To Obtain Approval for Projects to Develop Genetically Modified Organisms in Containment
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Rhodoglobus Vestalii Gen. Nov., Sp. Nov., a Novel Psychrophilic Organism Isolated from an Antarctic Dry Valley Lake
International Journal of Systematic and Evolutionary Microbiology (2003), 53, 985–994 DOI 10.1099/ijs.0.02415-0 Rhodoglobus vestalii gen. nov., sp. nov., a novel psychrophilic organism isolated from an Antarctic Dry Valley lake Peter P. Sheridan,1 Jennifer Loveland-Curtze,2 Vanya I. Miteva2 and Jean E. Brenchley2 Correspondence 1Department of Biological Sciences, PO Box 8007, Idaho State University, Pocatello, Vanya I. Miteva ID 83209, USA [email protected] 2Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA A novel, psychrophilic, Gram-positive bacterium (designated strain LV3T) from a lake near the McMurdo Ice Shelf, Antarctica, has been isolated and characterized. This organism formed red-pigmented colonies, had an optimal growth temperature of 18 ˚C and grew on a variety of media between ”2 and 21 ˚C. Scanning electron micrographs of strain LV3T that showed small rods with unusual bulbous protuberances during all phases of growth were of particular interest. The G+C content of the genomic DNA was approximately 62 mol%. The cell walls contained ornithine as the diamino acid. The major fatty acids were anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. Cells grown at ”2 ˚C contained significant amounts of anteiso-C15 : 1. The major menaquinones found in strain LV3T were MK-11 and MK-12. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain LV3T was a member of the family Microbacteriaceae and related to, but distinct from, organisms belonging to the genera Agreia, Leifsonia and Subtercola.In addition, alignments of 16S rRNA sequences showed that the sequence of strain LV3T contained a 13 bp insertion that was found in only a few related sequences. -
Corynebacterium Sp.|NML98-0116
1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album -
Characterization of a Microbial Community Capable of Nitrification At
Bioresource Technology 101 (2010) 491–500 Contents lists available at ScienceDirect Bioresource Technology journal homepage: www.elsevier.com/locate/biortech Characterization of a microbial community capable of nitrification at cold temperature Thomas F. Ducey *, Matias B. Vanotti, Anthony D. Shriner, Ariel A. Szogi, Aprel Q. Ellison Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service, USDA, 2611 West Lucas Street, Florence, SC 29501, United States article info abstract Article history: While the oxidation of ammonia is an integral component of advanced aerobic livestock wastewater Received 5 February 2009 treatment, the rate of nitrification by ammonia-oxidizing bacteria is drastically reduced at colder temper- Received in revised form 30 July 2009 atures. In this study we report an acclimated lagoon nitrifying sludge that is capable of high rates of nitri- Accepted 30 July 2009 fication at temperatures from 5 °C (11.2 mg N/g MLVSS/h) to 20 °C (40.4 mg N/g MLVSS/h). The Available online 5 September 2009 composition of the microbial community present in the nitrifying sludge was investigated by partial 16S rRNA gene sequencing. After DNA extraction and the creation of a plasmid library, 153 partial length Keywords: 16S rRNA gene clones were sequenced and analyzed phylogenetically. Over 80% of these clones were Nitrite affiliated with the Proteobacteria, and grouped with the b- (114 clones), - (7 clones), and -classes (2 Ammonia-oxidizing bacteria c a Nitrosomonas clones). The remaining clones were affiliated with the Acidobacteria (1 clone), Actinobacteria (8 clones), Activated sludge Bacteroidetes (16 clones), and Verrucomicrobia (5 clones). The majority of the clones belonged to the genus 16S rRNA gene Nitrosomonas, while other clones affiliated with microorganisms previously identified as having floc forming or psychrotolerance characteristics. -
Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample
geosciences Article Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample Andrey A. Belov 1,*, Vladimir S. Cheptsov 1,2 , Elena A. Vorobyova 1,2, Natalia A. Manucharova 1 and Zakhar S. Ezhelev 1 1 Soil Science Faculty, Lomonosov Moscow State University, Moscow 119991, Russia; [email protected] (V.S.C.); [email protected] (E.A.V.); [email protected] (N.A.M.); [email protected] (Z.S.E.) 2 Space Research Institute, Russian Academy of Sciences, Moscow 119991, Russia * Correspondence: [email protected]; Tel.: +7-917-584-44-07 Received: 28 February 2019; Accepted: 8 April 2019; Published: 10 April 2019 Abstract: The arid Mojave Desert is one of the most significant terrestrial analogue objects for astrobiological research due to its genesis, mineralogy, and climate. However, the knowledge of culturable bacterial communities found in this extreme ecotope’s soil is yet insufficient. Therefore, our research has been aimed to fulfil this lack of knowledge and improve the understanding of functioning of edaphic bacterial communities of the Central Mojave Desert soil. We characterized aerobic heterotrophic soil bacterial communities of the central region of the Mojave Desert. A high total number of prokaryotic cells and a high proportion of culturable forms in the soil studied were observed. Prevalence of Actinobacteria, Proteobacteria, and Firmicutes was discovered. The dominance of pigmented strains in culturable communities and high proportion of thermotolerant and pH-tolerant bacteria were detected. Resistance to a number of salts, including the ones found in Martian regolith, as well as antibiotic resistance, were also estimated. -
Taxonomy and Systematics of Plant Probiotic Bacteria in the Genomic Era
AIMS Microbiology, 3(3): 383-412. DOI: 10.3934/microbiol.2017.3.383 Received: 03 March 2017 Accepted: 22 May 2017 Published: 31 May 2017 http://www.aimspress.com/journal/microbiology Review Taxonomy and systematics of plant probiotic bacteria in the genomic era Lorena Carro * and Imen Nouioui School of Biology, Newcastle University, Newcastle upon Tyne, UK * Correspondence: Email: [email protected]. Abstract: Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics. Keywords: phylogeny; plant; probiotic; PGPR; IAA; ACC; genome; metagenomics Abbreviations: ACC 1-aminocyclopropane-1-carboxylate ANI average nucleotide identity FAO Food and Agriculture Organization DDH DNA-DNA hybridization IAA indol acetic acid JA jasmonic acid OTUs Operational taxonomic units NGS next generation sequencing PGP plant growth promoters WHO World Health Organization PGPR plant growth-promoting rhizobacteria 384 1. -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 1 Microalgae 2 Richard G. Do
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley, -
(Phaseolus Vulgaris) in Native and Agricultural Soils from Colombia Juan E
Pérez-Jaramillo et al. Microbiome (2019) 7:114 https://doi.org/10.1186/s40168-019-0727-1 RESEARCH Open Access Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia Juan E. Pérez-Jaramillo1,2,3, Mattias de Hollander1, Camilo A. Ramírez3, Rodrigo Mendes4, Jos M. Raaijmakers1,2* and Víctor J. Carrión1,2 Abstract Background: Modern crop varieties are typically cultivated in agriculturally well-managed soils far from the centers of origin of their wild relatives. How this habitat expansion impacted plant microbiome assembly is not well understood. Results: Here, we investigated if the transition from a native to an agricultural soil affected rhizobacterial community assembly of wild and modern common bean (Phaseolus vulgaris) and if this led to a depletion of rhizobacterial diversity. The impact of the bean genotype on rhizobacterial assembly was more prominent in the agricultural soil than in the native soil. Although only 113 operational taxonomic units (OTUs) out of a total of 15,925 were shared by all eight bean accessions grown in native and agricultural soils, this core microbiome represented a large fraction (25.9%) of all sequence reads. More OTUs were exclusively found in the rhizosphere of common bean in the agricultural soil as compared to the native soil and in the rhizosphere of modern bean accessions as compared to wild accessions. Co-occurrence analyses further showed a reduction in complexity of the interactions in the bean rhizosphere microbiome in the agricultural soil as compared to the native soil. Conclusions: Collectively, these results suggest that habitat expansion of common bean from its native soil environment to an agricultural context had an unexpected overall positive effect on rhizobacterial diversity and led to a stronger bean genotype-dependent effect on rhizosphere microbiome assembly. -
Distribution of Pseudomonas Species in a Dairy Plant Affected By
Italian Journal of Food Safety 2014; volume 3:1722 Distribution of Pseudomonas aerobic, heterotrophic, with high adaptability, high metabolic versatility and ability to colo- Correspondence: Francesco Chiesa, species in a dairy plant affected nize various natural environments. The genus Dipartimento di Scienze Veterinarie, Università by occasional blue Pseudomonas has repeatedly undergone taxo- degli Studi di Torino, Largo Paolo Braccini 2, discoloration nomic revisions. Pseudomonas species were 10095 Grugliasco (TO), Italy. initially grouped on the basis of the results fo Tel. +39.011.6709334 - Fax: +39.011.6709224. E-mail: [email protected] Francesco Chiesa,1 Sara Lomonaco,1 conventional phenotypic tests. In 1973, Daniele Nucera,2 Davide Garoglio,1 Palleroni proposed a classification based on Key words: Pseudomonas, Dairy products, Blue Alessandra Dalmasso,1 Tiziana Civera1 studies of DNA-DNA and DNA-rRNA hybridiza- discoloration. tion. In this way, Pseudomonas species were 1 Dipartimento di Scienze Veterinarie, classified into five clusters based on homology Received for publication: 16 May 2013. Università di Torino; 2Dipartimento di of ribosomal RNA, called RNA similarity Revision received: 17 October 2014. Scienze Agrarie, Forestali e Alimentari, groups. As time passed, the five groups turned Accepted for publication: 17 October 2014. Università di Torino, Italy out to be related to a wide variety of This work is licensed under a Creative Commons Proteobacteria (De Vos and De Ley, 1983). In Attribution 3.0 License (by-nc -
Diversity and Taxonomic Novelty of Actinobacteria Isolated from The
Diversity and taxonomic novelty of Actinobacteria isolated from the Atacama Desert and their potential to produce antibiotics Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel Vorgelegt von Alvaro S. Villalobos Kiel 2018 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: Prof. Dr. Ute Hentschel Humeida Tag der mündlichen Prüfung: Zum Druck genehmigt: 03.12.2018 gez. Prof. Dr. Frank Kempken, Dekan Table of contents Summary .......................................................................................................................................... 1 Zusammenfassung ............................................................................................................................ 2 Introduction ...................................................................................................................................... 3 Geological and climatic background of Atacama Desert ............................................................. 3 Microbiology of Atacama Desert ................................................................................................. 5 Natural products from Atacama Desert ........................................................................................ 9 References .................................................................................................................................. 12 Aim of the thesis ........................................................................................................................... -
Rathayibacter Rathayi Comb , Nov,, Rathayibacter Tritici Comb , Nov,, Rathayibacter Iranicus Comb, Nov., and Six Strains from Annual Grasses H
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1993, p. 143-149 Vol. 43, No. 1 0020-7713/93/010143-07$02.00/0 Copyright 0 1993, International Union of Microbiological Societies Rathayibacter gen, nov., Including the Species Rathayibacter rathayi comb , nov,, Rathayibacter tritici comb , nov,, Rathayibacter iranicus comb, nov., and Six Strains from Annual Grasses H. I. ZGURSKAYA, L. I. EVTUSHENKO," V. N. AKIMOV, AND L. V. KALAKOUTSKII All-Russian Collection of Microorganisms, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia A new genus, Ruthuyibucter, is proposed to accommodate three species of gram-positive, aerobic, coryneform bacteria previously placed in the genus Clavibucter (Ruthuyibucter ruthuyi comb. nov., Ruthuyibucter tritici comb. nov., and Ruthuyibucter irunicus comb. nov.), as well as six strains that were isolated from annual cereal grasses, may be responsible for ryegrass toxicity, and are very similar to the recently described organism Chvibacter toxicus sp. nov. (I. T. Riley and K. M. Ophel, Int. J. Syst. Bacteriol. 42:64-68, 1992). The properties of members of the genus Ruthuyibacter include coryneform morphology, peptidoglycan based on 2,4-diaminobutyric acid (type B2y), predominant menaquinones of the MK-10 type, and phosphatidylglycerol and diphosphatidylglycerol as basic polar lipids. The DNA base compositions range from 63 to 72 mol% G+C. The members of the new genus form a phenetic cluster distinct from Clavibucter spp. at a level -
The Ever-Expanding Pseudomonas Genus: Description of 43
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 July 2021 doi:10.20944/preprints202107.0335.v1 Article The Ever-Expanding Pseudomonas Genus: Description of 43 New Species and Partition of the Pseudomonas Putida Group Léa Girard1+, Cédric Lood1,2+, Monica Höfte3, Peter Vandamme4, Hassan Rokni-Zadeh5, Vera van Noort1,6, Rob Lavigne2*, René De Mot1,* 1 Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Aren- berg 20, 3001 Leuven, Belgium; [email protected] (L.G.), [email protected] (C.L.), [email protected] (V.v.N.) 2 Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium; [email protected] 3 Department of Plants and Crops, Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium 4 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; [email protected] 5 Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; [email protected] 6 Institute of Biology, Leiden University, Sylviusweg 72, 2333 Leiden, The Netherlands + The authors contributed equally to this work. * Correspondence: [email protected], +3216379524; [email protected] ; Tel.: +3216329681 Abstract: The genus Pseudomonas hosts an extensive genetic diversity and is one of the largest genera among Gram-negative bacteria. Type strains of Pseudomonas are well-known to represent only a small fraction of this diversity and the number of available Pseudomonas genome sequences is increasing rapidly. Consequently, new Pseudomonas species are regularly reported and the number of species within the genus is in constant evolution.