THE JOURNAL of GEOLOGY March 1990
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lesson 3 Forces That Build the Land Main Idea
Lesson 3 Forces That Build the Land Main Idea Many landforms result from changes and movements in Earth’s crust. Objectives Identify types of landforms and the processes that form them. Describe what happens when an earthquake occurs. Vocabulary fault focus aftershock seismic wave epicenter seismograph magnitude vent What forces change Earth’s crust? At transform boundaries, the pieces of rock rub together in a force called shearing, like the blades of a pair of scissors, causing the rock to break. At convergent boundaries, plates collide and this force is called compression, squeezing the rock together. At divergent boundaries, plates separate causing tension, making the crust longer and thinner eventually breaking and creating a fault. Faults are usually located along the boundaries between tectonic plates. Three Kinds of Faults Shearing forms strike-slip faults. Tension forms normal faults. The rock above the fault moves down. Compression forms reverse faults. The rock above the fault moves up. Uplifted Landforms Folded mountains are mostly made up of rock layers folded by being squeezed together. Fault-block mountains are made by huge, tilted blocks of rock separated from the surrounding rock by faults. The Colorado Plateau was formed when rock layers were pushed upward. The Colorado River eventually formed the Grand Canyon. Quick Check Infer Why are faults often produced along plate boundaries? Forces act on the crust most directly at plate boundaries, because these locations are where plates are moving, relative to each other. Critical Thinking Why do some mountains form as folded mountains and others form as fault-block mountains? Compression forces form folded mountains, and tension forms fault- block mountains. -
Potential On-Shore and Off-Shore Reservoirs for CO2 Sequestration in Central Atlantic Magmatic Province Basalts
Potential on-shore and off-shore reservoirs for CO2 sequestration in Central Atlantic magmatic province basalts David S. Goldberga, Dennis V. Kenta,b,1, and Paul E. Olsena aLamont-Doherty Earth Observatory, 61 Route 9W, Palisades, NY 10964; and bEarth and Planetary Sciences, Rutgers University, Piscataway, NJ 08854. Contributed by Dennis V. Kent, November 30, 2009 (sent for review October 16, 2009) Identifying locations for secure sequestration of CO2 in geological seafloor (16) may offer potential solutions to these additional formations is one of our most pressing global scientific problems. issues that are more problematic on land. Deep-sea aquifers Injection into basalt formations provides unique and significant are fully saturated with seawater and typically capped by imper- advantages over other potential geological storage options, includ- meable sediments. The likelihood of postinjection leakage of ing large potential storage volumes and permanent fixation of car- CO2 to the seafloor is therefore low, reducing the potential bon by mineralization. The Central Atlantic Magmatic Prov- impact on natural and human ecosystems (8). Long after CO2 ince basalt flows along the eastern seaboard of the United States injection, the consequences of laterally displaced formation water may provide large and secure storage reservoirs both onshore and to distant locations and ultimately into the ocean, whether by offshore. Sites in the South Georgia basin, the New York Bight engineered or natural outflow systems, are benign. For more than basin, and the Sandy Hook basin offer promising basalt-hosted a decade, subseabed CO2 sequestration has been successfully reservoirs with considerable potential for CO2 sequestration due conducted at >600 m depth in the Utsira Formation as part of to their proximity to major metropolitan centers, and thus to large the Norweigan Sleipner project (17). -
Bedrock Geologic Map of the Monmouth Junction Quadrangle, Water Resources Management U.S
DEPARTMENT OF ENVIRONMENTAL PROTECTION Prepared in cooperation with the BEDROCK GEOLOGIC MAP OF THE MONMOUTH JUNCTION QUADRANGLE, WATER RESOURCES MANAGEMENT U.S. GEOLOGICAL SURVEY SOMERSET, MIDDLESEX, AND MERCER COUNTIES, NEW JERSEY NEW JERSEY GEOLOGICAL AND WATER SURVEY NATIONAL GEOLOGIC MAPPING PROGRAM GEOLOGICAL MAP SERIES GMS 18-4 Cedar EXPLANATION OF MAP SYMBOLS cycle; lake level rises creating a stable deep lake environment followed by a fall in water level leading to complete Cardozo, N., and Allmendinger, R. W., 2013, Spherical projections with OSXStereonet: Computers & Geosciences, v. 51, p. 193 - 205, doi: 74°37'30" 35' Hill Cem 32'30" 74°30' 5 000m 5 5 desiccation of the lake. Within the Passaic Formation, organic-rick black and gray beds mark the deep lake 10.1016/j.cageo.2012.07.021. 32 E 33 34 535 536 537 538 539 540 541 490 000 FEET 542 40°30' 40°30' period, purple beds mark a shallower, slightly less organic-rich lake, and red beds mark a shallow oxygenated 6 Contacts 100 M Mettler lake in which most organic matter was oxidized. Olsen and others (1996) described the next longer cycle as the Christopher, R. A., 1979, Normapolles and triporate pollen assemblages from the Raritan and Magothy formations (Upper Cretaceous) of New 6 A 100 I 10 N Identity and existance certain, location accurate short modulating cycle, which is made up of five Van Houten cycles. The still longer in duration McLaughlin cycles Jersey: Palynology, v. 3, p. 73-121. S T 44 000m MWEL L RD 0 contain four short modulating cycles or 20 Van Houten cycles (figure 1). -
Part 3: Normal Faults and Extensional Tectonics
12.113 Structural Geology Part 3: Normal faults and extensional tectonics Fall 2005 Contents 1 Reading assignment 1 2 Growth strata 1 3 Models of extensional faults 2 3.1 Listric faults . 2 3.2 Planar, rotating fault arrays . 2 3.3 Stratigraphic signature of normal faults and extension . 2 3.4 Core complexes . 6 4 Slides 7 1 Reading assignment Read Chapter 5. 2 Growth strata Although not particular to normal faults, relative uplift and subsidence on either side of a surface breaking fault leads to predictable patterns of erosion and sedi mentation. Sediments will fill the available space created by slip on a fault. Not only do the characteristic patterns of stratal thickening or thinning tell you about the 1 Figure 1: Model for a simple, planar fault style of faulting, but by dating the sediments, you can tell the age of the fault (since sediments were deposited during faulting) as well as the slip rates on the fault. 3 Models of extensional faults The simplest model of a normal fault is a planar fault that does not change its dip with depth. Such a fault does not accommodate much extension. (Figure 1) 3.1 Listric faults A listric fault is a fault which shallows with depth. Compared to a simple planar model, such a fault accommodates a considerably greater amount of extension for the same amount of slip. Characteristics of listric faults are that, in order to maintain geometric compatibility, beds in the hanging wall have to rotate and dip towards the fault. Commonly, listric faults involve a number of en echelon faults that sole into a lowangle master detachment. -
Lancaster County Geology
LancasterLancaster CountyCounty GeologyGeology gfgh µ OverOver TopographicTopographic ReliefRelief Om Miles Í897 0 10 hg Lebanon County Adamstown ¦¨§76 ! Berks County Oha ! Oo Denver ab322 Ephrata Csc Í501 ! Í72 TRh 272 TRn Oco Lititz Í ! Akron Elizabethtown Manheim ! Dauphin County! ! TRhc Cr TRs c Os Rn ! T Terre Hill TRg Trd 322 772 ab 10 Í 222 625 Í ab Í897 Í Í283 Ohm Í230 Oan Í241 East New Holland Oe 722 Petersburg Í Cbs ! Mount Joy ! ! Czc Cch Í23 Cm gga fl R 743 T Í Csb gg pg ggd Í441 Ck Cl 772 72 Í 23 Í ! Í Ca Marietta Ch Lancaster Mountville ! 340 ! Í Columbia 30 ! ! ba Í462 Í462 ab30 Í999 Millersville Ccc Strasburg ! ! Cv Í741 Í741 Í272 41 Í County Chester 896 222 Í gn Christiana ba mg ! oct Cah Í372 S u sq u e h a n n a R iv e r Y o rk C o u n ty gqm LEGEND COUNTY BOUNDARIES Í324 Source: Lancaster County GIS, Copyright (c) 2019 MAJOR ROADS This map to be used for reference or illustrative purposes only. This map FAULT is not a legally recorded plan, survey, or engineering schematic Quarryville and it is not intended to be used as such. For complete disclaimer see: RIVERS AND STREAMS ! http://www.co.lancaster.pa.us/gisdisclaimer DIKE wc ORDOVICIAN Í472 Oan, ANNVILLE FORMATION LIMESTONE TRIASSIC 372 Oco, COCALICO FORMATION DARK GRAY SHALE TRfl, LIMESTONE FANGLOMERATE Í TRg, GETTYSBURG FORMATION SHALE-SANDSTONE Oe, EPLER FORMATION LIMESTONE TRh, HAMMER CREEK FORMATION SANDSTONE-SHALE Oha, ANNVILLE, HERSHEY, AND MYERSTOWN FORMATION TRhc, HAMMER CREEK QUARTZ-CONGLOMERATE Ohm, HERSHEY AND MYERSTOWN FORMATION LIMESTONE 272 TRn, NEW -
Polyphase Laramide Tectonism and Sedimentation in the San Juan Basin, New Mexico Steven M
New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/54 Polyphase Laramide tectonism and sedimentation in the San Juan Basin, New Mexico Steven M. Cather, 2003, pp. 119-132 in: Geology of the Zuni Plateau, Lucas, Spencer G.; Semken, Steven C.; Berglof, William; Ulmer-Scholle, Dana; [eds.], New Mexico Geological Society 54th Annual Fall Field Conference Guidebook, 425 p. This is one of many related papers that were included in the 2003 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. -
Tectonics of the Musandam Peninsula and Northern Oman Mountains: from Ophiolite Obduction to Continental Collision
GeoArabia, 2014, v. 19, no. 2, p. 135-174 Gulf PetroLink, Bahrain Tectonics of the Musandam Peninsula and northern Oman Mountains: From ophiolite obduction to continental collision Michael P. Searle, Alan G. Cherry, Mohammed Y. Ali and David J.W. Cooper ABSTRACT The tectonics of the Musandam Peninsula in northern Oman shows a transition between the Late Cretaceous ophiolite emplacement related tectonics recorded along the Oman Mountains and Dibba Zone to the SE and the Late Cenozoic continent-continent collision tectonics along the Zagros Mountains in Iran to the northwest. Three stages in the continental collision process have been recognized. Stage one involves the emplacement of the Semail Ophiolite from NE to SW onto the Mid-Permian–Mesozoic passive continental margin of Arabia. The Semail Ophiolite shows a lower ocean ridge axis suite of gabbros, tonalites, trondhjemites and lavas (Geotimes V1 unit) dated by U-Pb zircon between 96.4–95.4 Ma overlain by a post-ridge suite including island-arc related volcanics including boninites formed between 95.4–94.7 Ma (Lasail, V2 unit). The ophiolite obduction process began at 96 Ma with subduction of Triassic–Jurassic oceanic crust to depths of > 40 km to form the amphibolite/granulite facies metamorphic sole along an ENE- dipping subduction zone. U-Pb ages of partial melts in the sole amphibolites (95.6– 94.5 Ma) overlap precisely in age with the ophiolite crustal sequence, implying that subduction was occurring at the same time as the ophiolite was forming. The ophiolite, together with the underlying Haybi and Hawasina thrust sheets, were thrust southwest on top of the Permian–Mesozoic shelf carbonate sequence during the Late Cenomanian–Campanian. -
Plate Tectonics
Plate Tectonics Plate Tectonics is a unifying theory that states that the Earth is composed of lithospheric crustal plates that move slowly, change size, and interact with one another. This theory was amalgamated from a variety of studies that began in the early 20th century and culminated in the 1960s. Early Players: Richard Oldham (1858-1936): discovered P Wave Shadow Zones Inge Lehmann (1888-1993): discovered the S Wave Shadow Zone, including the fact that the outer core is liquid Eduard Suess (1831-1914): published internal structure of the Earth, utilizing some of Oldham’s data Andrija Mohorovicic (1857-1936): discovered the seismic discontinuity between the crust and the mantle Beno Gutenberg (1889-1960): found the CMB to be at 2900 km The Great Synthesizer: Alfred Wagener (1880-1930) Book: The Origin of Continents and Oceans (1915) Found six major pieces of evidence the continents move, hence his theory is known as Continental Drift. (Figures 19.2-1911) 1) The shape of the continents: they fit together 2) Paleontological Evidence: found matching fossils on several continents a) Glossopteris: found in rocks of the same age on South America, South Africa, Australia, India and Antarctica b) Lystrosaurus: found in rocks of the same age on Africa, India, also some in Asia and Antarctica c) Mesosaurus: found in rocks of the same age on South America, South Africa d) Cynognathus: found in rocks of the same age on South America, South Africa 3) Glacial Evidence: the glaciers appear to originate from the modern-day oceans (which is impossible) 4) Structure and Rock Type: geologic features end on one continent and reappear on the other (South America and Africa) 5) Paleoclimate Zones: like today, the old Earth had climate zones. -
Geotectonic Model of the Alpine Development of Lakavica Graben in the Eastern Part of the Vardar Zone in the Republic of Macedonia
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UGD Academic Repository Geologica Macedonica, Vol. 27, No. 1, pp. 87–93 (2013) GEOME 2 ISSN 0352 – 1206 Manuscript received: May 17, 2013 UDC: 551.245.03(497.71/.73) Accepted: October 25, 2013 Original scientific paper GEOTECTONIC MODEL OF THE ALPINE DEVELOPMENT OF LAKAVICA GRABEN IN THE EASTERN PART OF THE VARDAR ZONE IN THE REPUBLIC OF MACEDONIA Goše Petrov, Violeta Stojanova, Gorgi Dimov Faculty of Natural and Technical Sciences, “Goce Delčev” University, P.O.Box 201, MK 2000 Štip, Republic of Macedonia [email protected]//[email protected] A b s t r a c t: Lakavica graben is located in the eastern subzone of the Vardar zone, which during the Alpine orogenesis was covered with very complex processes of tectogenesis. On the area of about 200 km2, in the Lakavica graben, are present geological units from the oldest geological periods (Precam- brian) to the youngest (Neogene and Quaternary). Tectonic structure, or rupture tectonic, is very intense developed and gives possibility for analysis of the geotectonic processes in the Alpine orogen phase. This paper presents the possible model for geotectonic processes in the Lakavica graben, according to which can be generalized geotectonic processes in the Vardar zone during the Alpine orogeny. Key words: Lakavica graben; geotectonic model; Alpine orogeny; Vardar zone INTRODUCTION Vardar zone as a tectonic unit, for the first niki Gulf (Greece), than bent eastward and crosses time, is separated and showed on the "Geological- the ophiolite zone Izmir–Ankara (Turkey). -
Constraining Basin Parameters Using a Known Subsidence History
geosciences Article Constraining Basin Parameters Using a Known Subsidence History Mohit Tunwal 1,2,* , Kieran F. Mulchrone 2 and Patrick A. Meere 1 1 School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 TK30 Cork, Ireland; [email protected] 2 School of Mathematical Sciences, University College Cork, Western Gateway Building, Western Road, T12 XF62 Cork, Ireland; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +353-21-490-4580 Received: 5 June 2020; Accepted: 6 July 2020; Published: 9 July 2020 Abstract: Temperature history is one of the most important factors driving subsidence and the overall tectono-stratigraphic evolution of a sedimentary basin. The McKenzie model has been widely applied for subsidence modelling and stretching factor estimation for sedimentary basins formed in an extensional tectonic environment. Subsidence modelling requires values of physical parameters (e.g., crustal thickness, lithospheric thickness, stretching factor) that may not always be available. With a given subsidence history of a basin estimated using a stratigraphic backstripping method, these parameters can be estimated by quantitatively comparing the known subsidence curve with modelled subsidence curves. In this contribution, a method to compare known and modelled subsidence curves is presented, aiming to constrain valid combinations of the stretching factor, crustal thickness, and lithospheric thickness of a basin. Furthermore, a numerical model is presented that takes into account the effect of sedimentary cover on thermal history and subsidence modelling of a basin. The parameter fitting method presented here is first applied to synthetically generated subsidence curves. Next, a case study using a known subsidence curve from the Campos Basin, offshore Brazil, is considered. -
2020 Natural Resources Inventory
2020 NATURAL RESOURCES INVENTORY TOWNSHIP OF MONTGOMERY SOMERSET COUNTY, NEW JERSEY Prepared By: Tara Kenyon, AICP/PP Principal NJ License #33L100631400 Table of Contents EXECUTIVE SUMMARY ............................................................................................................................................... 5 AGRICULTURE ............................................................................................................................................................. 7 AGRICULTURAL INDUSTRY IN AND AROUND MONTGOMERY TOWNSHIP ...................................................... 7 REGULATIONS AND PROGRAMS RELATED TO AGRICULTURE ...................................................................... 11 HEALTH IMPACTS OF AGRICULTURAL AVAILABILITY AND LOSS TO HUMANS, PLANTS AND ANIMALS .... 14 HOW IS MONTGOMERY TOWNSHIP WORKING TO SUSTAIN AND ENHANCE AGRICULTURE? ................... 16 RECOMMENDATIONS AND POTENTIAL PROJECTS .......................................................................................... 18 CITATIONS ............................................................................................................................................................. 19 AIR QUALITY .............................................................................................................................................................. 21 CHARACTERISTICS OF AIR .................................................................................................................................. 21 -
Dynamic Subsidence of Eastern Australia During the Cretaceous
Gondwana Research 19 (2011) 372–383 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Dynamic subsidence of Eastern Australia during the Cretaceous Kara J. Matthews a,⁎, Alina J. Hale a, Michael Gurnis b, R. Dietmar Müller a, Lydia DiCaprio a,c a EarthByte Group, School of Geosciences, The University of Sydney, NSW 2006, Australia b Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA c Now at: ExxonMobil Exploration Company, Houston, TX, USA article info abstract Article history: During the Early Cretaceous Australia's eastward passage over sinking subducted slabs induced widespread Received 16 February 2010 dynamic subsidence and formation of a large epeiric sea in the eastern interior. Despite evidence for Received in revised form 25 June 2010 convergence between Australia and the paleo-Pacific, the subduction zone location has been poorly Accepted 28 June 2010 constrained. Using coupled plate tectonic–mantle convection models, we test two end-member scenarios, Available online 13 July 2010 one with subduction directly east of Australia's reconstructed continental margin, and a second with subduction translated ~1000 km east, implying the existence of a back-arc basin. Our models incorporate a Keywords: Geodynamic modelling rheological model for the mantle and lithosphere, plate motions since 140 Ma and evolving plate boundaries. Subduction While mantle rheology affects the magnitude of surface vertical motions, timing of uplift and subsidence Australia depends on plate boundary geometries and kinematics. Computations with a proximal subduction zone Cretaceous result in accelerated basin subsidence occurring 20 Myr too early compared with tectonic subsidence Tectonic subsidence calculated from well data.