Draft Genome Sequence of Pseudomonas Moraviensis Strain Devor Implicates Metabolic Versatility and Bioremediation Potential

Total Page:16

File Type:pdf, Size:1020Kb

Draft Genome Sequence of Pseudomonas Moraviensis Strain Devor Implicates Metabolic Versatility and Bioremediation Potential Genomics Data 9 (2016) 154–159 Contents lists available at ScienceDirect Genomics Data journal homepage: www.elsevier.com/locate/gdata Draft genome sequence of Pseudomonas moraviensis strain Devor implicates metabolic versatility and bioremediation potential Neil T. Miller a,DannyFullera,M.B.Cougera, Mark Bagazinski a,PhilipBoynea, Robert C. Devor a, Radwa A. Hanafy a, Connie Budd a, Donald P. French b, Wouter D. Hoff a, Noha Youssef a,⁎ a Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States b Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States article info abstract Article history: Pseudomonas moraviensis is a predominant member of soil environments. We here report on the genomic Received 19 July 2016 analysis of Pseudomonas moraviensis strain Devor that was isolated from a gate at Oklahoma State University, Accepted 2 August 2016 Stillwater, OK, USA. The partial genome of Pseudomonas moraviensis strain Devor consists of 6016489 bp of Available online 4 August 2016 DNA with 5290 protein-coding genes and 66 RNA genes. This is the first detailed analysis of a P. moraviensis genome. Genomic analysis revealed metabolic versatility with genes involved in the metabolism and transport Keywords: of fructose, xylose, mannose and all amino acids with the exception of tryptophan and valine, implying that Pseudomonas moraviensis Draft genome sequence the organism is a versatile heterotroph. The genome of P. moraviensis strain Devor was rich in transporters Detailed analysis and, based on COG analysis, did not cluster closely with P. moraviensis R28-S genome, the only previous report Student Initiated Microbial Discovery (SIMD) of a P. moraviensis genome with a native mercury resistance plasmid. project © 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license Metabolic versatility (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1. Introduction 2. Materials and methods The strain Devor was isolated from an outdoor gate located on 2.1. Genome project history Oklahoma State University (OSU) campus in Stillwater, OK. The isola- tion process was part of the Student Initiated Microbial Discovery Pseudomonas moraviensis strain Devor was isolated with the aim of (SIMD) project at OSU (introduced in [1]). The organism was isolated sequencing its genome as part of an undergraduate project at OSU. by an undergraduate student (RCD) during an introductory microbiolo- The project is funded by the Howard Hughes Medical Institute and gy lab course, and analyzed by a team of undergraduate (MB and PB) aims at improving undergraduate student involvement in authentic and graduate students (NTM and DF). The genus Pseudomonas is research. Isolation of the strain, and analysis of the sequenced genome known to be phylogenetically and physiologically diverse. Members were performed by undergraduate students in an introductory microbi- are ubiquitously found in soil and water systems, with the potential to ology course, and an upper division microbial genomics class, respec- utilize a broad range of organic compounds [2–12]. Resistance for tively. The quality draft assembly and annotation were completed in heavy metal has also been shown for some strains [13]. Genomic analy- 2015–2016. Table 1 shows the genome project information. sis of members belonging to the genus Pseudomonas can contribute to our understanding of the molecular mechanisms of the biodegradation 2.2. Growth conditions and genomic DNA preparation of organic compounds, including environmental pollutants, and could potentially contribute to bioremediation efforts in multiple environ- Pseudomonas moraviensis strain Devor was grown overnight at 30 °C fi ments. Here we report on the draft genomic sequence, and the rst on tryptic soy agar plates, and genomic DNA was isolated using the detailed analysis of a Pseudomonas moraviensis strain. MPBio PowerSoil® DNA extraction kit according to manufacturer's in- structions. Negative stain TEM micrographs were obtained using the services of the Oklahoma State University Microscopy Lab. Briefly, the sample was placed on a carbon film TEM grid and allowed to incubate for 2 min, after which the excess liquid was wicked off. Phosphotungstic ⁎ Corresponding author at: 1110 S Innovation way, Stillwater, OK 74074, United States. acid (PTA; 2% w/v) was then added to the grid followed by a 45-s E-mail address: [email protected] (N. Youssef). incubation. Excess PTA was wicked off and the grid was allowed to http://dx.doi.org/10.1016/j.gdata.2016.08.004 2213-5960/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). N.T. Miller et al. / Genomics Data 9 (2016) 154–159 155 Table 1 Project information. MIGS ID Property Term MIGS 31 Finishing quality Draft MIGS-28 Libraries used 2 × 300 paired end chemistry MIGS 29 Sequencing platforms Illumina MIGS 31.2 Fold coverage 300× MIGS 30 Assemblers Velvet MIGS 32 Gene calling method Prodigal Genbank ID MAYQ00000000 GenBank date of release July 2016 GOLD ID Gp0126756 BIOPROJECT PRJNA327387 MIGS 13 Project relevance Environmental dry before it was visualized using JOEL JEM-2100 transmission electron microscope. 2.3. Genome sequencing and assembly The genome of Pseudomonas moraviensis strain Devor was sequenced at the University of Georgia Genomics Facility using the Illumina MiSeq platform 2 × 300 paired end chemistry. Average library insert size was Fig. 1. Negative stain TEM micrograph of Pseudomonas moraviensis strain Devor. 700 bp. The short read de Brujin graph assembly program Velvet [14] was used to assemble quality filtered sequence data using a kmer value of 101 bp and a minimum contig coverage value of 7×. The genome Within the genus Pseudomonas, 163 species are described with project is deposited in GOLD (Genomes On-Line Database) and this validly published names. Strain Devor shares 77.8%–99.8% 16S rRNA Whole Genome Shotgun (WGS) project has been deposited in GenBank gene identities with other species in the Pseudomonas genus as follows: under the accession MAYQ00000000. The version described in this paper P. abietaniphilia (97.7%) type strain ATCC 700689T, P. aeruginosa (94.7%) is version MAYQ01000000. type strain ATCC 10145T, P. aestusnigri (95.5%) VGXO14T, P. agarici (98%) type strain ATCC 25941T, P. alcaligenes (95.8%) type strain ATCC 14909T, 2.4. Genome annotation P. alcalophilia (96.5%) type strain AL15-21T, P. amygdali (96.6%) type strain ATCC 33614T, P. anguilliseptica (94.7%) type strain ATCC 33660T, Gene models were created using the prokaryotic gene calling soft- P. antarctica (97.3%) type strain DSM 15318T, P. argentinensis (97.6%) ware package Prodigal [15]. A total of 5473 gene models were predicted type strain CH01T, P. arsenicoxydans (97.7%) type strain VC-1T, P. asplenii with an average gene size of 1002 bp. Predicted protein sequences were (97.7%) type strain ATCC 23835T, P. asturiensis (97.1%) type strain LPPA annotated using a combination of NCBI Blast C++ homology search, 221T, P. asuensis (95.8%) type strain CP 155-2T, P. azotifigens (93.9%) type and HMMER 3.0 [16] hmmscan against the PFAM [17] 26.0 database. strain ATCC BAA-1049T, P. azotoformans (98.1%) type strain CCUG Additional functional annotations were carried out through the 12536T, P. baetica (99.2%) type strain a390T, P. balearica (95%) type Integrated Microbial Genomes Expert Review (IMG-ER) platform. strain DSM 6083T, P. bauzanensis (95%) type strain DSM 22558T, P. benzenivorans (96.9%) type strain DSM 8628T, P. borbori (96.1%) 2.5. Comparative genomics type strain DSM 17834, P. brassicacearum (97.1%) type strain DSM 13227T, P. brenneri (97.8%) type strain DSM 15294, P. caeni (93.8%) We compared the genome of Pseudomonas moraviensis strain Devor type strain HY-14T, P. cannabina (97.8%) type strain CFBP 2341T, P. to 13 closely related genomes (IMG genome IDs: 2619619019, carboxydohydrogena (77.8%) type strain ATCC 29978T, P. caricapapayae 2654587541, 2603880217, 2561511156, 2639762619, 2636416187, (97.7%) type strain ATCC 33615T, P. cedrina (98.2%) type strain 2639762638, 2639762633, 2597489942, 2639762506, 2517572232, DSM 17516T, P. chengduensis (96.6%) type strain DSM 26382, 2639762618, 2556921015) using the “Genome clustering” function on P. chloritidismutans (96.6%) type strain ATCC BAA-443T, P. chlororaphis the IMG-ER analysis platform based on the COG profile. We also used (97.9%) type strain ATCC 9446T, P. cichorii (96.8%) type strain ATCC principal component analysis to compare the genomes based on several 10857T, P. citronellosis (94.4%) type strain ATCC 13674T, P. coleopterorum genomic features including the genome size, the number of genes, (97.8%) type strain LMG 28558T, P. composti (96.7%) type strain C2T, the number of transporters identified, the GC content, the number of P. congealans (97.7%) type strain DSM 14939T, P. corrugata (97.7%) non-coding bases, the number of genes belonging to COG categories, type strain ATCC 29736T, P. constantinii (97.4%) type strain PS 3aT, P. as well as the number of genes belonging to each COG category. The cremoricolorata (97.1%) type strain DSM 17059T, P. cuatrocienegasensis PCA analysis was conducted using the “princomp” function in the labdsv (96.5%) type strain LMG 24676T, P. deceptionensis (97.2%) type strain library of R [18]. The results were visualized using a biplot, where M1T, P. delhiensis (94.3%) type strain RLD-1T, P. duriflava (94.7%) type genomes were represented by stars and genomic features or COG strain HR2T, P. elongata (89.3%) type strain ATCC 10144T, P. endophytica categories used for comparison were represented by arrows. (97.3%) type strain BSTT44T, P. entomophila (97.7%) type strain L48T, P. extremaustralis (97.3%) type strain DSM 17835T, P. extremorientalis 3. Results and discussion (97.5%) type strain KMM 3447T, P. ficuserectae (97.6%) type strain ATCC 35104T, P. flavescens (96.5%) type strain ATCC 51555T, 3.1.
Recommended publications
  • 토양에서 분리한 국내 미기록종 Pseudomonas 속 6종의 생화학적 특성과 계통 분류
    Korean Journal of Microbiology (2019) Vol. 55, No. 1, pp. 39-45 pISSN 0440-2413 DOI https://doi.org/10.7845/kjm.2019.8099 eISSN 2383-9902 Copyright ⓒ 2019, The Microbiological Society of Korea 토양에서 분리한 국내 미기록종 Pseudomonas 속 6종의 생화학적 특성과 계통 분류 김현중1 ・ 정유정2 ・ 김해영1 ・ 허문석2* 1 2 경희대학교 생명과학대학 식품생명공학 전공, 국립생물자원관 생물자원연구부 미생물자원과 Isolation and characterization of 6 unrecorded Pseudomonas spp. from Korean soil 1 2 1 2 Hyun-Joong Kim , You-Jung Jung , Hae-Yeong Kim , and Moonsuk Hur * 1 Institute of Life Sciences and Resources Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea 2 Biological Resources Research Department, National Institute of Biological Resources, Incheon 22689, Republic of Korea (Received November 30, 2018; Revised December 19, 2018; Accepted December 19, 2018) In 2017, as a study to discover indigenous prokaryotic species 물의 공통된 특징은 그람 음성(Gram-negative), 호기성, Oxidase in Korea, a total of 6 bacterial strains assigned to the genus 양성 또는 음성, Catalase 양성, 형태학적으로 간균의 모양을 Pseudomonas were isolated from soil. From the high 16S 하고 있다. DNA의 GC 함량은 58~69 mol%이며 하나 혹은 몇 rRNA gene sequence similarity (≥ 99.5%) and phylogenetic 개의 극편모(polar flagella)를 이용하여 운동성을 갖는 것으로 analysis with closely related species, the isolated strains were 알려져 있으며, 현재까지 총 253개 종이 보고 되어 있다(http:// identified as independent Pseudomonas species which were unrecorded in Korea. The six Pseudomonas species were www.bacterio.net/pseudomonas.html) (Palleroni, 1984; Peix Pseudomonas mandelii, P. canadensis, P. thivervalensis, P. et al., 2009; Mulet et al., 2010).
    [Show full text]
  • Estudio Molecular De Poblaciones De Pseudomonas Ambientales
    Universitat de les Illes Balears ESTUDIO MOLECULAR DE POBLACIONES DE PSEUDOMONAS AMBIENTALES T E S I S D O C T O R A L DAVID SÁNCHEZ BERMÚDEZ DIRECTORA: ELENA GARCÍA-VALDÉS PUKKITS Departamento de Biología Universitat de les Illes Balears Palma de Mallorca, Septiembre 2013 Universitat de les Illes Balears ESTUDIO MOLECULAR DE POBLACIONES DE PSEUDOMONAS AMBIENTALES Tesis Doctoral presentada por David Sánchez Bermúdez para optar al título de Doctor en el programa Microbiología Ambiental y Biotecnología, de la Universitat de les Illes Balears, bajo la dirección de la Dra. Elena García-Valdés Pukkits. Vo Bo Director de la Tesis El doctorando DRA. ELENA GARCÍA-VALDÉS PUKKITS DAVID SÁNCHEZ BERMÚDEZ Catedrática de Universidad Universitat de les Illes Balears PALMA DE MALLORCA, SEPTIEMBRE 2013 III IV Index Agradecimientos .................................................................................................... IX Resumen ................................................................................................................ 1 Abstract ................................................................................................................... 3 Introduction ............................................................................................................ 5 I.1. The genus Pseudomonas ............................................................................................ 7 I.1.1. Definition ................................................................................................................ 7 I.1.2.
    [Show full text]
  • Which Organisms Are Used for Anti-Biofouling Studies
    Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E.
    [Show full text]
  • Symbiotic Bacteria Associated with Ascidian Vanadium Accumulation Identified by 16S Rrna Amplicon Sequencing
    Symbiotic bacteria associated with ascidian vanadium accumulation identified by 16S rRNA amplicon sequencing Author Tatsuya Ueki, Manabu Fujie, Romaidi, Noriyuki Satoh journal or Marine Genomics publication title volume 43 page range 33-42 year 2018-11-09 Publisher Elsevier B.V. Rights (C) 2018 The Author(s). Author's flag publisher URL http://id.nii.ac.jp/1394/00000917/ doi: info:doi/10.1016/j.margen.2018.10.006 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (https://creativecommons.org/licenses/by-nc-nd/4.0/) Marine Genomics 43 (2019) 33–42 Contents lists available at ScienceDirect Marine Genomics journal homepage: www.elsevier.com/locate/margen Full length article Symbiotic bacteria associated with ascidian vanadium accumulation identified by 16S rRNA amplicon sequencing T ⁎ Tatsuya Uekia,b, , Manabu Fujiec, Romaidia,d, Noriyuki Satohe a Molecular Physiology Laboratory, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan b Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima, Japan c DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan d Biology Department, Science and Technology Faculty, State Islamic University of Malang, Malang, Jawa Timur, Indonesia e Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan ARTICLE INFO ABSTRACT Keywords: Ascidians belonging to Phlebobranchia accumulate vanadium to an extraordinary degree (≤ 350 mM). Bacterial population Vanadium levels are strictly regulated and vary among ascidian species; thus, they represent well-suited models 16S rRNA for studies on vanadium accumulation. No comprehensive study on metal accumulation and reduction in marine Marine invertebrates organisms in relation to their symbiotic bacterial communities has been published.
    [Show full text]
  • Distribution of Pseudomonas Species in a Dairy Plant Affected By
    Italian Journal of Food Safety 2014; volume 3:1722 Distribution of Pseudomonas aerobic, heterotrophic, with high adaptability, high metabolic versatility and ability to colo- Correspondence: Francesco Chiesa, species in a dairy plant affected nize various natural environments. The genus Dipartimento di Scienze Veterinarie, Università by occasional blue Pseudomonas has repeatedly undergone taxo- degli Studi di Torino, Largo Paolo Braccini 2, discoloration nomic revisions. Pseudomonas species were 10095 Grugliasco (TO), Italy. initially grouped on the basis of the results fo Tel. +39.011.6709334 - Fax: +39.011.6709224. E-mail: [email protected] Francesco Chiesa,1 Sara Lomonaco,1 conventional phenotypic tests. In 1973, Daniele Nucera,2 Davide Garoglio,1 Palleroni proposed a classification based on Key words: Pseudomonas, Dairy products, Blue Alessandra Dalmasso,1 Tiziana Civera1 studies of DNA-DNA and DNA-rRNA hybridiza- discoloration. tion. In this way, Pseudomonas species were 1 Dipartimento di Scienze Veterinarie, classified into five clusters based on homology Received for publication: 16 May 2013. Università di Torino; 2Dipartimento di of ribosomal RNA, called RNA similarity Revision received: 17 October 2014. Scienze Agrarie, Forestali e Alimentari, groups. As time passed, the five groups turned Accepted for publication: 17 October 2014. Università di Torino, Italy out to be related to a wide variety of This work is licensed under a Creative Commons Proteobacteria (De Vos and De Ley, 1983). In Attribution 3.0 License (by-nc
    [Show full text]
  • Microorganisms-08-01166-V3.Pdf
    microorganisms Article Reliable Identification of Environmental Pseudomonas Isolates Using the rpoD Gene Léa Girard 1 ,Cédric Lood 1,2 , Hassan Rokni-Zadeh 3, Vera van Noort 1,4, Rob Lavigne 2 and René De Mot 1,* 1 Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; [email protected] (L.G.); [email protected] (C.L.); [email protected] (V.v.N.) 2 Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium; [email protected] 3 Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; [email protected] 4 Institute of Biology, Leiden University, Sylviusweg 72, 2333 Leiden, The Netherlands * Correspondence: [email protected]; Tel.: +32-16329681 Received: 23 June 2020; Accepted: 28 July 2020; Published: 31 July 2020 Abstract: The taxonomic affiliation of Pseudomonas isolates is currently assessed by using the 16S rRNA gene, MultiLocus Sequence Analysis (MLSA), or whole genome sequencing. Therefore, microbiologists are facing an arduous choice, either using the universal marker, knowing that these affiliations could be inaccurate, or engaging in more laborious and costly approaches. The rpoD gene, like the 16S rRNA gene, is included in most MLSA procedures and has already been suggested for the rapid identification of certain groups of Pseudomonas. However, a comprehensive overview of the rpoD-based phylogenetic relationships within the Pseudomonas genus is lacking. In this study, we present the rpoD-based phylogeny of 217 type strains of Pseudomonas and defined a cutoff value of 98% nucleotide identity to differentiate strains at the species level.
    [Show full text]
  • Rapport Nederlands
    Moleculaire detectie van bacteriën in dekaarde Dr. J.J.P. Baars & dr. G. Straatsma Plant Research International B.V., Wageningen December 2007 Rapport nummer 2007-10 © 2007 Wageningen, Plant Research International B.V. Alle rechten voorbehouden. Niets uit deze uitgave mag worden verveelvoudigd, opgeslagen in een geautomatiseerd gegevensbestand, of openbaar gemaakt, in enige vorm of op enige wijze, hetzij elektronisch, mechanisch, door fotokopieën, opnamen of enige andere manier zonder voorafgaande schriftelijke toestemming van Plant Research International B.V. Exemplaren van dit rapport kunnen bij de (eerste) auteur worden besteld. Bij toezending wordt een factuur toegevoegd; de kosten (incl. verzend- en administratiekosten) bedragen € 50 per exemplaar. Plant Research International B.V. Adres : Droevendaalsesteeg 1, Wageningen : Postbus 16, 6700 AA Wageningen Tel. : 0317 - 47 70 00 Fax : 0317 - 41 80 94 E-mail : [email protected] Internet : www.pri.wur.nl Inhoudsopgave pagina 1. Samenvatting 1 2. Inleiding 3 3. Methodiek 8 Algemene werkwijze 8 Bestudeerde monsters 8 Monsters uit praktijkteelten 8 Monsters uit proefteelten 9 Alternatieve analyse m.b.v. DGGE 10 Vaststellen van verschillen tussen de bacterie-gemeenschappen op myceliumstrengen en in de omringende dekaarde. 11 4. Resultaten 13 Monsters uit praktijkteelten 13 Monsters uit proefteelten 16 Alternatieve analyse m.b.v. DGGE 23 Vaststellen van verschillen tussen de bacterie-gemeenschappen op myceliumstrengen en in de omringende dekaarde. 25 5. Discussie 28 6. Conclusies 33 7. Suggesties voor verder onderzoek 35 8. Gebruikte literatuur. 37 Bijlage I. Bacteriesoorten geïsoleerd uit dekaarde en van mycelium uit commerciële teelten I-1 Bijlage II. Bacteriesoorten geïsoleerd uit dekaarde en van mycelium uit experimentele teelten II-1 1 1.
    [Show full text]
  • Resistant Bacteria in Hg-Polluted Gold Mine Sites of Bandung, West Java Province, Indonesia
    Available online at http://jurnal.permi.or.id/index.php/mionline ISSN 1978-3477, eISSN 2087-8575 DOI: 10.5454/mi.6.2.2 Vol 6, No 2, June 2012, p 57-68 Mercury (Hg)-Resistant Bacteria in Hg-Polluted Gold Mine Sites of Bandung, West Java Province, Indonesia SITI KHODIJAH CHAERUN1,2 *, SAKINAH HASNI1, EDY SANWANI3, AND MAELITA RAMDANI MOEIS4 1Laboratory of Biogeosciences, Mining and Environmental Bioengineering, Research Division of Genetics and Molecular Biotechnology, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; 2Center for Life Sciences, Institut Teknologi Bandung, Indonesia 3Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; 4Research Division of Genetics and Molecular Biotechnology, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia In the present study, ten mercury-resistant heterotrophic bacterial strains were isolated from mercury- contaminated gold mine sites in Bandung, West Java Province, Indonesia. The bacteria (designated strains SKCSH1- SKCSH10) were capable of growing well at ~200 ppm of HgCl2 except for strain SKCSH8, which was able to grow at 550 ppm HgCl2. The bacteria were mesophilic and grew optimally at 1% NaCl at neutral pH with the optimal growth temperature of 25-37 oC. Phenotypic characterization and phylogenetic analysis based on the 16S rRNA gene sequence indicated that the isolates were closely related to the family Xanthomonadaceae, Aeromonadaceae, and Pseudomonadaceae and they were identified as Pseudomonas spp., Stenotrophomonas sp., and Aeromonas sp. Eight bacterial strains were shown to belong to the Pseudomonas branch, one strain to the Stenotrophomonas branch and one strain to the Aeromonas branch of the γ-Proteobacteria.
    [Show full text]
  • The Ever-Expanding Pseudomonas Genus: Description of 43
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 July 2021 doi:10.20944/preprints202107.0335.v1 Article The Ever-Expanding Pseudomonas Genus: Description of 43 New Species and Partition of the Pseudomonas Putida Group Léa Girard1+, Cédric Lood1,2+, Monica Höfte3, Peter Vandamme4, Hassan Rokni-Zadeh5, Vera van Noort1,6, Rob Lavigne2*, René De Mot1,* 1 Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Aren- berg 20, 3001 Leuven, Belgium; [email protected] (L.G.), [email protected] (C.L.), [email protected] (V.v.N.) 2 Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium; [email protected] 3 Department of Plants and Crops, Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium 4 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; [email protected] 5 Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; [email protected] 6 Institute of Biology, Leiden University, Sylviusweg 72, 2333 Leiden, The Netherlands + The authors contributed equally to this work. * Correspondence: [email protected], +3216379524; [email protected] ; Tel.: +3216329681 Abstract: The genus Pseudomonas hosts an extensive genetic diversity and is one of the largest genera among Gram-negative bacteria. Type strains of Pseudomonas are well-known to represent only a small fraction of this diversity and the number of available Pseudomonas genome sequences is increasing rapidly. Consequently, new Pseudomonas species are regularly reported and the number of species within the genus is in constant evolution.
    [Show full text]
  • Università Degli Studi Di Padova Dipartimento Di Biomedicina Comparata Ed Alimentazione
    UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI BIOMEDICINA COMPARATA ED ALIMENTAZIONE SCUOLA DI DOTTORATO IN SCIENZE VETERINARIE Curriculum Unico Ciclo XXVIII PhD Thesis INTO THE BLUE: Spoilage phenotypes of Pseudomonas fluorescens in food matrices Director of the School: Illustrious Professor Gianfranco Gabai Department of Comparative Biomedicine and Food Science Supervisor: Dr Barbara Cardazzo Department of Comparative Biomedicine and Food Science PhD Student: Andreani Nadia Andrea 1061930 Academic year 2015 To my family of origin and my family that is to be To my beloved uncle Piero Science needs freedom, and freedom presupposes responsibility… (Professor Gerhard Gottschalk, Göttingen, 30th September 2015, ProkaGENOMICS Conference) Table of Contents Table of Contents Table of Contents ..................................................................................................................... VII List of Tables............................................................................................................................. XI List of Illustrations ................................................................................................................ XIII ABSTRACT .............................................................................................................................. XV ESPOSIZIONE RIASSUNTIVA ............................................................................................ XVII ACKNOWLEDGEMENTS ....................................................................................................
    [Show full text]
  • Pseudomonas Diversity Within Urban Freshwaters
    fmicb-10-00195 February 14, 2019 Time: 16:57 # 1 ORIGINAL RESEARCH published: 15 February 2019 doi: 10.3389/fmicb.2019.00195 Pseudomonas Diversity Within Urban Freshwaters Mary Batrich1, Laura Maskeri2, Ryan Schubert2,3, Brian Ho2,3, Melanie Kohout3, Malik Abdeljaber3, Ahmed Abuhasna3, Mutah Kholoki3, Penelope Psihogios3, Tahir Razzaq3, Samrita Sawhney3, Salah Siddiqui3, Eyad Xoubi3, Alexandria Cooper3, Thomas Hatzopoulos4 and Catherine Putonti2,3,4,5* 1 Niehoff School of Nursing, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States, 2 Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States, 3 Department of Biology, Loyola University Chicago, Chicago, IL, United States, 4 Department of Computer Science, Loyola University Chicago, Chicago, IL, United States, 5 Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States Freshwater lakes are home to bacterial communities with 1000s of interdependent species. Numerous high-throughput 16S rRNA gene sequence surveys have provided insight into the microbial taxa found within these waters. Prior surveys of Lake Michigan waters have identified bacterial species common to freshwater lakes as well as species likely introduced from the urban environment. We cultured bacterial isolates from Edited by: George S. Bullerjahn, samples taken from the Chicago nearshore waters of Lake Michigan in an effort to look Bowling Green State University, more closely at the genetic diversity of species found there within. The most abundant United States genus detected was Pseudomonas, whose presence in freshwaters is often attributed to Reviewed by: storm water or runoff. Whole genome sequencing was conducted for 15 Lake Michigan Hans Wildschutte, Bowling Green State University, Pseudomonas strains, representative of eight species and three isolates that could United States not be resolved with named species.
    [Show full text]
  • Isolation and Identification of Endophytic Bacteria from Mycorrhizal Tissues of Terrestrial Orchids from Southern Chile
    diversity Article Isolation and Identification of Endophytic Bacteria from Mycorrhizal Tissues of Terrestrial Orchids from Southern Chile Héctor Herrera 1 , Tedy Sanhueza 1, AlžbˇetaNovotná 2, Trevor C. Charles 3 and Cesar Arriagada 1,* 1 Laboratorio de Biorremediación, Facultad de Ciencias Agropecuarias y Forestales, Departamento de Ciencias Forestales, Universidad de La Frontera, 4811230 Temuco, Chile; [email protected] (H.H.); [email protected] (T.S.) 2 Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceskˇ é Budˇejovice,Czech Republic; [email protected] 3 Department of Biology, University of Waterloo, University Avenue West, Waterloo, ON N2L 3G1, Canada; [email protected] * Correspondence: [email protected]; Tel.: +56-045-232-5635; Fax: +56-045-234-1467 Received: 24 December 2019; Accepted: 24 January 2020; Published: 30 January 2020 Abstract: Endophytic bacteria are relevant symbionts that contribute to plant growth and development. However, the diversity of bacteria associated with the roots of terrestrial orchids colonizing Andean ecosystems is limited. This study identifies and examines the capabilities of endophytic bacteria associated with peloton-containing roots of six terrestrial orchid species from southern Chile. To achieve our goals, we placed superficially disinfected root fragments harboring pelotons on oatmeal agar (OMA) with no antibiotic addition and cultured them until the bacteria appeared. Subsequently, they were purified and identified using molecular tools and examined for plant growth metabolites production and antifungal activity. In total, 168 bacterial strains were isolated and assigned to 8 OTUs. The orders Pseudomonadales, Burkholderiales, and Xanthomonadales of phylum Proteobacteria were the most frequent. The orders Bacillales and Flavobacteriales of the phylla Firmicutes and Bacteroidetes were also obtained.
    [Show full text]