Final Report Preliminary Characterization of Co2 Sequestration Potential in New Jersey and the Offshore Coastal Region

Total Page:16

File Type:pdf, Size:1020Kb

Final Report Preliminary Characterization of Co2 Sequestration Potential in New Jersey and the Offshore Coastal Region FINAL REPORT PRELIMINARY CHARACTERIZATION OF CO2 SEQUESTRATION POTENTIAL IN NEW JERSEY AND THE OFFSHORE COASTAL REGION Conducted by the Midwest Regional Carbon Sequestration Partnership (MRCSP) DOE-NETL Cooperative Agreement DE-FC26-05NT42589 Submitted by: New Jersey Geological Survey PO Box 427 Trenton, NJ 08625 Submitted by: Battelle 505 King Avenue Columbus, OH 43201 MRCSP Program Manager: David Ball Prepared for: The U.S. Department of Energy, National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 Program Manager: Traci Rodosta April 21, 2011 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor Battelle, nor any member of the MRCSP makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendations, or favoring by Battelle, members of the MRCSP, the United States Government or any agency thereof. The views and the opinions of authors expressed herein do not necessarily state or reflect those of the members of the MRCSP, the United States Government or any agency thereof. Preliminary Characterization of CO2 Sequestration Potential in New Jersey and the Offshore Coastal Region ii PRELIMINARY CHARACTERIZATION OF CO2 SEQUESTRATION POTENTIAL IN NEW JERSEY AND THE OFFSHORE COASTAL REGION New Jersey Geological Survey Preliminary Characterization of CO2 Sequestration Potential in New Jersey and the Offshore Coastal Region iii STATE OF NEW JERSEY Chris Christie, Governor Department of Environmental Protection Bob Martin, Commissioner Geological Survey Karl Muessig, State Geologist NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION The mission of the New Jersey Department of Environmental Protection (DEP) is to assist the residents of New Jersey in preserving, sustaining, protecting and enhancing the environment to ensure the integration of high environmental quality, public health and economic vitality. NEW JERSEY GEOLOGICAL SURVEY The mission of the New Jersey Geological Survey (NJGS) is to map, research, interpret and provide scientific information regarding the state’s geology and ground-water resources. This information supports the regulatory and planning functions of DEP and other governmental agencies and provides the business community and public with information necessary to address environmental concerns and make economic decisions. Cover illustration: Cross section of coastal plain strata between Maryland and New Jersey Preliminary Characterization of CO2 Sequestration Potential in New Jersey and the Offshore Coastal Region iv CONTENTS FIGURES ....................................................................................................................................... vi TABLES ...................................................................................................................................... viii GLOSSARY OF TERMS .............................................................................................................. ix EXECUTIVE SUMMARY ............................................................................................................ x 1.0 CHARACTERIZATION OF THE CARBON DIOXIDE STORAGE POTENTIAL BENEATH THE NEW JERSEY COASTAL PLAIN .......................................................... 1 1.1 Introduction - Onshore Sequestration ........................................................................... 1 1.2 Geologic Background ................................................................................................... 1 1.3 The Potomac Formation ................................................................................................ 8 1.4 Upper Cretaceous Formations ..................................................................................... 13 1.5 Chronostratigraphic Correlations ................................................................................ 13 1.6 Well-Log Correlations ................................................................................................ 13 1.7 Suitability as a CO2 Injection Target or Seal Unit ...................................................... 35 1.8 A Preliminary Estimate of CO2 Storage Capacity ...................................................... 35 1.9 References ................................................................................................................... 41 2.0 CHARACTERIZATION OF THE CARBON DIOXIDE STORAGE POTENTIAL BENEATH THE CONTINENTAL SHELF AND SLOPE OFFSHORE NEW JERSEY .. 45 2.1 Introduction - Offshore Sequestration ........................................................................ 45 2.2 Geologic Background ................................................................................................. 45 2.3 Sequestration Targets .................................................................................................. 47 2.4 Available Geologic Samples ....................................................................................... 48 2.5 Available Seismic Data ............................................................................................... 50 2.6 Seismic Interpretation ................................................................................................. 51 2.7 Importance of True Depth Evaluation ........................................................................ 54 2.8 Well-Log Correlations ................................................................................................ 54 2.9 Sequestration Potential................................................................................................ 58 2.10 References ................................................................................................................... 59 3.0 CHARACTERIZATION OF THE CARBON DIOXIDE STORAGE POTENTIAL OF THE STOCKTON FORMATION IN THE NEWARK BASIN .................................................. 64 3.1 Introduction - Sequestration in the Late Triassic Stockton Formation ....................... 64 3.2 Geologic Background ................................................................................................. 65 3.3 Geospatial Coordinate Systems and Source Data ....................................................... 65 3.4 Cross-Section Interpretations ...................................................................................... 68 3.5 3D Surface Analyses of the Depth, Thickness, and Volume of the Stockton Formation (below 2,500 ft. MSL) ................................................................................................ 70 3.6 Discussion ................................................................................................................... 77 3.7 References ................................................................................................................... 80 Preliminary Characterization of CO2 Sequestration Potential in New Jersey and the Offshore Coastal Region v 4.0 CHARACTERIZATION OF THE CARBON DIOXIDE STORAGE POTENTIAL IN THE PALEOZOIC AND PRECAMBRIAN ROCKS OF NEW JERSEY .................................. 81 4.1 Introduction - Carbon Sequestration in the Paleozoic and Precambrian Rocks ......... 81 4.2 Geologic Summaries of Units Identified .................................................................... 81 4.3 The Precambrian Unconformity Surface .................................................................... 81 4.4 New Jersey Highlands................................................................................................. 81 4.5 Paleozoic Rocks of the Valley and Ridge, Highlands and Piedmont Provinces ........ 86 4.6 Cambrian Basal Sandstone ......................................................................................... 88 4.7 Basal Sandstone to Knox-Beekmantown Unconformity ............................................ 89 4.8 Knox-Beekmantown Unconformity to Lower Silurian Unconformity ....................... 90 4.9 Lower Silurian Medina Group/”Clinton” Sandstone .................................................. 91 4.10 Niagaran/Lockport Through Onondaga Interval ........................................................ 91 4.11 Lower Devonian Oriskany Group ............................................................................... 93 4.12 Devonian Organic-Rich Shales .................................................................................. 93 4.13 Sequestration in Paleozoic Carbonates Below a Major Thrust Fault ......................... 94 4.14 References ................................................................................................................... 96 FIGURES Figure 1.1. Mid-Atlantic Margin Location Map Showing Existing Deep Sea Drilling Project (DSDP), Atlantic Margin ............................................................................... 3 Figure 1.2. New Jersey Coastal Plain Location Map Showing Wells Used to Construct Cross Sections ............................................................................................................ 4 Figure 1.3. Cross Section Through
Recommended publications
  • RI37 Stratigraphic Nomenclature Of
    ,--' ( UNIVERSITY OF DELAWARE DELAWARE GEOLOGICAL SURVEY REPORT OF INVESTIGATIONS NO.37 STRATIGRAPHIC NOMENCLATURE OF NONMARINE CRETACEOUS ROCKS OF INNER MARGIN OF COASTAL PLAIN IN DELAWARE AND ADJACENT STATES BY ROBERT R. JORDAN STATE OF DELAWARE.. NEWARK, DELAWARE JUNE 1983 STRATIGRAPHIC NOMENCLATURE OF NONMARINE CRETACEOUS ROCKS OF INNER MARGIN OF COASTAL PLAIN IN DELAWARE AND ADJACENT STATES By Robert R. Jordan Delaware Geological Survey June 1983 TABLE OF CONTENTS Page ABSTRACT. ....... 1 INTRODUCTION ..... 2 Purpose and Scope. 2 Acknowledgments.. 4 REGIONAL SETTING. 4 Regional Relationships . 4 Structural Features. 5 DESCRIPTIONS OF UNITS .. 8 Historical Summary 8 Potomac Formation. 13 Nomenclature. 13 Extent. 13 Lithology . 14 Patuxent Formation . 18 Nomenclature. 18 Extent.. 18 Lithology .... 18 Arundel Formation. 19 Nomenclature.. 19 Extent. .• 19 Lithology • 20 Page Patapsco Formation. .. 20 Nomenclature . 20 Extent .. 20 Lithology.. 20 Raritan Formation . 21 Nomenclature .. 21 Extent .. 22 Lithology.. 23 Magothy Formation .. 24 Nomenclature . 24 Extent .. 24 Lithology.. 25 ENVIRONMENTS OF DEPOSITION 28 AGES .... 29 SUBDIVISIONS AND CORRELATIONS .. 32 REFERENCES . 34 ILLUSTRATIONS Figure 1. Geologic map of nonmarine Cretaceous deposits .. ..•.• •.. 3 2. Structural features of the Coastal Plain. ............ 6 3. Schematic diagram of lateral and vertical relationships of nonmarine Cretaceous deposits•....•... 34 TABLES Page Table 1. Usage of group and formation names. 9 STRATIGRAPHIC NOMENCLATURE OF NONMARINE CRETACEOUS ROCKS OF INNER MARGIN OF COASTAL PLAIN IN DELAWARE AND ADJACENT STATES ABSTRACT Rocks of Cretaceous age deposited in continental and marginal environments, and now found along the inner edge of the northern Atlantic Coastal Plain, have historically been classified as the Potomac Group and the Potomac, Patuxent, Arundel, Patapsco, Raritan, and Magothy forma­ tions.
    [Show full text]
  • Bedrock Geologic Map of the Monmouth Junction Quadrangle, Water Resources Management U.S
    DEPARTMENT OF ENVIRONMENTAL PROTECTION Prepared in cooperation with the BEDROCK GEOLOGIC MAP OF THE MONMOUTH JUNCTION QUADRANGLE, WATER RESOURCES MANAGEMENT U.S. GEOLOGICAL SURVEY SOMERSET, MIDDLESEX, AND MERCER COUNTIES, NEW JERSEY NEW JERSEY GEOLOGICAL AND WATER SURVEY NATIONAL GEOLOGIC MAPPING PROGRAM GEOLOGICAL MAP SERIES GMS 18-4 Cedar EXPLANATION OF MAP SYMBOLS cycle; lake level rises creating a stable deep lake environment followed by a fall in water level leading to complete Cardozo, N., and Allmendinger, R. W., 2013, Spherical projections with OSXStereonet: Computers & Geosciences, v. 51, p. 193 - 205, doi: 74°37'30" 35' Hill Cem 32'30" 74°30' 5 000m 5 5 desiccation of the lake. Within the Passaic Formation, organic-rick black and gray beds mark the deep lake 10.1016/j.cageo.2012.07.021. 32 E 33 34 535 536 537 538 539 540 541 490 000 FEET 542 40°30' 40°30' period, purple beds mark a shallower, slightly less organic-rich lake, and red beds mark a shallow oxygenated 6 Contacts 100 M Mettler lake in which most organic matter was oxidized. Olsen and others (1996) described the next longer cycle as the Christopher, R. A., 1979, Normapolles and triporate pollen assemblages from the Raritan and Magothy formations (Upper Cretaceous) of New 6 A 100 I 10 N Identity and existance certain, location accurate short modulating cycle, which is made up of five Van Houten cycles. The still longer in duration McLaughlin cycles Jersey: Palynology, v. 3, p. 73-121. S T 44 000m MWEL L RD 0 contain four short modulating cycles or 20 Van Houten cycles (figure 1).
    [Show full text]
  • Lancaster County Geology
    LancasterLancaster CountyCounty GeologyGeology gfgh µ OverOver TopographicTopographic ReliefRelief Om Miles Í897 0 10 hg Lebanon County Adamstown ¦¨§76 ! Berks County Oha ! Oo Denver ab322 Ephrata Csc Í501 ! Í72 TRh 272 TRn Oco Lititz Í ! Akron Elizabethtown Manheim ! Dauphin County! ! TRhc Cr TRs c Os Rn ! T Terre Hill TRg Trd 322 772 ab 10 Í 222 625 Í ab Í897 Í Í283 Ohm Í230 Oan Í241 East New Holland Oe 722 Petersburg Í Cbs ! Mount Joy ! ! Czc Cch Í23 Cm gga fl R 743 T Í Csb gg pg ggd Í441 Ck Cl 772 72 Í 23 Í ! Í Ca Marietta Ch Lancaster Mountville ! 340 ! Í Columbia 30 ! ! ba Í462 Í462 ab30 Í999 Millersville Ccc Strasburg ! ! Cv Í741 Í741 Í272 41 Í County Chester 896 222 Í gn Christiana ba mg ! oct Cah Í372 S u sq u e h a n n a R iv e r Y o rk C o u n ty gqm LEGEND COUNTY BOUNDARIES Í324 Source: Lancaster County GIS, Copyright (c) 2019 MAJOR ROADS This map to be used for reference or illustrative purposes only. This map FAULT is not a legally recorded plan, survey, or engineering schematic Quarryville and it is not intended to be used as such. For complete disclaimer see: RIVERS AND STREAMS ! http://www.co.lancaster.pa.us/gisdisclaimer DIKE wc ORDOVICIAN Í472 Oan, ANNVILLE FORMATION LIMESTONE TRIASSIC 372 Oco, COCALICO FORMATION DARK GRAY SHALE TRfl, LIMESTONE FANGLOMERATE Í TRg, GETTYSBURG FORMATION SHALE-SANDSTONE Oe, EPLER FORMATION LIMESTONE TRh, HAMMER CREEK FORMATION SANDSTONE-SHALE Oha, ANNVILLE, HERSHEY, AND MYERSTOWN FORMATION TRhc, HAMMER CREEK QUARTZ-CONGLOMERATE Ohm, HERSHEY AND MYERSTOWN FORMATION LIMESTONE 272 TRn, NEW
    [Show full text]
  • THE JOURNAL of GEOLOGY March 1990
    VOLUME 98 NUMBER 2 THE JOURNAL OF GEOLOGY March 1990 QUANTITATIVE FILLING MODEL FOR CONTINENTAL EXTENSIONAL BASINS WITH APPLICATIONS TO EARLY MESOZOIC RIFTS OF EASTERN NORTH AMERICA' ROY W. SCHLISCHE AND PAUL E. OLSEN Department of Geological Sciences and Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964 ABSTRACT In many half-graben, strata progressively onlap the hanging wall block of the basins, indicating that both the basins and their depositional surface areas were growing in size through time. Based on these con- straints, we have constructed a quantitative model for the stratigraphic evolution of extensional basins with the simplifying assumptions of constant volume input of sediments and water per unit time, as well as a uniform subsidence rate and a fixed outlet level. The model predicts (1) a transition from fluvial to lacustrine deposition, (2) systematically decreasing accumulation rates in lacustrine strata, and (3) a rapid increase in lake depth after the onset of lacustrine deposition, followed by a systematic decrease. When parameterized for the early Mesozoic basins of eastern North America, the model's predictions match trends observed in late Triassic-age rocks. Significant deviations from the model's predictions occur in Early Jurassic-age strata, in which markedly higher accumulation rates and greater lake depths point to an increased extension rate that led to increased asymmetry in these half-graben. The model makes it possible to extract from the sedimentary record those events in the history of an extensional basin that are due solely to the filling of a basin growing in size through time and those that are due to changes in tectonics, climate, or sediment and water budgets.
    [Show full text]
  • Bulletin 52. the Stratigraphy, Fauna and Correlation of The
    52 -. BULLETIN~ .. _GEOLOGIC SERIES The Str:;ttigraphy, Fauna _ and Correlation of the Vincentown Formation ' \ I , I by KATHERINE FIEI;DING GREACE~ "· ' . ' DEPARTMENT OF ; .. CONSERVATION- AND DEVELOPMENT STATE OF NEW JERSEY' ' _,. CHARLES P. WrLBEJ!, Director and Chief of the Division of · · · - · ' Forests and Parks · 1 . ,MEipiDITH K JoHNSON,· Chief of the Division of Geology ' · and Topography _, Trenton,' N. J. 194i . ' NEW JERSEY GEOLOGICAL SURVEY BULLETIN 52 GEOLOGIC SERIES The Stratigraphy, Fauna and Correlation of the Vincentown Formation hy KATHERINE FIELDING GREAOEN DEPARTMENT OF CONSERVATION AND DEVELOPMENT STATE OF NEW JERSEY CHARLES P. WILBER, Director anrl Chief of the Division of Forests and Parks MEREDITH E . .TOW, SON, Chief of the Division of Geology and 'ropography Trenton, N. J. 1941 NEW JERSEY GEOLOGICAL SURVEY BOARD OF CONSERVATION AND DEVELOPMENT State House Annex, Trenton, N.J. CoT •. H. JJ. ?IIOELLER, Presldant . ....................... :Millburn A1n'HLlll J. CoLLrxs, JR., ........................... :;\loorestmrJJ \Vn1.1.-Ut C. COPE ...................... _ ........... Glen l{idge HciRRY L. DERRY ............•.........•..•.......... )fontclair JLIRTIN J. HoGENCAl!P .............................. Glen Rock \V. STEW.ART HOI.LJ)[GSHEAD .....•..•.................. Riverton CHARLES A. MEYER ..•.•.•••••..••.•..••.............. :\ndover OWEN WrNSTO" ...•...............•........•........ Mendham 2 NEW JERSEY GEOLOGICAL SURVEY ----------------------------------- LETTER OF TRANSMITTAL March 15, 1941. Mr. Charles P.
    [Show full text]
  • Term Behaviour of the Planets − Scale and the Long
    Downloaded from rsta.royalsocietypublishing.org on January 19, 2012 Long-period Milankovitch cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the Early Mesozoic time−scale and the long −term behaviour of the planets Paul E. Olsen and Dennis V. Kent Phil. Trans. R. Soc. Lond. A 1999 357, 1761-1786 doi: 10.1098/rsta.1999.0400 Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand Email alerting service corner of the article or click here To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions Downloaded from rsta.royalsocietypublishing.org on January 19, 2012 Long-period Milankovitch cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the Early Mesozoic time-scale and the long-term behaviour of the planets By Paul E. Olsen1 and Dennis V. Kent2 1Lamont-Doherty Earth Observatory of Columbia University, Rt 9W, Palisades, NY 10964, USA ([email protected]) 2Department of Geological Sciences, Rutgers University, Piscataway, NJ 08854, USA and Lamont-Doherty Earth Observatory of Columbia University, Rt 9W, Palisades, NY 10964, USA ([email protected]) During the Late Triassic and Early Jurassic, the Newark rift basin of the northeastern US accumulated in excess of 5 km of continental, mostly lacustrine, strata that show a profound cyclicity caused by the astronomical forcing of tropical climate. The Newark record is known virtually in its entirety as a result of scientific and other coring and provides what is arguably one of the longest records of climate cyclicity available.
    [Show full text]
  • New Decapods from the Navidad Formation (Miocene) of Chile
    JOURNAL OF CRUSTACEAN BIOLOGY, 25(3): 427–449, 2005 NEW DECAPODS FROM THE NAVIDAD FORMATION (MIOCENE) OF CHILE Rodney M. Feldmann, Carrie E. Schweitzer, and Alfonso Encinas (RMF, correspondence) Department of Geology, Kent State University, Kent, Ohio 44242, U.S.A. ([email protected]); (CES) Department of Geology, Kent State University Stark Campus, Canton, Ohio 44720, U.S.A. ([email protected]); (AE) Universidad de Chile, Departamento de Geologı´a, Casilla 13518, Correo 21, Santiago, Chile ([email protected]) ABSTRACT A new Miocene decapod fauna is described from the Navidad Formation of coastal Chile. The fauna includes five callianassoid taxa, none of which is preserved sufficiently to identify to species level. New species include Calappilia? chilensis, Hepatus spinimarginatus, Proterocarcinus navidad, Pilumnus cucaoensis, and Pinnixa navidadensis. A possible rhizopine member of the Pilumnidae Samouelle, 1819, is described. Trichopeltarion levis Casadı´o et al., 2004, previously known from the late Oligocene of western Argentina, was also recovered from these rocks. Calappa circularis Beurlen, from the lower Miocene Pirabas Formation in Brazil, is herein referred to Calappilia. This report greatly increases the known number of fossil decapods from Chile and sets the stage for paleobiogeographic comparison of the decapod faunas of Chile and Argentina. The Neogene rock sequence in Chile is largely confined to M.S. thesis, added Callianassa sp. and a new species of crab about seven basins along the modern Pacific Ocean to the list. That material along with the newly collected (Ceccioni, 1980). These basins have been subject to extreme specimens will be discussed herein. vertical motion during the Neogene (Martı´nez-Pardo, 1990) so that rocks have been deposited at depths ranging from GEOLOGICAL SETTING shallow, inner shelf to bathyal.
    [Show full text]
  • Jahresbericht 2013
    Staatliches Museum für Naturkunde Stuttgart Jahresbericht Sammeln Bewahren Forschen Vermitteln 13 Impressum Herausgeber Prof. Dr. Johanna Eder Direktorin Staatliches Museum für Naturkunde Stuttgart Rosenstein 1 70191 Stuttgart Redaktion M.Sc. Lena Kempener Staatliches Museum für Naturkunde Stuttgart Jahresbericht/Dokumentarische Ausgabe ISSN 2191-7817 Berichtsjahr 2013, erschienen 2014 Copyright Diese Zeitschrift ist urheberrechtlich geschützt. Eine Verwertung ist nur mit schriftlicher Genehmi- gung des Herausgebers gestattet. Bildnachweis Coverfotos: U.Schmid (o.l.), U. Stübler (o.r.), S. Leidenroth (u.l.), M. Wahler (u.r.) Inhaltsverzeichnis 2 INHALTSVERZEICHNIS EDITORIAL 4 1 FORSCHUNG 6 1.1 Forschungsprojekte 6 1.1.1 Drittmittel-finanziert 6 1.1.2 Nicht Drittmittel-finanziert 8 1.2 Umfangreiche Freilandarbeiten, Grabungen 13 1.3 Studienaufenthalte 14 1.4 Tagungsbeiträge 15 1.4.1 International 15 1.4.2 National 17 1.5 Sonstige wissenschaftliche Vorträge 18 1.6 Organisation von Tagungen und Workshops 19 1.7 Organisierte wissenschaftliche Exkursionen 19 1.8 Gastforscher 20 1.8.1 National 20 1.8.2 International 22 2 SAMMLUNG UND BIBLIOTHEK 24 2.1 Bedeutende Sammlungsarbeiten 24 2.1.1 Wissenschaftliche Arbeiten 24 2.1.2 Präparatorische und konservatorische Arbeiten 25 2.1.3 Elektronische Sammlungserfassung 28 2.2 Bedeutende Sammlungszugänge 28 2.3 Führungen hinter die Kulissen 29 2.4 Bibliothek und Archiv 30 3 BILDUNG UND ÖFFENTLICHKEITSARBEIT 30 3.1 Führungen und Projekte 30 3.1.1 Dauerausstellung 30 3.1.2 Sonderausstellung 31 3.1.3 Neues
    [Show full text]
  • Ii. Natural Resources of the Greenwood Lake Watershed
    II. NATURAL RESOURCES II. NATURAL RESOURCES OF THE GREENWOOD LAKE WATERSHED A. LAND RESOURCES Geologic History The Greenwood Lake Watershed is located in the Highlands Physiographic Province, as shown in Figure II.A-1. The Highlands are underlain by the oldest rocks in New Jersey. These Precambrian igneous and metamorphic rocks were formed between 1.3 billion and 750 million years ago by the melting and recrystallization of sedimentary rocks that were deeply buried, subjected to high pressure and temperature, and intensely deformed.1 The Precambrian rocks are interrupted by several elongate northeast-southwest trending belts of folded Paleozoic sedimentary rocks equivalent to the rocks of the Valley and Ridge Province. Figure II.A-1 - Physiographic Provinces of New Jersey 1 New Jersey Geological Survey, NJ Department of Environmental Protection. 1999. The Geology of New Jersey. II-1 II. NATURAL RESOURCES The Highlands ridges in New Jersey are a southward continuation of the Green or Taconic Mountains of Vermont and Massachusetts, the New England Upland of Connecticut, and the Hudson Highlands of New York.2 The ridges continue through Pennsylvania to the vicinity of Reading. This Reading Prong of the New England Physiographic Province plunges beneath the surface of younger rocks for a distance of about fifty miles southwest of Reading and reappears where the northern end of the Blue Ridge Mountains begins to rise above the surrounding country. The Blue Ridge Mountains of the Virginia Appalachians, the mountains of New England, and the Highlands of New Jersey and New York all have a similar geologic history and character. Topography The granites and gneisses of the Highlands are resistant to erosion and create a hilly upland dissected by the deep, steep-sided valleys of major streams.3 The Highlands can be characterized as broad high ridges composed of complex folded and faulted crystalline rocks and separated by deep narrow valleys.4 The topography follows the northeast-southwest trend of the geologic structure and rock formations.
    [Show full text]
  • 40Th NYSGA Annual Meeting 1968
    NEW YORK STATE GEOLOGICAL ASSOCIATION GUIDEBOOK TO FIELD EXCURSIONS 40TH ANNUAL MEETING 1968 AT QUEENS COLLEGE CITY UNIVERSITY OF NEW YO_RK FLUSHING, NEW YORK GUIDEBOOK to Field Excursions at the 40th Annual Meeting of the New York State Geological Association May 1968 Robert M. Finks, Editor Host: Department of Geology Queens College of The City University of New York Copies of this guidebook may be purchased from the Permanent Secretary, New York State Geological Association. Address Prof. Philip Hewitt, Department of Geology, State University College at Brockport, N. Y. 2 The organizer of the field trips described in this volume, and of the meeting at which they were given, is Professor Walter S. Newman President, NYSGA, 1968 3 CONTRIBUTING AUTHORS Eugene A. Alexandrov, Queens College G. D. Bennett, U. S. Geological Survey Robert M. Finks, Queens College Leo M. Hall, University of Massachusetts David H. Krinsley, Queens College David J. Leveson, Brooklyn College James P. Minard, U. S. Geological Survey Walter S. Newman, Queens College James P. Owens, U. S. Geological Survey F. J. Pearson, U. S. Geological Survey N. M. Perlmutter, U. S. Geological Survey Nicholas M. Ratcliffe, City College E. Lynn Savage, Brooklyn College Carl K. Seyfert, Buffalo State University College Leslie A. Sirkin, Adelphi University Norman F. Sohl, U. S. Geological Survey David L. Thurber, Queens College Franklyn B. Van Houten, Princeton University 4 PREFACE The papers brought together in this Guidebook merit comparative reading at leisure, for they often bring to bear upon problems of the local geology many independent lines of evidence. Some matters that come immediately to mind out of personal interest are: (1) The relation of the New York City Group to the unmetamorphosed Cambro­ Ordovician sequence (Trips A, C, E, H).
    [Show full text]
  • Progress in the Gondwanan Carboniferous–Permian Palynology and Correlation of the Nilawahan Group of the Salt Range, Pakistan: a Brief Review
    Progress in the Gondwanan Carboniferous–Permian palynology and correlation of the Nilawahan Group of the Salt Range, Pakistan: A brief review Irfan U Jan National Centre of Excellence in Geology, University of Peshawar, Peshawar, Pakistan. e-mail: irfan [email protected] This paper comprises of two sections. The first section describes challenges in the Carboniferous–Permian Gondwanan stratigraphic palynology, and progress in techniques such as presence of the ‘rare-marine intervals’, and ‘radiometric dating’ in some Gondwanan successions, e.g., South Africa, Australia and South America, as tools to confidently calibrate these palynozones. The second section describes devel- opments in the palynological work on the Carboniferous–Permian Nilawahan Group of the Salt Range, Pakistan, and summarises their correlation with the coeval succession of the Gondwana continents and with the Russian/International stages. 1. Introduction hydrocarbon-reserves and also bear remarkable traces of the advance and retreat of the ice from The Salt Range occupies a crucial position in the around the South Polar regions. However, the Salt geological history of Pakistan both in time and Range succession have received limited attention, space. In the time, because the late Palaeozoic although in this tectonic jigsaw puzzle, it repre- stratigraphy of the area represents the end of the sents a place near the very margin of the vast greatest glaciation of the Phanerozoic earth sys- glaciated region (Jan et al., in review). tem, the Carboniferous–Permian, and in space, Previously, some palynological taxonomic work because during that time it lay next to the land- was undertaken on the Salt Range units and mass now represented by Oman, Saudi Arabia attempts were made to understand their strati- and Yemen (Jan 2012; Stephenson et al.
    [Show full text]
  • Bedrock Geologic Map of New Jersey
    O O O 74 00’ BEDROCK GEOLOGIC MAP 75 00’ 74 30’ OF NEW JERSEY DESCRIPTION OF MAP UNITS SUSSEX Sedimentary Rocks Franklin CENOZOIC PASSAIC Mahwah Holocene: beach and Newton 41O 00’ estuarine deposits Andover Paleogene and Neogene: sand, silt, clay Delaware Water Gap Boonton BERGEN MESOZOIC WARREN Paterson Cretaceous: sand, silt, clay Hackensack Jurassic: siltstone, shale, Belvidere MORRIS sandstone, conglomerate ESSEX Morristown Triassic: siltstone, shale, HUDSON Newark sandstone, conglomerate Jersey City Gladstone Phillipsburg PALEOZOIC UNION Devonian: conglomerate, sandstone, Elizabeth shale, limestone Somerville Carteret Silurian: conglomerate, sandstone, Milford shale, limestone HUNTERDON New Brunswick 40O 30’ Ordovician: shale, limestone Flemington SOMERSET Cambrian: limestone, sandstone MIDDLESEX Igneous and Metamorphic Rocks MESOZOIC Jurassic and Triassic: basalt MERCER Jurassic: diabase Freehold MONMOUTH PALEOZOIC N Trenton Asbury Park Ordovician and Cambrian: schist, gneiss MESOPROTEROZOIC marble gneiss, granite O Mount Holly 40 00’ DESCRIPTION OF MAP SYMBOLS Toms River limit of late Wisconsinan glaciation Camden OCEAN limit of Illinoian glaciation BURLINGTON limit of pre-Illinoian glaciation Woodbury CAMDEN GLOUCESTER SALEM Salem O O 39 30’ ATLANTIC 39 30’ Bridgeton Mays Landing ICAL A OG ND L EO W CUMBERLAND G A T Y E E R Atlantic City S S R U E J R V E W E Y N 1835 0 5 10 15 20 mi Department of Environmental Protection CAPE MAY NEW JERSEY GEOLOGICAL AND WATER SURVEY 0 10 20 30 km Cape May 2017 Court House scale 1:1,000,000 39O 00’ O O O O O 76 00’ 75 30’ 75 00’ 74 30’ 74 00’ BEDROCK GEOLOGY OF NEW JERSEY For an area of its size, New Jersey has a uniquely diverse and interesting basalt and diabase are more resistant to erosion than the enclosing sandstone geology.
    [Show full text]