Effects of Wall Roughness on Adverse Pressure Gradient Boundary Layers

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Wall Roughness on Adverse Pressure Gradient Boundary Layers Effects of Wall Roughness on Adverse Pressure Gradient Boundary Layers by Pouya Mottaghian A thesis submitted to the Department of Mechanical and Materials Engineering in conformity with the requirements for the degree of Master of Applied Science Queen's University Kingston, Ontario, Canada December, 2015 Copyright © Pouya Mottaghian, 2015 Abstract Large-eddy Simulations were carried out on a at-plate boundary layer over smooth and rough surfaces in the presence of an adverse pressure gradient, strong enough to induce separation. The inlet Reynolds number (based on freestream velocity and momentum thick- ness at the reference plane) is 2300. A sand-grain roughness model was implemented and spatial-resolution requirements were determined. Two roughness heights were used and a fully-rough ow condition is achieved at the refer- ence plane with roughness Reynolds numbers 60 and 120. As the friction velocity decreases due to the adverse pressure gradient the roughness Reynolds number varies from fully-rough to transitionally rough and smooth regime before the separation. The double-averaging approach illustrates how the roughness contribution decreases before the separation as the dispersive stresses decrease markedly compared to the upstream region. Before the ow detachment, roughness intensies the Reynolds stresses. After the sep- aration, the normal stresses, production and dissipation substantially increase through the adverse pressure gradient region. In the recovery region, the ow is highly three dimensional, as turbulent structures impinge on the wall at the reattachment region. Roughness initially increases the skin friction, then causes it to decrease faster than on a smooth wall, generating a considerably larger recirculation bubble for rough cases with earlier separation and later reattachment; increasing the wall roughness also leads to larger separation bubble. In addition, roughness causes early ow reversal upstream of the real i separation (which occurs when the zero-velocity line moves away from the wall) because the small-scale separation regions downstream of the roughness elements become larger and merge together as a result of the APG. However, this ow reversal remains below the roughness crest. The reasons for the earlier separation are larger momentum decit in rough-wall ows and the shutting down of the production of −hu0v0i both before and after the separation, mainly due to the decrease in the velocity gradient in the outer layer. After the separation, roughness eects can be felt throughout the boundary layer because of the advection of near-wall uid around the recirculation region. ii Acknowledgment I would like to express my sincere gratitude to my advisor Professor Ugo Piomelli for the continuous support of my master's study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my master's study. I am thankful to Junlin Yuan for her support and encouragement whenever I was in need and completion of this project was impossible without her assistance. I would like to thank Amirreza Rouhi, who as a good friend, was always willing to help and give his best suggestions. It would have been a lonely lab without him. I thank my fellow colleagues at Turbulence Simulation and Modelling laboratory Rayhaneh, Rabijit, Wen, Mojtaba and Divya for their help and support in this project. Also I would like to thank High Performance Computing Virtual Laboratory, Queens University site, for the computational support throughout my research. At the end I would like to thank my family; my parents, Nahid and Mohammad Ali, and to my brother, Nima, and my aunt, Jaleh, for supporting me spiritually throughout writing this thesis and my life in general. iii Nomenclature Acronyms APG Adverse pressure gradient CFD Computational uid dynamics DA Double-averaging DNS Direct numerical simulation FPG Favourable pressure gradient IBM Immersed boundary method LES Large-eddy simulation MPI Message passing interface RHS Right-hand-side RMS Root-mean-square RANS Reynolds-averaged Navier-Stokes SFS Sub-lter stress TKE Turbulent kinetic energy ZPG Zero pressure gradient Roman symbols B Mean-velocity prole intercept in the logarithmic region Ce Model parameter iv Cf Friction coecient d Zero-plane displacement Fi IBM body force in i direction G Filter function h Channel half-height H Shape factor Lij Germano identity k Certain quantication of roughness height in an average sense ks Equivalent sand-grain height k+ Roughness Reynolds number kc Roughness crest kR Top of roughness sublayer K Acceleration parameter K Turbulent kinetic energy Lx, Ly, Lz Domain size Nx, Nz Horizontal resolution of a single roughness element P Pressure P Shear production Q Second invariant of the velocity tensor Re Reynolds number Reθ Reynolds number based on θ and U1 Reτ Reynolds number based on channel half height (h) and uτ Sij Strain rate tensor t Time T Total simulation time Tij Resolved turbulent stresses v uτ Friction velocity Ui Mean velocity components Ui;1 Freestream velocity Uc Convection velocity Ucrest Streamwise velocity at roughness crest Uδ Streamwise velocity at boundary layer thickness xi Direction xs Separation location xr Reattachment location Greek symbols ∆x, ∆y, ∆z Grid spacing ∆U + Roughness function ∆ Grid lter width ∆b Test lter width δ Boundary layer thickness δ∗ Displacement thickness δν Viscous length scale Viscous dissipation θ Momentum thickness κ Von Kármán constant ν Kinematic viscosity νt Turbulent eddy-viscosity ρ Density µ Dynamic viscosity τ Total shear stress vi τij Subgrid lter stress a Anisotropic residual-stress tensor τij τw Wall shear stress φ Fraction of a grid cell occupied by uid ! Turbulent vorticity Ω Rotation rate tensor Streamline Others symbols (·) Filtering at grid level (c·) Filtering at test level h(·)i Averaging in time and spanwise (f·) Spatial variation of time-averaged quantity (·)0 Turbulent uctuations (·)+ Non-dimensional quantity normalized by inner scaling (·)o Quantity at reference plane of simulation domain vii Table of Contents Abstract i Acknowledgements iii Nomenclature iv Table of Contents viii List of Tables x List of Figures xi Chapter 1: Introduction . 1 1.1 Motivation . 1 1.2 Literature review . 5 1.3 Objectives . 15 Chapter 2: Problem Formulation . 16 2.1 Introduction . 16 2.2 Governing Equation . 16 2.3 Time-advancement and discretization . 21 2.4 Boundary conditions . 24 viii 2.5 Immersed-boundary method (IBM) . 24 2.6 Calculation of wall shear-stress . 26 2.7 Time averaging and double averaging (DA) . 27 Chapter 3: Model Validation . 29 3.1 Introduction . 29 3.2 Rough-wall channel ow . 29 3.3 Adverse pressure gradient boundary layer . 33 Chapter 4: Results . 38 4.1 Introduction . 38 4.2 Case setup . 38 4.3 Smooth wall APG . 41 4.4 Rough wall APG . 49 4.5 Separation physics . 58 Chapter 5: Conclusions . 65 Bibliography . 68 ix List of Tables 3.1 Open channel grid size, grid resolution and number of grids per each roughness element. 31 3.2 Summary of current LES and DNS by Na & Moin (1998a). 34 4.1 Summary of simulation parameters. 39 4.2 Number of grid for majority of roughness ellipsoids. 41 4.3 Drag force per spanwise length. 50 4.4 Separation bubble size. In the table, xs denotes the position of separation (Cf = 0), xr is the position of reattachment, ls is the length of the separated region, and Hsep is the shape factor at the position of separation. 54 x List of Figures 1.1 Flow over airfoil, accelerating (favourable pressure gradient) and decelerating (adverse pressure gradient). 2 1.2 Massive blade erosion. 2 2.1 Schematic of computational domain. 17 2.2 The staggered-grid arrangement. The u, v and pressure cells are indicated with blue, red and green colors respectively. 23 3.1 Grid renement study, roughness function. DNS of Scotti (2006), ∗ exper- iment of Colebrook & White (1937), LES of + , LES . ks = 20; 96 × 96 × 96 / of + , LES of + . 31 ks = 20; 128 × 140 × 192 O ks = 20; 192 × 208 × 256 3.2 Mean streamwise velocity prole in wall coordinate at + . DNS of ks = 20 Scotti, smooth; , LES + , , LES + ks = 20; 192 × 208 × 256 ks = 20; 192 × 208 × 256. ................................ 32 3.3 Proles of (a) streamwise (b) wall-normal (c) spanwise uctuations; , Scotti's DNS, smooth; Scotti DNS, + ; , LES + ks = 20 ks = 20; 192 × 208 × 256. ..................................... 33 3.4 Computational setup. 34 3.5 Streamwise and wall-normal velocity prole along the freestream. 35 xi 3.6 (a) Development of friction coecient. (b) Proles of the streamwise veloc- ity component before separation (c) after separation. Each prole is shifted upwards by 20 units for clarity; • DNS by Na & Moin (1998a); , LES; , logarithmic law of the wall . 35 3.7 (a) Development of friction coecient. (b) Proles of root-mean square pres- sure uctuations shifted upwards by 0.01 units for clarity; • DNS by Na & Moin (1998b); , LES . 36 4.1 Location of the rescaling and the gradual imposing of the roughness. 40 4.2 Sand-grain roughness obtained by Scotti's model at iso-surface of φ = 0:9 for case 3......................................... 40 4.3 Mean velocity proles at the reference plane; , Smooth; , k/θo = + + 0:47 (k = 60); , k/θo = 0:95 (k = 120) . 41 4.4 , freestream velocity U1;o and , acceleration parameter K for all the cases. 42 4.5 Distribution of mean (a) streamwise and (b) wall-normal velocity for case 1 at Reθ = 2300; , mean streamline; , zero velocity line . 42 4.6 Streamlines through the domain. 43 4.7 (a) ;U1; ;Uδ; (b) distribution of Cf for case 1. 44 4.8 History of the location of zero Cf of the spanwise-averaged (a) separation (XS) and (b) reattachment (XR) point • for case 1.
Recommended publications
  • A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels
    A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels by Kylen D. Clark B.S., University of Toledo, 2013 A thesis submitted to the Faculty of Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Master of Science Department of Aerospace Engineering and Engineering Mechanics of the College of Engineering and Applied Science Committee Chair: Paul D. Orkwis Date: October 21, 2015 Abstract Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry.
    [Show full text]
  • Experimental Study on Turbulent Boundary-Layer Flows with Wall
    Experimental study on turbulent boundary-layer flows with wall transpiration by Marco Ferro October 2017 Technical Reports Royal Institute of Technology Department of Mechanics SE-100 44 Stockholm, Sweden Akademisk avhandling som med tillst˚andav Kungliga Tekniska H¨ogskolan i Stockholm framl¨agges till offentlig granskning f¨or avl¨aggande av teknologie doktorsexamen fredag den 24 November 2017 kl 10:15 i Kollegiesalen, Kungliga Tekniska H¨ogskolan, Brinellv¨agen 8, Stockholm. TRITA-MEK 2017:13 ISSN 0348-467X ISRN KTH/MEK/TR-17/13-SE ISBN 978-91-7729-556-3 c Marco Ferro 2017 Universitetsservice US{AB, Stockholm 2017 Experimental study on turbulent boundary-layer flows with wall transpiration Marco Ferro Linn´eFLOW Centre, KTH Mechanics, Royal Institute of Technology SE-100 44 Stockholm, Sweden Abstract Wall transpiration, in the form of wall-normal suction or blowing through a permeable wall, is a relatively simple and effective technique to control the be- haviour of a boundary layer. For its potential applications for laminar-turbulent transition and separation delay (suction) or for turbulent drag reduction and thermal protection (blowing), wall transpiration has over the past decades been the topic of a significant amount of studies. However, as far as the turbulent regime is concerned, fundamental understanding of the phenomena occurring in the boundary layer in presence of wall transpiration is limited and consid- erable disagreements persist even on the description of basic quantities, such as the mean streamwise velocity, for the rather simplified case of flat-plate boundary-layer flows without pressure gradients. In order to provide new experimental data on suction and blowing boundary layers, an experimental apparatus was designed and brought into operation.
    [Show full text]
  • 1 FLUID MECHANICS TUTORIAL No. 3 BOUNDARY LAYER THEORY In
    FLUID MECHANICS TUTORIAL No. 3 BOUNDARY LAYER THEORY In order to complete this tutorial you should already have completed tutorial 1 and 2 in this series. This tutorial examines boundary layer theory in some depth. When you have completed this tutorial, you should be able to do the following. Discuss the drag on bluff objects including long cylinders and spheres. Explain skin drag and form drag. Discuss the formation of wakes. Explain the concept of momentum thickness and displacement thickness. Solve problems involving laminar and turbulent boundary layers. Throughout there are worked examples, assignments and typical exam questions. You should complete each assignment in order so that you progress from one level of knowledge to another. Let us start by examining how drag is created on objects. 1 1. DRAG When a fluid flows around the outside of a body, it produces a force that tends to drag the body in the direction of the flow. The drag acting on a moving object such as a ship or an aeroplane must be overcome by the propulsion system. Drag takes two forms, skin friction drag and form drag. 1.1 SKIN FRICTION DRAG Skin friction drag is due to the viscous shearing that takes place between the surface and the layer of fluid immediately above it. This occurs on surfaces of objects that are long in the direction of flow compared to their height. Such bodies are called STREAMLINED. When a fluid flows over a solid surface, the layer next to the surface may become attached to it (it wets the surface).
    [Show full text]
  • Incompressible Skewed Turbulent Boundary Layer on an End Wall of a Curved Two-Dimensional Diffuser Marvin Dale Smith Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1970 Incompressible skewed turbulent boundary layer on an end wall of a curved two-dimensional diffuser Marvin Dale Smith Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Mechanical Engineering Commons Recommended Citation Smith, Marvin Dale, "Incompressible skewed turbulent boundary layer on an end wall of a curved two-dimensional diffuser " (1970). Retrospective Theses and Dissertations. 4199. https://lib.dr.iastate.edu/rtd/4199 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 70-18,908 SMITH, Marvin Dale, 1935- INCOMPRESSIBLE SKEWED TURBULENT BOUNDARY LAYER ON AN END WALL OF A C'JRVSD TWO-DIMENSIONAL DIFFUSER. Iowa State University, Ph.D., 1970 Engineering, mechanical I University Microfilms, A XEROXCompany, Ann Arbor, Michigan j. : Art T»T^oT^xtrr»T\ INCOMPRESSIBLE SKEWED TURBULENT BOUNDARY LAYER ON AN END WALL OF A CURVED TWO-DIMENSIONAL DIFFUSER by Marvin Dale Smith A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of Tlie Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subjects; Mechanical Engineering Aerospace Engineering
    [Show full text]
  • Numerical Investigation of the Turbulent Wake-Boundary Interaction in a Translational Cascade of Airfoils and Flat Plate
    energies Article Numerical Investigation of the Turbulent Wake-Boundary Interaction in a Translational Cascade of Airfoils and Flat Plate Xiaodong Ruan 1,*, Xu Zhang 1, Pengfei Wang 2 , Jiaming Wang 1 and Zhongbin Xu 3 1 State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; [email protected] (X.Z.); [email protected] (J.W.) 2 School of Engineering, Zhejiang University City College, Hangzhou 310015, China; [email protected] 3 Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China; [email protected] * Correspondence: [email protected]; Tel.: +86-1385-805-3612 Received: 24 July 2020; Accepted: 27 August 2020; Published: 31 August 2020 Abstract: Rotor stator interaction (RSI) is an important phenomenon influencing performances in the pump, turbine, and compressor. In this paper, the correlation-based transition model is used to study the RSI phenomenon between a translational cascade of airfoils and a flat plat. A comparison was made between computational results and experimental results. The computational boundary layer velocity is in reasonable agreement with the experimental velocity. The thickness of boundary layer decreases as the RSI frequency increases and it increases as the fluid flows downstream. The spectral plots of velocity fluctuations at leading edge x/c = 2 under RSI partial flow condition f = 20 Hz and f = 30 Hz are dominated by a narrowband component. RSI frequency mainly affects the turbulence intensity in the freestream region. However, it has little influence on the turbulence intensity of boundary layer near the wall. A secondary vortex is induced by the wake–boundary layer interaction and it leads to the formation of a thickened laminar boundary layer.
    [Show full text]
  • 0 Exam: 01 Aerodynamics: Boundary Layer Theory
    Aerodynamics EETAC Final Exams Compilation Perm: 0 Exam: 01 Aerodynamics: Boundary Layer Theory { Multiple Choice Test 2018/19 Q2 7. The boundary layer (BL) integral equations... 1. Under which circumstances may the volume rate-of-change (a) result from integrating the BL local equations in the entail viscous shear stresses? wall-normal coordinate over the BL thickness. (b) result from integrating the BL local equations along (a) Never for incompressible flow. the streamwise coordinate. (b) Always under the Stokes hypothesis. (c) result in as many unknowns as there are equations. (c) Always. (d) differ for laminar and turbulent BLs. (d) Never. (e) None of the other options. (e) None of the other options. 8. How is the D'Alembert's paradox removed and the form 2. What is true about the viscous blockage? drag obtained in an inviscid flow { boundary layer coupling (a) All options are correct. calculation? (b) It corresponds to a massflow reduction in the near-wall (a) By solving the inviscid problem for a second time over region due to the effects of viscosity. a body enlarged by the displacement thickness and (c) It corresponds to a momentum flux reduction in the extended with the wake. near-wall region due to the effects of viscosity. (b) By directly solving the boundary layer equations. (d) It follows from the no-slip condition at the wall due to (c) The paradox remains no matter what. viscous effects. (d) By solving the inviscid problem over the original body. (e) It may be quantified by the displacement and momen- (e) The paradox was never there in the first place.
    [Show full text]
  • Analysis of Boundary Layers Through Computational Fluid Dynamics and Experimental Analysis
    Analysis of Boundary Layers through Computational Fluid Dynamics and Experimental analysis By Eugene O’Reilly, B.Eng This thesis is submitted as the fulfilment of the requirement for the award of degree of Master of Engineering Supervisors Dr Joseph Stokes and Dr Brian Corcoran School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland. October 2006 DECLARATION I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Degree of Master of Engineering is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my own work Signed ID Number 99604434 Date 2&j \Oj 2QOG I ACKNOWLEDGEMENTS I would like to thank Dr Joseph Stokes and Dr Brian Corcoran of the School of Mechanical and Manufacturing Engineering, Dublin City University, for their advice and guidance through this work Their helpful discussions and availability to discuss any problems I was having has been the cornerstone of this research Thanks also, to Mr Michael May of the School of Mechanical and Manufacturing Engineering for his invaluable help and guidance in the design and construction of the experimental equipment To Mr Cian Meme and Mr Eoin Tuohy of the workshop for their technical advice and excellent work in the production of the required parts and to Mr Keith Hickey for his help with all my software queries and computer issues Thanks also to Mr Ben Austin and Mr David Cunningham of the School
    [Show full text]
  • Ludwig Prandtl and Boundary Layers in Fluid Flow How a Small Viscosity Can Cause Large Effects
    GENERAL I ARTICLE Ludwig Prandtl and Boundary Layers in Fluid Flow How a Small Viscosity can Cause large Effects Jaywant H Arakeri and P N Shankar In 1904, Prandtl proposed the concept of bound­ ary layers that revolutionised the study of fluid mechanics. In this article we present the basic ideas of boundary layers and boundary-layer sep­ aration, a phenomenon that distinguishes stream­ lined from bluff bodies. Jaywant Arakeri is in the Mechanical Engineering A Long-Standing Paradox Department and in the Centre for Product It is a matter of common experience that when we stand Development and in a breeze or wade in water we feel a force which is Manufacture at the Indian called the drag force. We now know that the drag is Institute of Science, caused by fluid friction or viscosity. However, for long it Bangalore. His research is was believed that the viscosity shouldn't enter the pic­ mainly in instability and turbulence in fluid motion. ture at all since it was so small in value for both water He is also interested in and air. Assuming no viscosity, the finest mathematical issues related to environ­ physicists of the 19th century constructed a large body ment and development. of elegant results which predicted that the drag on a body in steady flow would be zero. This discrepancy between ideal fluid theory or hydrodynamics and com­ mon experience was known as 'd' Alembert's paradox' The paradox was only resolved in a revolutionary 1904 paper by L Prandtl who showed that viscous effects, no matter how'small the viscosity, can never be neglected.
    [Show full text]
  • Chapter 9 Wall Turbulence. Boundary-Layer Flows
    Ch 9. Wall Turbulence; Boundary-Layer Flows Chapter 9 Wall Turbulence. Boundary-Layer Flows 9.1 Introduction • Turbulence occurs most commonly in shear flows. • Shear flow: spatial variation of the mean velocity 1) wall turbulence: along solid surface → no-slip condition at surface 2) free turbulence: at the interface between fluid zones having different velocities, and at boundaries of a jet → jet, wakes • Turbulent motion in shear flows - self-sustaining - Turbulence arises as a consequence of the shear. - Shear persists as a consequence of the turbulent fluctuations. → Turbulence can neither arise nor persist without shear. 9.2 Structure of a Turbulent Boundary Layer 9.2.1 Boundary layer flows (i) Smooth boundary Consider a fluid stream flowing past a smooth boundary. → A boundary-layer zone of viscous influence is developed near the boundary. 1) Re Recrit → The boundary-layer is initially laminar. u u() y 9-1 Ch 9. Wall Turbulence; Boundary-Layer Flows 2) Re Recrit → The boundary-layer is turbulent. u u() y → Turbulence reaches out into the free stream to entrain and mix more fluid. → thicker boundary layer: turb 4 lam External flow Turbulent boundary layer xx crit , total friction = laminar xx crit , total friction = laminar + turbulent 9-2 Ch 9. Wall Turbulence; Boundary-Layer Flows (ii) Rough boundary → Turbulent boundary layer is established near the leading edge of the boundary without a preceding stretch of laminar flow. Turbulent boundary layer Laminar sublayer 9.2.2 Comparison of laminar and turbulent boundary-layer profiles For the flows of the same Reynolds number (Rex 500,000) Ux Re x 9-3 Ch 9.
    [Show full text]
  • BOUNDARY LAYER CONCEPT in the STUDY of FLUID FLOW When Fluids Flow Over Surfaces, the Molecules Near the Surface Are Brought to Rest Due to the Viscosity of the Fluid
    BOUNDARY LAYER CONCEPT IN THE STUDY OF FLUID FLOW When fluids flow over surfaces, the molecules near the surface are brought to rest due to the viscosity of the fluid. The adjacent layers are also slow down, but to a lower and lower extent. This slowing down is found limited to a thin layer near the surface. The fluid beyond this layer is not affected by the presence of the surface. The fluid layer near the surface in which there is a general slowing down is defined as boundary layer. The velocity of flow in this layer increases from zero at the surface to free stream velocity at the edge of the boundary layer. When a real fluid flow past a solid body or a solid wall, the fluid particles adhere to the boundary and condition of no slip occurs. This means that the velocity of fluid close to the boundary will be same as that of the boundary. If the boundary is stationary, the velocity of fluid at the boundary will be zero. The theory dealing with boundary layer flows is called boundary layer theory. According to the B.L. theory, the flow of fluid in the neighbourhood of the solid boundary may be divided into two regions as shown below Description of the Boundary Layer The simplest boundary layer to study is that formed in the flow along one side of a thin, smooth, flat plate parallel to the direction of the oncoming fluid. No other solid surface is near, and the pressure of the fluid is uniform.
    [Show full text]
  • Experimental Investigation of the Boundary Layer Transition on a Laminar Airfoil Using Infrared Thermography
    EPJ Web of Conferences 180, 02040 (2018) https://doi.org/10.1051/epjconf/201818002040 EFM 2017 Experimental Investigation of the Boundary Layer Transition on a Laminar Airfoil Using Infrared Thermography Tomáš Jelínek1,* 1VZLU – Czech Aerospace Research Centre, Beranových 130, 199 05 Prague, Czechia Abstract: The transition in the boundary layer is investigated using infrared thermography (IRT). The study is carried out on a laminar airfoil in the transonic intermittent in-draft wind tunnel. The transition in the boundary layer is evocated using transition-generator strips of different thicknesses at two Mach numbers: 0.4 and 0.8. The tested transition-generators thickness to boundary layer displacement thickness ratio was from 0.42 to 1.25. The Reynolds number respect to the airfoil chord is: Re = 1.0 – 1.4106. The six cases for different transition-generators thickness ratios were compared. The behaviours of laminar and turbulent boundary layers are discussed. The use of IRT has been proven to be an appropriate tool for detecting the transition of the boundary layer in high-speed wind tunnel testing. 1 Introduction sensors that always have the final dimensions, and so the nature of the boundary layer can be significantly To study the development of the boundary layer and the affected. In these cases, it is appropriate to use a method transition from the laminar to the turbulent flow in the that would detect the transition in the boundary layer boundary layer is very important because it without having to change the surface of the examined fundamentally changes the character of the boundary model.
    [Show full text]
  • AIRFOIL BOUNDARY LAYER CALCULATIONS USING N INTERACTIVE METHOD and E TRANSITION PREDICTION TECHNIQUE
    AIRFOIL BOUNDARY LAYER CALCULATIONS USING n INTERACTIVE METHOD AND e TRANSITION PREDICTION TECHNIQUE MEHMET MERSİNLİGİL SEPTEMBER 2006 AIRFOIL BOUNDARY LAYER CALCULATIONS USING n INTERACTIVE METHOD AND e TRANSITION PREDICTION TECHNIQUE A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY MEHMET MERSİNLİGİL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN AEROSPACE ENGINEERING SEPTEMBER 2006 Approval of the Graduate School of Natural and Applied Sciences ________________________ Prof. Dr. Canan Özgen Director I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science ________________________ Prof. Dr. Nafiz Alemdaroğlu Head of the Department We certify that we have read this thesis and in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science in Aerospace Engineering. ________________________ Assoc. Prof. Dr. Serkan Özgen Supervisor Prof. Dr. Nafiz Alemdaroğlu METU, AE ________________________ Prof. Dr. Zafer Dursunkaya METU, ME ________________________ Prof. Dr. Yusuf Özyörük METU, AE ________________________ Assoc. Prof. Dr. Serkan Özgen METU, AE ________________________ Dr. Oğuz Uzol METU, AE ________________________ PLAGIARISM I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Mehmet Mersinligil iii ABSTRACT AIRFOIL BOUNDARY LAYER CALCULATIONS USING n INTERACTIVE METHOD AND e TRANSITION PREDICTION TECHNIQUE MERSİNLİGİL, Mehmet M.S., Department of Aerospace Engineering Supervisor: Assoc.
    [Show full text]