku, Sapporo, Hokkaido 060‒8628, Comamonadaceae, class Betaproteobacteria (Anzai et Japan. al., 2000; Kämpfer et al., 2005). In this paper, the re- Tel & Fax: +81‒(0)11‒706‒6266 sults of an examination of the phenotypic characteris- E-mail: [email protected] tics of strain AR20T are described, along with the phy- 262 KIMURA and OKABE Vol. 59 logenetic placement of the strain. The name Hydro- uid medium (Chung and Okabe, 2009a) under the genophaga electricum sp. nov. is proposed with strain conditions described by Malik and Schlegel (1981). AR20T as the type strain. Utilization of various substrates, enzyme activities and other physiological and biochemical properties were Materials and Methods tested by using the API 20NE and API 50CH (bioMéri- eux, Marcy l’Etoile, France); utilization of various sub- Test strain and cultivation. Strain AR20T was iso- strates was determined by inoculating the API 50CH lated by means of the standard dilution plating tech- strip with cells suspended in AUX medium (bioMéri- nique on R2A agar (Difco, Japan BD, Tokyo, Japan) at eux). Utilization of various substrates was also tested 25°C. The morphological, physiological and biochemi- as described by Kämpfer et al. (1991). cal characteristics of strain AR20T were investigated by Minimum inhibitory concentrations (MIC) were de- using standard cultivation techniques at 25°C. Cell termined in R2A broth containing the following antibi- morphology was examined by transmission electron otics: chloramphenicol, ampicillin, tetracycline, kana- microscopy (Beveridge et al., 1999). Cells were fixed mycin and neomycin. with glutaraldehyde (2.5%, w/v), negatively stained Chemotaxonomic analyses. Total cellular fatty with phosphotungstic acid (0.2%, w/v), and visualized acid analysis of cells grown on YPG agar (Japan BD, using a JEM 1400 transmission electron microscope Tokyo, Japan) for 48 h at 30°C was performed by (JEOL, Tokyo, Japan). Gas Liquid Chromatography (GLC) according to the Growth at various temperatures (4‒50°C) was mea- instructions of the Microbial Identification System sured. The pH range for growth was determined in (MIDI) Sherlock version 6.0 (Sasser, 1990) with the R2A broth that was adjusted to various pH values RTSBA6 MIDI database (MIDI Inc., Newark, DE, USA). (pH 4.5‒10.5 at intervals of 0.5 pH units) by the addi- Quinone was extracted with a chloroform-methanol tion of HCl and Na2CO3. Growth in the various NaCl mixture, purified by thin layer chromatography and concentrations (0‒5.0% (w/v) at intervals of 1.0%) was analyzed by reversed-phase HPLC (L-7000, Hitachi, investigated by using R2A medium. Tokyo, Japan) as described previously (Hiraishi, 1988). Growth under anaerobic conditions was determined 16S rRNA gene sequencing and phylogenetic analy- after incubation in an anaerobic chamber in R2A broth sis. The 16S rRNA gene of strain AR20T was PCR supplemented with potassium nitrate and nitrite (0.1%, amplified, purified and sequenced directly with an au- w/v), both of which had been prepared anaerobically tomated DNA sequencer (ABI PRISM 3100-Avant Ge- under a nitrogen atmosphere. Nitrate and nitrite reduc- netic Analyzer; Life Technologies, Grand Island, NY, tion were studied as described by Lanyi (1988). Elec- USA). Sequence data were compiled with the BioEdit trochemical activity of the AR20T was evaluated using program. Multiple alignment of sequence data, calcu- H-type MFCs that consisted of 500 ml anode and cath- lation of the corrected evolutionary distance (Kimura, ode glass chambers separated by a proton exchange 1980), and construction of neighbor-joining phyloge- membrane (PEM, NafionTM 117, Dupont Co., Fayette- netic tree (Saitou and Nei, 1987) were performed us- ville, NC, USA) (Chung et al., 2011). The anode cham- ing the CLUSTAL W program ver. 1.83 (Thompson et ber was filled with 500 ml of a sterilized mineral medi- al., 1994). The topology of the tree was evaluated by um (Chung and Okabe, 2009b) containing H2 gas as bootstrapping with 1,000 resamplings (Felsenstein, the sole electron donor and a carbon electrode as the 1985). sole electron acceptor. The cathode chamber was DNA base composition. Genomic DNA was ex- filled with 500 ml of phosphate buffer (80 mM and pH tracted and purified according to the method of Mar- 7.1) containing 50 mM ferricyanide. The H-type MFCs mur (1961). The guanine plus cytosine (G+C) ratio of were operated at 25 ± 2°C. Utilization of thiosulfate genomic DNA was determined by the HPLC/PDA was tested in R2A broth supplemented with 10 mM method with external nucleotide standards as de- Na2S2O3・ 5H2O as described by Spring et al. (2004). scribed by Mesbah (1989). DNA-DNA hybridization The concentrations of nitrate, nitrite and thiosulfate in were performed using the quantitative dot-blot hybrid- R2A broth were measured by ion chromatograph (ICS; ization with the Alkphos Direct Labelling and Detection Dionex, Osaka, Japan). Chemolithoautotrophic growth System with CDP-star (GE Healthcare Japan, Tokyo, of strain AR20T with hydrogen gas was tested on a liq- Japan) as described previously (Kubota et al., 2005). 2013 Hydrogenophaga electricum sp. nov. 263 Results and Discussion few reports on the presence and ability of hydrogeno- trophic exoelectrogens (Chung et al., 2009b; Pham et Morphology and cultural characteristics al., 2003), strain AR20T has the highest ability to gener- Morphological, cultural, physiological and biochem- ate current to date. The cultural, physiological and bio- ical characteristics of strain AR20T are shown in Fig. 1, chemical characteristics of strain AR20T are apparently Fig. 2 and Table 1. The cells were Gram-negative, non- different from all other nine Hydrogenophaga species spore-forming, motile, and rod-shaped organisms. and Xenophilus azovorans strain KF46FT, for example Strain AR20T grew under anoxic conditions in R2A broth with nitrate or nitrite as a terminal electron ac- ceptor. This strain grew well in a temperature range from 20 to 30°C, but did not grow at 4°C on R2A agar or YPG agar (Difco) (Table 1). Strain AR20T could gen- erate an electrical current via oxidation of hydrogen in a pure culture MFC (Fig. 2). Although there are only a Fig. 2. Characterization of the electrochemical activity of strain AR20T in a two-chamber MFC. Change in power density was shown when hydrogen was used as the sole electron donor without any other dissolved electron acceptors. Hydrogen gas (100% H2) was bubbled di- rectly into the anode culture fluid for 10 min as indicated by ar- Fig.
Recommended publications
  • Diversity of Rare and Abundant Prokaryotic
    Diversity of rare and abundant prokaryotic phylotypes in the Prony hydrothermal field and comparison with other serpentinite-hosted ecosystems Eléonore Frouin, Méline Bes, Bernard Ollivier, Marianne Quéméneur, Anne Postec, Didier Debroas, Fabrice Armougom, Gaël Erauso To cite this version: Eléonore Frouin, Méline Bes, Bernard Ollivier, Marianne Quéméneur, Anne Postec, et al.. Diver- sity of rare and abundant prokaryotic phylotypes in the Prony hydrothermal field and compari- son with other serpentinite-hosted ecosystems. Frontiers in Microbiology, Frontiers Media, 2018, 9, 10.3389/fmicb.2018.00102. hal-01734508 HAL Id: hal-01734508 https://hal.archives-ouvertes.fr/hal-01734508 Submitted on 12 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fmicb-09-00102 February 3, 2018 Time: 13:27 # 1 ORIGINAL RESEARCH published: 06 February 2018 doi: 10.3389/fmicb.2018.00102 Diversity of Rare and Abundant Prokaryotic Phylotypes in the Prony Hydrothermal Field and Comparison with Other Serpentinite-Hosted Ecosystems Eléonore Frouin1, Méline Bes1, Bernard Ollivier1, Marianne Quéméneur1, Anne Postec1, Didier Debroas2, Fabrice Armougom1 and Gaël Erauso1* 1 Aix-Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France, 2 CNRS UMR 6023, Laboratoire “Microorganismes – Génome et Environnement”, Université Clermont Auvergne, Clermont-Ferrand, France The Bay of Prony, South of New Caledonia, represents a unique serpentinite- hosted hydrothermal field due to its coastal situation.
    [Show full text]
  • Autotrophy in Groundwater Ecosystems
    Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München Autotrophy in Groundwater Ecosystems Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades vorgelegt von Claudia Sabine Kellermann aus München München im November 2008 1. Gutachter: Prof. Dr. Anton Hartmann, LMU München 2. Gutachter: Prof. Dr. Dirk Schüler, LMU München Tag der Abgabe: 06.11.2008 Tag des Promotionskolloquiums: 15.07.2009 Publications originating from this Thesis Chapter 2 Kellermann, C & Griebler, C (2008) Thiobacillus thiophilus D24TNT sp. nov., a chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments. International Journal of Systematic and Evolutionary Microbiology (IJSEM), 59: 583-588 Chapter 3 Kellermann, C, Selesi, D, Hartmann, A, Lee, N, Hügler, M, Esperschütz, J, & Griebler, C (2008) Chemolithoautotrophy in an organically polluted aquifer – Potential for CO2 fixation and in situ bacterial autotrophic activity. (in preparation) Contributions Chapter 3 Enzyme assays were performed in cooperation with Dr. Michael Hügler at the IFM- GEOMAR, Kiel, Germany. Chapter 4 FISH-MAR analysis was performed in cooperation with Prof. Dr. Natuschka Lee at the Technical University Munich, Germany. Enzyme assays were performed in cooperation with Dr. Michael Hügler at the IFM-GEOMAR, Kiel, Germany. PLFA analysis was performed by Dr. Jürgen Esperschütz at the Institute of Soil Ecology, Helmholtz Center Munich, Germany. I hereby confirm the above statements Claudia Kellermann Prof. Dr. Anton Hartmann Autotrophy in Groundwater Ecosystems Claudia Kellermann Abstract: The major role in global net CO2 fixation plays photosynthesis of green plants, algae and cyanobacteria, but other microorganisms are also important concerning autotrophy; i.e. autotrophic microorganisms can be found in most bacterial groups (Eubacteria) and there are even numerous representatives within the Archaea.
    [Show full text]
  • Response of Heterotrophic Stream Biofilm Communities to a Gradient of Resources
    The following supplement accompanies the article Response of heterotrophic stream biofilm communities to a gradient of resources D. J. Van Horn1,*, R. L. Sinsabaugh1, C. D. Takacs-Vesbach1, K. R. Mitchell1,2, C. N. Dahm1 1Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA 2Present address: Department of Microbiology & Immunology, University of British Columbia Life Sciences Centre, Vancouver BC V6T 1Z3, Canada *Email: [email protected] Aquatic Microbial Ecology 64:149–161 (2011) Table S1. Representative sequences for each OTU, associated GenBank accession numbers, and taxonomic classifications with bootstrap values (in parentheses), generated in mothur using 14956 reference sequences from the SILVA data base Treatment Accession Sequence name SILVA taxonomy classification number Control JF695047 BF8FCONT18Fa04.b1 Bacteria(100);Proteobacteria(100);Gammaproteobacteria(100);Pseudomonadales(100);Pseudomonadaceae(100);Cellvibrio(100);unclassified; Control JF695049 BF8FCONT18Fa12.b1 Bacteria(100);Proteobacteria(100);Alphaproteobacteria(100);Rhizobiales(100);Methylocystaceae(100);uncultured(100);unclassified; Control JF695054 BF8FCONT18Fc01.b1 Bacteria(100);Planctomycetes(100);Planctomycetacia(100);Planctomycetales(100);Planctomycetaceae(100);Isosphaera(50);unclassified; Control JF695056 BF8FCONT18Fc04.b1 Bacteria(100);Proteobacteria(100);Gammaproteobacteria(100);Xanthomonadales(100);Xanthomonadaceae(100);uncultured(64);unclassified; Control JF695057 BF8FCONT18Fc06.b1 Bacteria(100);Proteobacteria(100);Betaproteobacteria(100);Burkholderiales(100);Comamonadaceae(100);Ideonella(54);unclassified;
    [Show full text]
  • Enrichment of Beneficial Cucumber Rhizosphere Microbes Mediated By
    Wen et al. Horticulture Research (2020) 7:154 Horticulture Research https://doi.org/10.1038/s41438-020-00380-3 www.nature.com/hortres ARTICLE Open Access Enrichment of beneficial cucumber rhizosphere microbes mediated by organic acid secretion Tao Wen1,JunYuan1, Xiaoming He2,YueLin2,QiweiHuang1 andQirongShen 1 Abstract Resistant cultivars have played important roles in controlling Fusarium wilt disease, but the roles of rhizosphere interactions among different levels of resistant cultivars are still unknown. Here, two phenotypes of cucumber, one resistant and one with increased susceptibility to Fusarium oxysporum f.sp. cucumerinum (Foc), were grown in the soil and hydroponically, and then 16S rRNA gene sequencing and nontargeted metabolomics techniques were used to investigate rhizosphere microflora and root exudate profiles. Relatively high microbial community evenness for the Foc-susceptible cultivar was detected, and the relative abundances of Comamonadaceae and Xanthomonadaceae were higher for the Foc-susceptible cultivar than for the other cultivar. FishTaco analysis revealed that specific functional traits, such as protein synthesis and secretion, bacterial chemotaxis, and small organic acid metabolism pathways, were significantly upregulated in the rhizobacterial community of the Foc-susceptible cultivar. A machine- learning approach in conjunction with FishTaco plus metabolic pathway analysis revealed that four organic acids (citric acid, pyruvate acid, succinic acid, and fumarate) were released at higher abundance by the Foc-susceptible cultivar compared with the resistant cultivar, which may be responsible for the recruitment of Comamonadaceae, a potential beneficial microbial group. Further validation demonstrated that Comamonadaceae can be “cultured” by these organic acids. Together, compared with the resistant cultivar, the susceptible cucumber tends to assemble beneficial microbes by secreting more organic acids.
    [Show full text]
  • Isolation and Molecular Characterization of Novel
    University of Groningen Isolation and molecular characterization of novel glucarpidases Rashidi, Fatma B; AlQhatani, Alanod D; Bashraheel, Sara S; Shaabani, Shabnam; Groves, Matthew R; Dömling, Alexander; Goda, Sayed K Published in: PLoS ONE DOI: 10.1371/journal.pone.0196254 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2018 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Rashidi, F. B., AlQhatani, A. D., Bashraheel, S. S., Shaabani, S., Groves, M. R., Dömling, A., & Goda, S. K. (2018). Isolation and molecular characterization of novel glucarpidases: Enzymes to improve the antibody directed enzyme pro-drug therapy for cancer treatment. PLoS ONE, 13(4), [e0196254]. https://doi.org/10.1371/journal.pone.0196254 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Delftia Sp. LCW, a Strain Isolated from a Constructed Wetland Shows Novel Properties for Dimethylphenol Isomers Degradation Mónica A
    Downloaded from orbit.dtu.dk on: Sep 28, 2021 Delftia sp LCW, a strain isolated from a constructed wetland shows novel properties for dimethylphenol isomers degradation Vásquez-Piñeros, Mónica A.; Martinez-Lavanchy, Paula M.; Jehmlich, Nico; Pieper, Dietmar H.; Rincon, Carlos A.; Harms, Hauke; Junca, Howard; Heipieper, Hermann J. Published in: BMC Microbiology Link to article, DOI: 10.1186/s12866-018-1255-z Publication date: 2018 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Vásquez-Piñeros, M. A., Martinez-Lavanchy, P. M., Jehmlich, N., Pieper, D. H., Rincon, C. A., Harms, H., Junca, H., & Heipieper, H. J. (2018). Delftia sp LCW, a strain isolated from a constructed wetland shows novel properties for dimethylphenol isomers degradation. BMC Microbiology, 18, [108]. https://doi.org/10.1186/s12866- 018-1255-z General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Microbial Community Response to Heavy and Light Crude Oil in the Great Lakes
    Microbial Community Response to Heavy and Light Crude Oil in the Great Lakes Stephen Techtmann 10/24/19 Microbial Sensors Techtmann Lab @ MTU Investigating the applications of environmental microbial communities Hydraulic Fracturing Related Antibiotic Resistance Oil Bioremediation Techtmann Lab @ MTU Overview • Background on oil biodegradation • Microbial response to light and heavy crude oil in the Great Lakes • Machine learning for prediction of contamination in the Great Lakes. Oil Spills Deepwater Horizon Enbridge Line 6B Deepwater Horizon Oil Spill • 4,1000,000 bbl of oil released • Light Sweet Crude oil released • April 20, 2010 • 1101.7 miles of shoreline oiled Atlas and Hazen 2011 Enbridge Line 6B Spill – Marshall MI • 20,082 bbl of oil released • Diluted Bitumen • July 26, 2010 • 70 miles of shoreline oiled https://www.mlive.com/news/kalamazoo/2010/07/state_of_emergency_declared_as.html Oil Transmissions Pipelines in the Great Lakes Region Line 5: • 645 miles from Superior WI to Sarnia Ontario • 540,000 barrels per day • Light crude and natural gas liquids (NGLs) Crude oil Oil types and API Gravity Microbes and Biotechnology (Bioremediation) Low cost input Microbe High value output Decreased Cost Contaminant Increased Efficiency Carbon dioxide or non- toxic daughter products Carbon dioxide Microbial Biomass Petroleum Microbe Daughter Products Water Microbial Ecology and Biotechnology Low cost input Microbe High value output Decreased Cost/Increased Efficiency Complex input Input A Microbe Microbe Output A Input B Microbe Output
    [Show full text]
  • Azoreductase: a Key Player of Xenobiotic Metabolism Santosh A
    Misal and Gawai Bioresour. Bioprocess. (2018) 5:17 https://doi.org/10.1186/s40643-018-0206-8 REVIEW Open Access Azoreductase: a key player of xenobiotic metabolism Santosh A. Misal1,2* and Kachru R. Gawai1* Abstract Azoreductases are diverse favoenzymes widely present among microorganisms and higher eukaryotes. They are mainly involved in the biotransformation and detoxifcation of azo dyes, nitro-aromatic, and azoic drugs. Reduction of azo bond and reductive activation of pro-drugs at initial level is a crucial stage in degradation and detoxifca- tion mechanisms. Using azoreductase-based microbial enzyme systems that are biologically accepted and ecof- riendly demonstrated complete degradation of azo dyes. Azoreductases are favin-containing or favin-free group of enzymes, utilizing the nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate as a reducing equivalent. Azoreductases from anaerobic microorganisms are highly oxygen sensitive, while azoreduc- tases from aerobic microorganisms are usually oxygen insensitive. They have variable pH, temperature stability, and wide substrate specifcity. Azo dyes, nitro-aromatic compounds, and quinones are the known substrates of azore- ductase. The present review gives an overview of recent developments in the known azoreductase enzymes from diferent microorganisms, its novel classifcation scheme, signifcant characteristics, and their plausible degradation mechanisms. Keywords: Azo dye, Azoreductase, Bioremediation, Biotransformation, Detoxifcation, Xenobiotics Introduction of physical, chemical, and biological treatment proce- Azo dyes and nitro-aromatic compounds are consid- dures are employed to degrade and detoxify the chemi- ered as potential xenobiotics. Tey are extensively used cal content and to remove color from dye-containing worldwide in textile, paint, printing, cosmetics, and phar- industrial wastewater.
    [Show full text]
  • Anti-Bacterial Effects of Mno2 on the Enrichment of Manganese
    Microbes Environ. 35(4), 2020 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME20052 Anti-bacterial Effects of MnO2 on the Enrichment of Manganese-oxidizing Bacteria in Downflow Hanging Sponge Reactors Shuji Matsushita1,2, Takafumi Hiroe1, Hiromi Kambara1, Ahmad Shoiful1,3, Yoshiteru Aoi4, Tomonori Kindaichi1, Noriatsu Ozaki1, Hiroyuki Imachi5, and Akiyoshi Ohashi1* 1Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1–4–1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8527, Japan; 2Western Region Industrial Research Center, Hiroshima Prefectural Technology Research Institute, 2–10–1, Aga-minami, Kure, Hiroshima 737–0004, Japan; 3Center of Technology for the Environment, Agency for the Assessment and Application of Technology, Geostech Building, Kawasan PUSPIPTEK, Serpong, Tangerang Selatan 15314, Indonesia; 4Environmental Microbiology Laboratory, Graduate School of Advance Sciences of Matter, Hiroshima University, 2–313, Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8527, Japan; and 5Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science & Technology, Yokosuka, Kanagawa 237–0061, Japan (Received April 26, 2020—Accepted August 2, 2020—Published online September 19, 2020) We focused on the use of abiotic MnO2 to develop reactors for enriching manganese-oxidizing bacteria (MnOB), which may then be used to treat harmful heavy metal-containing wastewater and in the recovery of useful minor metals. Downflow hanging sponge (DHS) reactors were used under aerobic and open conditions to investigate the potential for MnOB enrichment. The results of an experiment that required a continuous supply of organic feed solution containing Mn(II) demonstrated that MnOB enrichment and Mn(II) removal were unsuccessful in the DHS reactor when plain sponge cubes were used.
    [Show full text]
  • Ample Arsenite Bio-Oxidation Activity in Bangladesh Drinking Water Wells: a Bonanza for Bioremediation?
    microorganisms Article Ample Arsenite Bio-Oxidation Activity in Bangladesh Drinking Water Wells: A Bonanza for Bioremediation? 1,2 3 3 1 1, Zahid Hassan , Munawar Sultana , Sirajul I. Khan , Martin Braster , Wilfred F.M. Röling y and Hans V. Westerhoff 1,4,5,* 1 Department of Molecular Cell Biology, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands 2 Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka 1100, Bangladesh 3 Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh 4 Manchester Centre for Integrative Systems Biology (MCISB), School of Chemical Engineering and Analytical Sciences (SCEAS), the University of Manchester, Manchester M13 9PL, UK 5 Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands * Correspondence: h.v.westerhoff@vu.nl; Tel.: +31-205-987-230 Deceased 25 September 2015. y Received: 18 June 2019; Accepted: 31 July 2019; Published: 8 August 2019 Abstract: Millions of people worldwide are at risk of arsenic poisoning from their drinking water. In Bangladesh the problem extends to rural drinking water wells, where non-biological solutions are not feasible. In serial enrichment cultures of water from various Bangladesh drinking water wells, we found transfer-persistent arsenite oxidation activity under four conditions (aerobic/anaerobic; heterotrophic/autotrophic). This suggests that biological decontamination may help ameliorate the problem. The enriched microbial communities were phylogenetically at least as diverse as the unenriched communities: they contained a bonanza of 16S rRNA gene sequences. These related to Hydrogenophaga, Acinetobacter, Dechloromonas, Comamonas, and Rhizobium/Agrobacterium species. In addition, the enriched microbiomes contained genes highly similar to the arsenite oxidase (aioA) gene of chemolithoautotrophic (e.g., Paracoccus sp.
    [Show full text]
  • Rapport Nederlands
    Moleculaire detectie van bacteriën in dekaarde Dr. J.J.P. Baars & dr. G. Straatsma Plant Research International B.V., Wageningen December 2007 Rapport nummer 2007-10 © 2007 Wageningen, Plant Research International B.V. Alle rechten voorbehouden. Niets uit deze uitgave mag worden verveelvoudigd, opgeslagen in een geautomatiseerd gegevensbestand, of openbaar gemaakt, in enige vorm of op enige wijze, hetzij elektronisch, mechanisch, door fotokopieën, opnamen of enige andere manier zonder voorafgaande schriftelijke toestemming van Plant Research International B.V. Exemplaren van dit rapport kunnen bij de (eerste) auteur worden besteld. Bij toezending wordt een factuur toegevoegd; de kosten (incl. verzend- en administratiekosten) bedragen € 50 per exemplaar. Plant Research International B.V. Adres : Droevendaalsesteeg 1, Wageningen : Postbus 16, 6700 AA Wageningen Tel. : 0317 - 47 70 00 Fax : 0317 - 41 80 94 E-mail : [email protected] Internet : www.pri.wur.nl Inhoudsopgave pagina 1. Samenvatting 1 2. Inleiding 3 3. Methodiek 8 Algemene werkwijze 8 Bestudeerde monsters 8 Monsters uit praktijkteelten 8 Monsters uit proefteelten 9 Alternatieve analyse m.b.v. DGGE 10 Vaststellen van verschillen tussen de bacterie-gemeenschappen op myceliumstrengen en in de omringende dekaarde. 11 4. Resultaten 13 Monsters uit praktijkteelten 13 Monsters uit proefteelten 16 Alternatieve analyse m.b.v. DGGE 23 Vaststellen van verschillen tussen de bacterie-gemeenschappen op myceliumstrengen en in de omringende dekaarde. 25 5. Discussie 28 6. Conclusies 33 7. Suggesties voor verder onderzoek 35 8. Gebruikte literatuur. 37 Bijlage I. Bacteriesoorten geïsoleerd uit dekaarde en van mycelium uit commerciële teelten I-1 Bijlage II. Bacteriesoorten geïsoleerd uit dekaarde en van mycelium uit experimentele teelten II-1 1 1.
    [Show full text]
  • Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure
    Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure Authors: Suzanne L. Ishaq, Stephen P. Johnson, Zach J. Miller, Erik A. Lehnhoff, Sarah Olivo, Carl J. Yeoman, and Fabian D. Menalled The final publication is available at Springer via http://dx.doi.org/10.1007/s00248-016-0861-2. Ishaq, Suzanne L. , Stephen P. Johnson, Zach J. Miller, Erik A. Lehnhoff, Sarah Olivo, Carl J. Yeoman, and Fabian D. Menalled. "Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure." Microbial Ecology 73, no. 2 (February 2017): 417-434. DOI: 10.1007/s00248-016-0861-2. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure 1,2 & 2 & 3 & 4 & Suzanne L. Ishaq Stephen P. Johnson Zach J. Miller Erik A. Lehnhoff 1 1 2 Sarah Olivo & Carl J. Yeoman & Fabian D. Menalled 1 Department of Animal and Range Sciences, Montana State University, P.O. Box 172900, Bozeman, MT 59717, USA 2 Department of Land Resources and Environmental Sciences, Montana State University, P.O. Box 173120, Bozeman, MT 59717, USA 3 Western Agriculture Research Center, Montana State University, Bozeman, MT, USA 4 Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, USA Abstract Farming practices affect the soil microbial commu- then individual farm. Living inoculum-treated soil had greater nity, which in turn impacts crop growth and crop-weed inter- species richness and was more diverse than sterile inoculum- actions.
    [Show full text]