<<

Ch 9. Wall ; Boundary-Layer Flows

Chapter 9 Wall Turbulence. Boundary-Layer Flows

9.1 Introduction

• Turbulence occurs most commonly in shear flows.

• Shear flow: spatial variation of the mean velocity

1) wall turbulence: along solid surface → no-slip condition at surface

2) free turbulence: at the interface between zones having different velocities, and at boundaries of a jet → jet,

• Turbulent motion in shear flows

- self-sustaining

- Turbulence arises as a consequence of the shear.

- Shear persists as a consequence of the turbulent fluctuations.

→ Turbulence can neither arise nor persist without shear.

9.2 Structure of a Turbulent

9.2.1 Boundary layer flows

(i) Smooth boundary

Consider a fluid stream flowing past a smooth boundary.

→ A boundary-layer zone of viscous influence is developed near the boundary.

1) Re Recrit

→ The boundary-layer is initially laminar.

u u() y

9-1 Ch 9. Wall Turbulence; Boundary-Layer Flows

2) Re Recrit

→ The boundary-layer is turbulent.

u u() y

→ Turbulence reaches out into the free stream to entrain and mix more fluid.

→ thicker boundary layer: turb 4 lam

External flow

Turbulent boundary layer

xx crit , total = laminar

xx crit , total friction = laminar + turbulent

9-2 Ch 9. Wall Turbulence; Boundary-Layer Flows

(ii) Rough boundary

→ Turbulent boundary layer is established near the leading edge of the boundary

without a preceding stretch of .

Turbulent boundary layer

Laminar sublayer

9.2.2 Comparison of laminar and turbulent boundary-layer profiles

For the flows of the same (Rex  500,000)

Ux Re  x 

9-3 Ch 9. Wall Turbulence; Boundary-Layer Flows

1)

 turb  3.9 lam

2) Mass displacement thickness,  *

h u Eq. (8.9):  * (1 )dy 0 U

*  turb *  1.41  lam

3) thickness, θ

h uu Eq. (8.10):  (1dy ) 0UU

 turb  2.84 lam

→ Because of the higher flux of mass and momentum through the zone nearest the wall

for turbulent flow, increases of  * and θ rate are not as large as δ.

9.2.3 Intermittent nature of the turbulent layer

• Outside a boundary layer

→ free-stream shearless flow (U) → (inviscid)

→ slightly turbulent flow

→ considered to be non-turbulent flow relative to higher turbulence inside a turbulent

boundary layer

9-4 Ch 9. Wall Turbulence; Boundary-Layer Flows

• Interior of the turbulent boundary layer (δ)

~ consist of regions of different types of flow (laminar, buffer, turbulent)

~ Instantaneous border between turbulent and non-turbulent fluid is irregular and changing.

~ Border consists of fingers of turbulence extending into the non-turbulent fluid and fingers of non-turbulent fluid extending deep into the turbulent region.

~ intermittent nature of the turbulent layer

• Intermittency factor, Ω

Ω = fraction of time during which the flow is turbulent

Ω = 1.0, deep in the boundary layer

= 0, in the free stream

tt 0

t t0   t

①Average position of the turbulent-nonturbulent interface = 0.78 δ

②Maximum stretch of interface = 1.2 δ

③Minimum stretch of interface = 0.4 δ

9-5 Ch 9. Wall Turbulence; Boundary-Layer Flows

9-6 Ch 9. Wall Turbulence; Boundary-Layer Flows

• Turbulent energy in a boundary layer, δ

u'''2 v 2 w 2 - Dimensionless energy  2 (9.1) u*

 where u  0 = shear velocity * 

U Re  73,000  Re  4  106 for turbulent layer   x

u'''2 v 2 w 2 222,,, uuu'''***

- smooth wall → v'0 at wall

- rough wall → v'0 at wall

- smooth & rough wall

→ turbulent energy ≠ 0 at y =

9-7 Ch 9. Wall Turbulence; Boundary-Layer Flows

9.3 Mean-flow characteristics for turbulent boundary layer

○ Relations describing the mean-flow characteristics

→ predict velocity magnitude and relation between velocity and wall shear or pressure gradient

→ It is desirable that these relations should not require knowledge of the turbulence details.

○ Turbulent boundary layer

→ is composed of zones of different types of flow

→ Effective (  ) varies from wall out through the layer.

→ Theoretical solution is not practical for the general nonuniform boundary layer

→ use semiempirical procedure

9.3.1 Universal velocity and friction laws: smooth walls

(1) Velocity-profile regions

logarithmic

linear

9-8 Ch 9. Wall Turbulence; Boundary-Layer Flows

uy 1) laminar sublayer: 04* 

du ~ linear dy

u u y →  * (9.6) u* 

~ Mean is controlled by the dynamic molecular viscosity  .

→ Reynolds stress is negligible. → Mean flow is laminar.

~ energy of velocity fluctuation ≈ 0

uy 2) buffer zone: 4* 30 ~ 70 

~ Viscous and Reynolds stress are of the same order.

→ Both laminar flow and turbulence flow exist.

~ Sharp peak in the turbulent energy occurs (Fig. 9.4).

uy 3) turbulent zone - inner region: * 30 ~ 70 ,and y 0.15 

~ fully turbulent flow

~ inner law zone/logarithmic law

~ Intensity of turbulence decreases.

~ velocity equation: logarithmic function

u u* y 5.6 log C2 u* 

9-9 Ch 9. Wall Turbulence; Boundary-Layer Flows

4) turbulent zone-outer region: 0.15y 0.4

~ outer law, velocity-defect law

5) intermittent zone: 0.4y 1.2

~ Flow is intermittently turbulent and non-turbulent.

6) non-turbulent zone

~ external flow zone

~ potential flow

[Cf] Rough wall:

→ Laminar sublayer is destroyed by the roughness elements.

9-10 Ch 9. Wall Turbulence; Boundary-Layer Flows

z

x

9-11 Ch 9. Wall Turbulence; Boundary-Layer Flows

(2) Wall law and velocity-defect law

wall law → inner region

velocity-defect law → outer region

uy 1) Law of wall = inner law; * 30 ~ 70 ;y 0.15 

∼close to smooth boundaries (molecular viscosity dominant)

∼ Law of wall assumes that the relation between wall shear stress and velocity u at distance y from the wall depends only on fluid density and viscosity;

f( u , u* , y , , ) 0

Dimensional analysis yields

u u* y  f  (9.3) u* 

i) Laminar sublayer

- mean velocity, uu

uu - velcocity gradient, ~ constant  yy

uu - shear stress,  0     (9.5) yyy0

   u - shear velocity, uu 2   **   y

u u y  * (9.6) u* 

9-12 Ch 9. Wall Turbulence; Boundary-Layer Flows

■ Thickness of laminar sublayer define thickness of laminar sublayer ( ' ) as the value of y which makes

uy *  4 

4 4  4  4   '   1  (9.7) u*  0 2 2 Ucf /2 cUf  /2   

u2 where c;. c local shear stress coeff 0 ff2

9-13 Ch 9. Wall Turbulence; Boundary-Layer Flows ii) Turbulent zone – inner region

Start with Prandtl's mixing length theory

du du   l 2 (1) 0 dy dy

Near wall, ly  (2)

2 22du   y  (3) dy

Rearrange (3)

du1  u * dy y   y

u 1 du * dy (4)  y

Integrate (4)

u u*ln y C  1

u 1 ln yC1 (9.10) u* 

Substitute BC [u  0 at yy ' ] into (9.10)

1 0 lnyC ' (5)  1

9-14 Ch 9. Wall Turbulence; Boundary-Layer Flows

1 Cy   ln ' 1 

(/)ms2 Assume y''  y  C u**(/) m s u

Then (5) becomes

1 1 1 C12 ln y '   ln C  C  ln (9.11)  uu** 

Substitute (9.11) into (9.10)

u1 1 1  u* y lny  C22  ln  ln  C uu**   

Changing the logarithm to base 10 yields

u2.3  u* y log10C 2 (9.12) u* 

Empirical values of  and C2 for inner region of the boundary layer

 0.41;C2 4.9

u u** y u y y 5.6 log  4.9, 30 ~ 70  ,and  0.15 (9.13) u*   

→ Prandtl's velocity distribution law; inner law; wall law

9-15 Ch 9. Wall Turbulence; Boundary-Layer Flows

2) Velocity-defect law

∼outer law

∼outer reaches of the turbulent boundary layer for both smooth and rough walls

→ Reynolds stresses dominate the viscous stresses.

Assume velocity defect (reduction) at y  wall shear stress

U u y  g  (9.14) u* 

Substituting BC [ u U at y  ] into Eq. (9.12) leads to

Uu2.3 * ' logC2 (9.15) u* 

Subtract (9.12) from (9.15)

Uu2.3 * logC2 ' u* 

u2.3  u* y  log  C2 u* 

U u2.3  u**   u y   log   log   CC22 '  u*      

2.3 u* logC3 uy* 2.3 y  log  C3  where  and C3 are empirical constants

9-16 Ch 9. Wall Turbulence; Boundary-Layer Flows

y i) Inner region;  0.15 

→  0.41 ,C3 2.5

U u y  5.6log  2.5 (9.16) u* 

y ii) Outer region;  0.15 

→  = 0.267, C3 = 0

U u y 8.6 log (9.17) u* 

→ Eqs. (9.16) & (9.17 ) apply to both smooth and rough surfaces.

→ Eq. (9.16) = Eq. (9.13)

Fig. 9.8 → velocity-defect law is applicable for both smooth and rough walls

9-17 Ch 9. Wall Turbulence; Boundary-Layer Flows

Table 9-1

■ For smooth walls

u u y a) laminar sublayer:  * u* 

→ viscous effect dominates. b) buffer zone

u u y c) logarithmic zone: 5.6log* 4.9 u* 

→ turbulence effect dominates. d) inner law (law of wall) region

9-18 Ch 9. Wall Turbulence; Boundary-Layer Flows

■ For both smooth and rough walls

U u y e) inner region:  5.6 log  2.5 u* 

U u y f) outer region: 8.6 log u*  g) outer law (velocity - defect law) region

9-19 Ch 9. Wall Turbulence; Boundary-Layer Flows

(3) Surface-resistance formulas

1) local shear-stress coefficient on smooth walls velocity profile ↔ shear-stress equations

c f U 2 uU* /    (9.18) 2 uc* f

where c f = local shear - stress coeff.

1  c [Re] c U22 0  f U 0 22f 

 c uU0 f *  2

i) Apply logarithmic law

Substituting into @ y , u U into Eq. (9.12) yields

Uu2.3 * logC4 (A) u* 

Substitute (9.18) into (A)

2 2.3 U c logf C (9.19) c 2 4 f 

~ c f is not given explicitly.

9-20 Ch 9. Wall Turbulence; Boundary-Layer Flows ii) For explicit expression, use displacement thickness  * and momentum thickness θ instead of δ

1 Clauser: 3.96 log Re 3.04 (9.20)  * c f

1 Squire and Young: 4.17 log Re 2.54 (9.21) c f

UU* where Re ; Re  * 

Ux Re , Ref (Re ),Re  *  xx

iii) Karman's relation

~ assume turbulence boundary layer all the way from the leading edge

(i.e., no preceding stretch of laminar boundary layer)

1 4.15log(Rexfc ) 1.7 (9.23) c f

9-21 Ch 9. Wall Turbulence; Boundary-Layer Flows iv) Schultz-Grunow (1940)

0.370 c f  2.58 (9.24) (logRex )

Comparison of (9.23) and (9.24)

2) Average shear-stress coefficient on smooth walls

Consider average shear-stress coefficient over a distance l along a flat plate of a width b

1 total () D  bl  C U2 bl 2 f

D C  f bl U 2 /2

U

b

l

9-22 Ch 9. Wall Turbulence; Boundary-Layer Flows i) Schoenherr (1932)

1  4.13log(RelfC ) (9.26) C f

→ implicit

Ul where Re  l  ii) Schultz-Grunow

0.427 29 C fl2.64 , 10  Re  10 (9.27) (log Rel  0.407)

Comparison of (9.26) and (9.27)

9-23 Ch 9. Wall Turbulence; Boundary-Layer Flows

3) Transition formula

■ Boundary layer developing on a smooth flat plate

∼ At upstream end (leading edge), laminar boundary layer develops because viscous effects dominate due to inhibiting effect of the smooth wall on the development of turbulence.

∼ Thus, when there is a significant stretch of laminar boundary layer preceding the turbulent layer, total friction is the laminar portion up to xcrit plus the turbulent portion from xcrit to l.

∼ Therefore, average shear-stress coefficient is lower than the prediction by Eqs. (9.26) or (9.27).

→ Use transition formula

0.427 A C f 2.64 (9.28) (log Rell 0.407) Re

9-24 Ch 9. Wall Turbulence; Boundary-Layer Flows

Ux where A/ Re = correction term = f (Re ), Re  crit l crit crit 

→ A = 1,060~3,340 (Table 9.2, p. 240)

Eq. (9.28) falls between the laminar and turbulent curves.

1.328 Laminar flow: C f  1/2 Rel

9-25 Ch 9. Wall Turbulence; Boundary-Layer Flows

[Ex. 9.1] Turbulent boundary-layer velocity and thickness

An flies at 25,000 ft with a speed of 410 mph (600 ft/s).

Compute the following items for the boundary layer at a distance 10 ft from the leading edge of the of the craft. 

(a) Thickness  ' (laminar sublayer) at x 10 ft

Air at El. 25,000 ft:  3 1042ft / s

 1.07 1033slug / ft

600(x ) Select Re 5  105  crit 3 104

xcrit 0.25 ft ~negligible comparaed to l  10 ft

Therefore, assume that turbulent boundary layer develops all the way from the leading

edge. Use Schultz-Grunow Eq., (9.24) to compute c f

Ux 600(10) Re   2  107 x  (3 104 )

9-26 Ch 9. Wall Turbulence; Boundary-Layer Flows

0.370 0.370 0.370 c    0.0022 f (logRe )2.587 2.58 (7.30) 2.58 x log 2 10 

 1  c U2 (1.07  10 3 )(0.0022)(600) 2  0.422 lb / ft 2 0 22f

 0.422 u0  19.8 ft / s *  1.07 103

4 4(3 104 ) Eq. (9.7):  '   0.61  1044ft  7.3  10 in u* 19.8

(b) Velocity u at y  '

u u y Eq. (9.6):  * u* 

u2 ' (19.8) 2 (0.61 10 4 ) u *  79.7 ft / s  13% of U  (3 104 )  [Cf ] U 600 ft / s y   '

(c) Velocity u at y /  0.15

Use Eq. (9.16) – outer law

U u y  5.6 log  2.5 u* 

600  u  5.6 log 0.15  2.5 19.8

u600  91.35  49.5  459.2 ft / s  76% of U

9-27 Ch 9. Wall Turbulence; Boundary-Layer Flows

y [Cf] u U 5.6 u** log  2.5 u 

(d) Distance y at y /  0.15 and thickness 

Use Eq. (9.13) – inner law

u u* y 5.6 log 4.9 u* 

y 459 19.8y At  0.15: 5.6 log4 4.9  19.8 3 10

19.8yy 19.8 log44 3.26; 1839 3 10 3 10

y0.028'  0.33 in  0.8 cm (B)

y Substitute (B) into  0.15 

y   0.186'  2.24in  5.7 cm 0.15

 0.186 Atx  10':   3049  3  103  ' 0.61 104

 '  0.0003 

9-28 Ch 9. Wall Turbulence; Boundary-Layer Flows

[Ex. 9.2] Surface resistance on a smooth boundary given as Ex.9.1

(a) Displacement thickness  *

h * u  1 dy 0 U

*  h/ uy    1  dh   , /  1 (A) 0 U   

Neglect laminar sublayer and approximate buffer zone with Eq. (9.16)

U u y (iy ) /  0.15,   5.6log  2.5  (9.16) u* 

u u y u 1    5.6** log  2.5 (B) UUU

U u y (ii ) y /  0.15,   8.6log  (9.17) u* 

u u*  y 1    8.6 log lnxx 2.3log (C) UU

lnx dx x ln x x Substituting (B) and (C) into (A) yields

* 0.15 1.0  y  u**  y   y  u  y    2.43ln  2.5 dd      3.74ln    '/  UU    0.15      

0.15 1 u y y y  y    y y y   *  2.43 ln    2.5   3.74  ln   U             0.0003     0.15

u (19.8) 3.74*  3.74  0.1184 U 600

9-29 Ch 9. Wall Turbulence; Boundary-Layer Flows

* 0.1184  0.1184 (0.186)  0.022 ft

 * 0.1184 11.8% 

(b) Local surface-resistance coeff. c f

Use Eq. (9.20) by Clauser

1 600 0.022 3.96 log Re  3.04  Re   44,000 **4 c f 3 10 3.96 log 44,000 3.04

3 c f 2.18  10  0.00218

[Cf] c f = 0.00218 by Schultz-Grunow Eq.

9-30 Ch 9. Wall Turbulence; Boundary-Layer Flows

9.3.2. Power-law formulas: Smooth walls

● Logarithmic equations for velocity profile and shear-stress coeff .

~ universal

~ applicable over almost entire range of Reynolds numbers

● Power-law equations

~ applicable over only limited range of Reynolds numbers

~ simpler

~ explicit relations for uU/ and c f

~ explicit relations for  in terms of Re and distance x

(1) Assumptions of power-law formulas

1) Except very near the wall, mean velocity is closely proportional to a root of the distance y from the wall.

1 uy∝ n (A)

2) Shear stress coeff. c f is inversely proportional to a root of Re

1 U ∝ c f m , Re  Re 

A cf  m (9.29) U   where A, m = constants

9-31 Ch 9. Wall Turbulence; Boundary-Layer Flows

3.32 [Cf] Eq. (9.29) is similar to equation for laminar boundary layer, c f  Re

(2) Derivation of power equation

Combine Eqs. (9.18) and (9.29)

A c c f  m (9.18): uU f U *  2 

m UU222

uc* f A

m m 1 U 2 2 2

u* A

m m 1 U 2 2 u 2 * u* A

m U u 2 m B * (9.30) u*

Substitute Assumption (1) into Eq. (9.30), replace  with y

m u uy 2 m B * (9.31) u*

Divide (9.31) by (9.30)

m uy2 m (9.32) U

9-32 Ch 9. Wall Turbulence; Boundary-Layer Flows

1 For 3,000 < Re < 70,000; m, A 0.0466 B , 8.74 4

1 uy7 (9.33) U

1 U u 7 8.74 * (9.34) u*

1 7 u uy* 8.74 (9.35) u*

0.0466 c f 1 (9.36) Re 4

(3) Relation for

p Adopt integral-momentum eq. for steady motion with 0 x

~ integration of Prandtl's 2-D boundary-layer equations

U 2 0 U22 c c U (9.37) x ff220

where θ = momentum thickness

h uu θ = 1 dy (A) 0 UU

Substitute Eq. (9.33) into (A) and integrate

9-33 Ch 9. Wall Turbulence; Boundary-Layer Flows

1 1 7 h y 7 y dy 0 1 (9.38) 7 0.1 72

Substitute Eqs. (9.36) and (9.38) into (9.37) and integrate w.r.t. x

0.318xx 0.318 , Re 107 (9.39) 11 x 55 Ux Rex

0.059 c , (9.40) f 1 5 Rex

Integrate (9.40) over l to get average coefficient

0.074 c , Re 107 (9.41) f 1 l 5 Rel

[Re] Derivation of (9.39) and (9.40)

U 2 Uc2 x f 2

c f (B) x 2

Substitute (9.38) and (9.36) into (B)

9-34 Ch 9. Wall Turbulence; Boundary-Layer Flows

71 1 0.0466 / (Re )4 x 72 2

7 0.0233 0.0233

72 x 11 Re 44U

0.2397 x 1 U 4

Integrate once w.r.t. x

0.2397 xC 1 U 4

B.C.: 0 at x = 0

0.2397 00C → C 0 1 U 4

0.2397 x 1 U 4

550.2397 44x 1 Ux 4

9-35 Ch 9. Wall Turbulence; Boundary-Layer Flows

4 4 0.23975 5 (0.2397)5 xx4 11 Ux45 Ux

0.318 0.318 xx → Eq. (9.39) 11 55 Ux Rex

0.0466 0.0466 (9-36): c (C) f 11 Re 44U

Substitute (9.39) into (C)

0.0466 0.062 c f 1 1 1 U 40.318 41 4 4 4 5 1 Ux Ux 5 1 U 5

0.062 0.062 0.062 0.062 → 1 1 1 1 1 (9.40) 4 5 51 5 5 Ux U5 Ux Rex 1 x U 20

Integrate (9.40) over l

1l 0.062 0.062 l 1 0.062 l 1 0.076 C dx dx dx f ll01 0 1 1 0 1 1 Re5Ux 5 U 5x 5 Re 5 xll

9-36 Ch 9. Wall Turbulence; Boundary-Layer Flows

9.3.3. Laws for rough walls

(1) Effects of roughness rough walls: velocity distribution and resistance = f (Reynolds number , roughness) smooth walls: velocity distribution and resistance = f (Reynolds number)

▪ For natural roughness, k is random, and statistical quantity

→k = ks = uniform sand grain

9-37 Ch 9. Wall Turbulence; Boundary-Layer Flows

▪ Measurement of roughness effects

a) experiments with sand grains cemented to smooth surfaces

b) evaluate roughness value ≡ height ks

c) compare hydrodynamic behavior with other types and magnitude of roughness

▪ Effects of roughness

k i) s < 1 '

~ roughness has negligible effect on the wall shear

→ hydrodynamically smooth

4 ' = laminar sublayer thickness u*

k ii) s > 1 '

~ roughness effects appear

~ roughness disrupts the laminar sublayer

~ smooth-wall relations for velocity and cf no longer hold

→ hydrodynamically rough

k iii) s > 15 ~25 '

~ friction and velocity distribution depend only on roughness rather than Reynolds number

→ fully rough flow condition

9-38 Ch 9. Wall Turbulence; Boundary-Layer Flows

▪ Critical roughness, kcrit

' kcrit 44 Re x u x * Ucf /2 1 cf Rex

' If x increases, then cf decreases, and increases.

Therefore, for a surface of uniform roughness, it is possible to be hydrodynamically rough

upstream, and hydrodynamically smooth downstream.

k ' , downstream ' k , upstream

(2) Rough-wall velocity profiles

Assume roughness height k accounts for magnitude, form, and distribution of the

roughness. Then

uy f (9.42) uk*

Make f in Eq. (9.42) be a logarithmic function to overlap the velocity-defect law, Eq.

(9.16), which is applicable for both rough and smooth boundaries.

9-39 Ch 9. Wall Turbulence; Boundary-Layer Flows

U u y y (9.16): 5.6log 2.5, 0.15 u*

i) For rough walls, in the wall region

u rough kyuy* 5.6logC5 , 50 ~ 100, 0.15 (9.43) uy*

where C 5 = const = f (size, shape, distribution of the roughness)

ii) For smooth walls, in the wall region

usmooth u** y u y y (9.13): 5.6logC2 , 30 ~ 70, 0.15 u*

where C 2 = 4.9

Subtract Eq. (9.43) from Eq. (9.13)

uu u smooth rough uk* 5.6log C6 (9.44) uu**

→ Roughness reduces the local mean velocity u in the wall region

→ where C 5 and C 6 Table 9-4

9-40 Ch 9. Wall Turbulence; Boundary-Layer Flows

(6) Surface-resistance formulas: rough walls

Combine Eqs. (9.43) and (9.16)

U u y y 5.6 log 2.5 , 0.15 u * uk 5.6 log C uy5 * U 5.6 logC (9.45) uk7 *

U 2 5.6log C7 u* cf k

1 3.96log C (9.46) k 8 cf

9-41 Ch 9. Wall Turbulence; Boundary-Layer Flows

[Ex. 9.3]

Rough wall velocity distribution and local skin friction coefficient

- Comparison of the boundary layers on a smooth plate and a plate roughened by sand grains

Water

▪ 2 Given: 0 0.485lb / ft on both plates

U = 10 ft / sec past the rough plate

ks = 0.001 ft

Water temp. = 58 F on both plates

(a) Velocity reduction u due to roughness

From Table 1-3:

1.938slug / ft 3 ; 1.25 1052ft / sec

Eq. (9.18)

0.485 u0 0.5 ft / sec * 1.938

9-42 Ch 9. Wall Turbulence; Boundary-Layer Flows

2 2 u 0.5 c 2* 2 0.005 f U 10

uk 0.5(0.001) * s 40 1.25 10 5

u uk Eq. (9.44): 5.6log* s 3.3 u*

u0.5{5.6log 40 3.3} 2.83 ft / sec

(b) Velocity u on each plate at y0.007 ft

i) For rough plate

uy Eq. (9.43): 5.6log 8.2 uk*

0.007 u0.5(5.6log 8.2) 6.47 ft / sec 0.001

ii) For smooth plate,

u uy Eq. (9.13): 5.6log* 4.9 u*

uy 0.5(0.007) * 280 1.25 10 5

u0.5{5.6log(280) 4.9} 9.3 ft / sec

Check u 9.3 6.47 2.83→ same result as (a)

9-43 Ch 9. Wall Turbulence; Boundary-Layer Flows

(c) Boundary layer thickness  on the rough plate

Eq. (9.46):

1 3.96log 7.55 k cf s

11 log 7.55 1.66 ks 3.96 0.005

46 0.046ft 0.52 in 1.4 cm ks

9-44