Analysis of Boundary Layers Through Computational Fluid Dynamics and Experimental Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Boundary Layers Through Computational Fluid Dynamics and Experimental Analysis Analysis of Boundary Layers through Computational Fluid Dynamics and Experimental analysis By Eugene O’Reilly, B.Eng This thesis is submitted as the fulfilment of the requirement for the award of degree of Master of Engineering Supervisors Dr Joseph Stokes and Dr Brian Corcoran School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland. October 2006 DECLARATION I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Degree of Master of Engineering is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my own work Signed ID Number 99604434 Date 2&j \Oj 2QOG I ACKNOWLEDGEMENTS I would like to thank Dr Joseph Stokes and Dr Brian Corcoran of the School of Mechanical and Manufacturing Engineering, Dublin City University, for their advice and guidance through this work Their helpful discussions and availability to discuss any problems I was having has been the cornerstone of this research Thanks also, to Mr Michael May of the School of Mechanical and Manufacturing Engineering for his invaluable help and guidance in the design and construction of the experimental equipment To Mr Cian Meme and Mr Eoin Tuohy of the workshop for their technical advice and excellent work in the production of the required parts and to Mr Keith Hickey for his help with all my software queries and computer issues Thanks also to Mr Ben Austin and Mr David Cunningham of the School of Biotechnology DCU for their support, they always made themselves available to meet me and allowed me unrestricted use of their School’s equipment whenever I asked I am grateful to the Insh Research Council for Science and Engineering Technology (IRCSET), without whose funding this project would not have been made possible Thanks to my parents, Eugene (Gene) and Nancy, they are truly responsible for every step of my education, they have encouraged me continually to do my best and always provided me with the means to achieve this Also to my sisters Orlagh and Elva for their friendship and offers to help in any way they could with my work I must mention my housemates Robbie, Peter, Susan, Cathenne and Rosemary, they have been a constant source of friendship for the past few years and have quite literally adopted me into their family and I am very happy to be an 4honorary-Flanagan’ Finally, Mary, who has stood by me through it all, she has been there to listen to me, advise me and always encouraged me when I was feeling low Your love and support are truly appreciated II Analysis of Boundary Layers through Computational Fluid Dynamics and Experimental analysis Eugene O’Reilly Dublin City University, Dublin, Ireland ABSTRACT Boundary layers, although unnoticeable to the naked eye, are a characteristic found where the velocity of a fluid relative to a solid surface is zero, hence in the vicinity of this surface a region of velocity increases rapidly from zero up to main stream velocity This has the undesirable effect of causing turbulent flow over long surfaces, which reduce the performance of moving solids (examples being cyclists, automobiles, aircrafts) by introducing frictional drag forces It has been noted that skin-fnction drag is strongly enhanced by the onset of turbulence, however, in turn this turbulence is also greatly enhanced by the separation of the airflow In combination this laminar flow separation and skin-fnction drag decrease lift effects and/or increase pressure drag on aerodynamic surfaces, resulting in decreased efficiency, that is, increased fuel consumption This research aims to examine the development of the boundary layer Specifically the study will look at the effects of separation within the boundary layer and on its impact on the development of the boundary layer and other aspects of the fluid flow Computational Fluid Dynamics or CFD is the analysis of systems involving such phenomena as fluid flow, by means of computer-based simulation This technique is very powerful and spans a wide range of applications CFD has lagged behind other simulation techniques due to the complexity of fluid flow behaviour However, the availability of affordable high performance computational hardware and the introduction of user friendly interfaces, have led to a recent upsurge of interest in the development of CFD simulation packages such as FLUENT Using CFD a computational model is built to represent a system or device that is under investigation The advantages of using CFD are to substantially reduce lead times and costs of new designs, also it is a means of predicting certain outcomes before manufacture To conduct the experimental stages of this research a wind tunnel facility was designed and constructed in- house In conjunction with this, 2D CFD models of the wind tunnel test section were developed The wind tunnel facility was then used to validate the readings obtained from the CFD models A number of blunt plate test pieces were placed in the wind tunnel and the resulting boundary layer development across the test pieces was measured A 2D CFD model was also constructed and the results were consistent with experimental findings Experimental results revealed a reattachment of the flow, with the surface of the test pieces, at a point of x/d = 4 444 from the leading edge of the test piece III TABLE OF CONTENTS Page Declaration I Acknowledgements II Abstract III Table of Contents IV Table of Figures VII List of Tables X Nomenclature XI CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE SURVEY 3 2 1 INTRODUCTION 3 2 2 FLUID MECHANICS 3 2 2 1 Compressible and Incompressible flow 4 2 2 2 Fluid Flow Analysis 5 2 2 3 Laminar and Turbulent Flow 5 2 2 4 Bernoulli’s Equation 5 2 3 AERODYNAMICS 7 2 2 1 Lift 7 2 2 2 Pressure and Lift 8 2 2 3 Drag 9 2 2 4 Aero factors 11 2 2 5 Performance 12 2 2 6 Stability 14 2 2 7 Cooling 15 2 2 8 Visibility 15 2 2 9 Comfort 16 2 4 BOUNDARY LAYERS 17 2 5 FLAT PLATE SEPARATION AND BOUNDARY LAYER CONTROL 24 2 6 BLUNT PLATE SEPARATION AND REATTACHMENT 27 2 7 CFD AND BOUNDARY LAYER ANALYSIS 28 2 8 PRESENT RESEARCH OBJECTIVES 29 CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS 30 3 1 WHY USE CFD'? 31 3 2 DEVELOPMENT OF CFD 32 3 3 GOVERNING EQUATIONS OF CFD 33 3 3 1 Finite Control Volume 33 3 3 2 The Continuity Equation 33 IV 3 3 3 The Momentum Equation 34 3 4 CFD PROCEDURE 35 3 5 TURBULENCE MODELS 37 3 6 CFD SOLVERS 38 3 6 1 Meshmg of the geometry withm Gambit 38 CHAPTER 4 DESIGN OF EXPERIMENTAL EQUIPMENT 40 4 1 DESIGN BRIEF 40 4 2 PRODUCT DESIGN SPECIFICATION 40 4 3 RESEARCH INTO THE AVAILABILITY AND COST OF ‘OFF THE SHELF5 WIND TUNNELS 42 4 4 INVESTIGATION OF POSSIBLE SOLUTIONS TO THE DESIGN PROBLEM 43 4 5 WIND TUNNEL DESIGN 45 4 5 1 Possible Wind Tunnel Designs 45 4 5 2 Open or Closed Test Section 46 4 5 3 Test Section Size 46 4 6 WIND TUNNEL CONCEPTUAL DESIGNS 48 4 6 1 Concept 1 48 4 6 2 Concept 2 49 4 6 3 Concept 3 50 4 7 CONCEPT ANALYSIS 52 4 7 1 Concept Evaluation 53 4 8 THE OPEN RETURN WIND TUNNEL 55 4 8 1 Weighted Decision Matrix 56 4 9 DETAILED DESIGN 58 4 9 1 Final Design 58 4 9 2 Development of the Design 58 4 10 FLOW MEASUREMENT INSTRUMENTATION 68 4 10 1 Pressure 68 4 10 2 Velocity 69 4 10 3 Development of the Instrumentation Equipment 71 4 11 EXPERIMENTAL PROCEDURE 74 4 1 1 1 Specification of Test Pieces 74 4 112 Design of Experimental Procedure 74 4 113 Analysis of Leading Edge Region 76 CHAPTER 5 RESULTS AND DISCUSSION 77 5 1 EXPERIMENTAL RESULTS 77 5 1 1 Comparison of Air Velocities 77 5 1 2 Boundary Layer Development Results - Part 1 79 5 1 3 Boundary Layer Development Results - Part 2 84 5 1 4 Separated Flow at Leading Edge 86 5 2 COMPUTATIONAL FLUID DYNAMICS RESULTS 88 V 5 2 1 Generation of the model within Gambit 88 5 2 2 Import of the model into FLUENT 89 5 2 3 Boundary Layer Development Profiles - Part 1 91 5 2 4 Boundary Layer Development Profiles - Part 2 98 5 3 COMPARISON OF RESULTS 102 5 3 1 Boundary Layer Development 1 02 5 3 2 Separation and Re-attachment of the flow 104 CHAPTER 6 CONCLUSIONS AND FUTURE WORK 105 6 1 CONCLUSIONS 105 6 2 FUTURE WORK 106 6 3 PUBLICATIONS AND PRESENTATIONS 107 REFERENCES 108 APPENDICES 114 Appendix A A1 Appendix B A2 Appendix C A3 Appendix D A10 Appendix E A15 Appendix F Al 8 VI TABLE OF FIGURES CHAPTER 2. LITERATURE SURVEY................................................................Pages 3-29 Figure 2.1: Variation of velocity with distance from a solid boundary....................................4 Figure 2.2: Lift is generated when the airfoil is inclined to the direction of flow. The direction of the resultant force due to the pressure creates this lift.................................8 Figure 2.3: Pressure distribution around an airfoil......................................................................8 Figure 2.4: Values of drag coefficient, Cd, for various body shapes.......................................9 Figure 2.5: Contribution of aerodynamics to vehicle performance and design...................12 Figure 2.6: The influence of drag on max speed of a car.........................................................13 Figure 2.7: The influence of drag on acceleration of a car.....................................................
Recommended publications
  • A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels
    A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels by Kylen D. Clark B.S., University of Toledo, 2013 A thesis submitted to the Faculty of Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Master of Science Department of Aerospace Engineering and Engineering Mechanics of the College of Engineering and Applied Science Committee Chair: Paul D. Orkwis Date: October 21, 2015 Abstract Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry.
    [Show full text]
  • Brief History of the Early Development of Theoretical and Experimental Fluid Dynamics
    Brief History of the Early Development of Theoretical and Experimental Fluid Dynamics John D. Anderson Jr. Aeronautics Division, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA 1 INTRODUCTION 1 Introduction 1 2 Early Greek Science: Aristotle and Archimedes 2 As you read these words, there are millions of modern engi- neering devices in operation that depend in part, or in total, 3 DA Vinci’s Fluid Dynamics 2 on the understanding of fluid dynamics – airplanes in flight, 4 The Velocity-Squared Law 3 ships at sea, automobiles on the road, mechanical biomedi- 5 Newton and the Sine-Squared Law 5 cal devices, and so on. In the modern world, we sometimes take these devices for granted. However, it is important to 6 Daniel Bernoulli and the Pressure-Velocity pause for a moment and realize that each of these machines Concept 7 is a miracle in modern engineering fluid dynamics wherein 7 Henri Pitot and the Invention of the Pitot Tube 9 many diverse fundamental laws of nature are harnessed and 8 The High Noon of Eighteenth Century Fluid combined in a useful fashion so as to produce a safe, efficient, Dynamics – Leonhard Euler and the Governing and effective machine. Indeed, the sight of an airplane flying Equations of Inviscid Fluid Motion 10 overhead typifies the laws of aerodynamics in action, and it 9 Inclusion of Friction in Theoretical Fluid is easy to forget that just two centuries ago, these laws were Dynamics: the Works of Navier and Stokes 11 so mysterious, unknown or misunderstood as to preclude a flying machine from even lifting off the ground; let alone 10 Osborne Reynolds: Understanding Turbulent successfully flying through the air.
    [Show full text]
  • Experimental Study on Turbulent Boundary-Layer Flows with Wall
    Experimental study on turbulent boundary-layer flows with wall transpiration by Marco Ferro October 2017 Technical Reports Royal Institute of Technology Department of Mechanics SE-100 44 Stockholm, Sweden Akademisk avhandling som med tillst˚andav Kungliga Tekniska H¨ogskolan i Stockholm framl¨agges till offentlig granskning f¨or avl¨aggande av teknologie doktorsexamen fredag den 24 November 2017 kl 10:15 i Kollegiesalen, Kungliga Tekniska H¨ogskolan, Brinellv¨agen 8, Stockholm. TRITA-MEK 2017:13 ISSN 0348-467X ISRN KTH/MEK/TR-17/13-SE ISBN 978-91-7729-556-3 c Marco Ferro 2017 Universitetsservice US{AB, Stockholm 2017 Experimental study on turbulent boundary-layer flows with wall transpiration Marco Ferro Linn´eFLOW Centre, KTH Mechanics, Royal Institute of Technology SE-100 44 Stockholm, Sweden Abstract Wall transpiration, in the form of wall-normal suction or blowing through a permeable wall, is a relatively simple and effective technique to control the be- haviour of a boundary layer. For its potential applications for laminar-turbulent transition and separation delay (suction) or for turbulent drag reduction and thermal protection (blowing), wall transpiration has over the past decades been the topic of a significant amount of studies. However, as far as the turbulent regime is concerned, fundamental understanding of the phenomena occurring in the boundary layer in presence of wall transpiration is limited and consid- erable disagreements persist even on the description of basic quantities, such as the mean streamwise velocity, for the rather simplified case of flat-plate boundary-layer flows without pressure gradients. In order to provide new experimental data on suction and blowing boundary layers, an experimental apparatus was designed and brought into operation.
    [Show full text]
  • In Classical Fluid Dynamics, a Boundary Layer Is the Layer I
    Atm S 547 Boundary Layer Meteorology Bretherton Lecture 1 Scope of Boundary Layer (BL) Meteorology (Garratt, Ch. 1) In classical fluid dynamics, a boundary layer is the layer in a nearly inviscid fluid next to a surface in which frictional drag associated with that surface is significant (term introduced by Prandtl, 1905). Such boundary layers can be laminar or turbulent, and are often only mm thick. In atmospheric science, a similar definition is useful. The atmospheric boundary layer (ABL, sometimes called P[lanetary] BL) is the layer of fluid directly above the Earth’s surface in which significant fluxes of momentum, heat and/or moisture are carried by turbulent motions whose horizontal and vertical scales are on the order of the boundary layer depth, and whose circulation timescale is a few hours or less (Garratt, p. 1). A similar definition works for the ocean. The complexity of this definition is due to several complications compared to classical aerodynamics. i) Surface heat exchange can lead to thermal convection ii) Moisture and effects on convection iii) Earth’s rotation iv) Complex surface characteristics and topography. BL is assumed to encompass surface-driven dry convection. Most workers (but not all) include shallow cumulus in BL, but deep precipitating cumuli are usually excluded from scope of BLM due to longer time for most air to recirculate back from clouds into contact with surface. Air-surface exchange BLM also traditionally includes the study of fluxes of heat, moisture and momentum between the atmosphere and the underlying surface, and how to characterize surfaces so as to predict these fluxes (roughness, thermal and moisture fluxes, radiative characteristics).
    [Show full text]
  • Effects of Wall Roughness on Adverse Pressure Gradient Boundary Layers
    Effects of Wall Roughness on Adverse Pressure Gradient Boundary Layers by Pouya Mottaghian A thesis submitted to the Department of Mechanical and Materials Engineering in conformity with the requirements for the degree of Master of Applied Science Queen's University Kingston, Ontario, Canada December, 2015 Copyright © Pouya Mottaghian, 2015 Abstract Large-eddy Simulations were carried out on a at-plate boundary layer over smooth and rough surfaces in the presence of an adverse pressure gradient, strong enough to induce separation. The inlet Reynolds number (based on freestream velocity and momentum thick- ness at the reference plane) is 2300. A sand-grain roughness model was implemented and spatial-resolution requirements were determined. Two roughness heights were used and a fully-rough ow condition is achieved at the refer- ence plane with roughness Reynolds numbers 60 and 120. As the friction velocity decreases due to the adverse pressure gradient the roughness Reynolds number varies from fully-rough to transitionally rough and smooth regime before the separation. The double-averaging approach illustrates how the roughness contribution decreases before the separation as the dispersive stresses decrease markedly compared to the upstream region. Before the ow detachment, roughness intensies the Reynolds stresses. After the sep- aration, the normal stresses, production and dissipation substantially increase through the adverse pressure gradient region. In the recovery region, the ow is highly three dimensional, as turbulent structures impinge on the wall at the reattachment region. Roughness initially increases the skin friction, then causes it to decrease faster than on a smooth wall, generating a considerably larger recirculation bubble for rough cases with earlier separation and later reattachment; increasing the wall roughness also leads to larger separation bubble.
    [Show full text]
  • 1 FLUID MECHANICS TUTORIAL No. 3 BOUNDARY LAYER THEORY In
    FLUID MECHANICS TUTORIAL No. 3 BOUNDARY LAYER THEORY In order to complete this tutorial you should already have completed tutorial 1 and 2 in this series. This tutorial examines boundary layer theory in some depth. When you have completed this tutorial, you should be able to do the following. Discuss the drag on bluff objects including long cylinders and spheres. Explain skin drag and form drag. Discuss the formation of wakes. Explain the concept of momentum thickness and displacement thickness. Solve problems involving laminar and turbulent boundary layers. Throughout there are worked examples, assignments and typical exam questions. You should complete each assignment in order so that you progress from one level of knowledge to another. Let us start by examining how drag is created on objects. 1 1. DRAG When a fluid flows around the outside of a body, it produces a force that tends to drag the body in the direction of the flow. The drag acting on a moving object such as a ship or an aeroplane must be overcome by the propulsion system. Drag takes two forms, skin friction drag and form drag. 1.1 SKIN FRICTION DRAG Skin friction drag is due to the viscous shearing that takes place between the surface and the layer of fluid immediately above it. This occurs on surfaces of objects that are long in the direction of flow compared to their height. Such bodies are called STREAMLINED. When a fluid flows over a solid surface, the layer next to the surface may become attached to it (it wets the surface).
    [Show full text]
  • Chapter 5 Frictional Boundary Layers
    Chapter 5 Frictional boundary layers 5.1 The Ekman layer problem over a solid surface In this chapter we will take up the important question of the role of friction, especially in the case when the friction is relatively small (and we will have to find an objective measure of what we mean by small). As we noted in the last chapter, the no-slip boundary condition has to be satisfied no matter how small friction is but ignoring friction lowers the spatial order of the Navier Stokes equations and makes the satisfaction of the boundary condition impossible. What is the resolution of this fundamental perplexity? At the same time, the examination of this basic fluid mechanical question allows us to investigate a physical phenomenon of great importance to both meteorology and oceanography, the frictional boundary layer in a rotating fluid, called the Ekman Layer. The historical background of this development is very interesting, partly because of the fascinating people involved. Ekman (1874-1954) was a student of the great Norwegian meteorologist, Vilhelm Bjerknes, (himself the father of Jacques Bjerknes who did so much to understand the nature of the Southern Oscillation). Vilhelm Bjerknes, who was the first to seriously attempt to formulate meteorology as a problem in fluid mechanics, was a student of his own father Christian Bjerknes, the physicist who in turn worked with Hertz who was the first to demonstrate the correctness of Maxwell’s formulation of electrodynamics. So, we are part of a joined sequence of scientists going back to the great days of classical physics.
    [Show full text]
  • The Atmospheric Boundary Layer (ABL Or PBL)
    The Atmospheric Boundary Layer (ABL or PBL) • The layer of fluid directly above the Earth’s surface in which significant fluxes of momentum, heat and/or moisture are carried by turbulent motions whose horizontal and vertical scales are on the order of the boundary layer depth, and whose circulation timescale is a few hours or less (Garratt, p. 1). A similar definition works for the ocean. • The complexity of this definition is due to several complications compared to classical aerodynamics: i) Surface heat exchange can lead to thermal convection ii) Moisture and effects on convection iii) Earth’s rotation iv) Complex surface characteristics and topography. Atm S 547 Lecture 1, Slide 1 Sublayers of the atmospheric boundary layer Atm S 547 Lecture 1, Slide 2 Applications and Relevance of BLM i) Climate simulation and NWP ii) Air Pollution and Urban Meteorology iii) Agricultural meteorology iv) Aviation v) Remote Sensing vi) Military Atm S 547 Lecture 1, Slide 3 History of Boundary-Layer Meteorology 1900 – 1910 Development of laminar boundary layer theory for aerodynamics, starting with a seminal paper of Prandtl (1904). Ekman (1905,1906) develops his theory of laminar Ekman layer. 1910 – 1940 Taylor develops basic methods for examining and understanding turbulent mixing Mixing length theory, eddy diffusivity - von Karman, Prandtl, Lettau 1940 – 1950 Kolmogorov (1941) similarity theory of turbulence 1950 – 1960 Buoyancy effects on surface layer (Monin and Obuhkov, 1954). Early field experiments (e. g. Great Plains Expt. of 1953) capable of accurate direct turbulent flux measurements 1960 – 1970 The Golden Age of BLM. Accurate observations of a variety of boundary layer types, including convective, stable and trade- cumulus.
    [Show full text]
  • Boundary Layers
    1 I-campus project School-wide Program on Fluid Mechanics Modules on High Reynolds Number Flows K. P. Burr, T. R. Akylas & C. C. Mei CHAPTER TWO TWO-DIMENSIONAL LAMINAR BOUNDARY LAYERS 1 Introduction. When a viscous fluid flows along a fixed impermeable wall, or past the rigid surface of an immersed body, an essential condition is that the velocity at any point on the wall or other fixed surface is zero. The extent to which this condition modifies the general character of the flow depends upon the value of the viscosity. If the body is of streamlined shape and if the viscosity is small without being negligible, the modifying effect appears to be confined within narrow regions adjacent to the solid surfaces; these are called boundary layers. Within such layers the fluid velocity changes rapidly from zero to its main-stream value, and this may imply a steep gradient of shearing stress; as a consequence, not all the viscous terms in the equation of motion will be negligible, even though the viscosity, which they contain as a factor, is itself very small. A more precise criterion for the existence of a well-defined laminar boundary layer is that the Reynolds number should be large, though not so large as to imply a breakdown of the laminar flow. 2 Boundary Layer Governing Equations. In developing a mathematical theory of boundary layers, the first step is to show the existence, as the Reynolds number R tends to infinity, or the kinematic viscosity ν tends to zero, of a limiting form of the equations of motion, different from that obtained by putting ν = 0 in the first place.
    [Show full text]
  • Incompressible Skewed Turbulent Boundary Layer on an End Wall of a Curved Two-Dimensional Diffuser Marvin Dale Smith Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1970 Incompressible skewed turbulent boundary layer on an end wall of a curved two-dimensional diffuser Marvin Dale Smith Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Mechanical Engineering Commons Recommended Citation Smith, Marvin Dale, "Incompressible skewed turbulent boundary layer on an end wall of a curved two-dimensional diffuser " (1970). Retrospective Theses and Dissertations. 4199. https://lib.dr.iastate.edu/rtd/4199 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 70-18,908 SMITH, Marvin Dale, 1935- INCOMPRESSIBLE SKEWED TURBULENT BOUNDARY LAYER ON AN END WALL OF A C'JRVSD TWO-DIMENSIONAL DIFFUSER. Iowa State University, Ph.D., 1970 Engineering, mechanical I University Microfilms, A XEROXCompany, Ann Arbor, Michigan j. : Art T»T^oT^xtrr»T\ INCOMPRESSIBLE SKEWED TURBULENT BOUNDARY LAYER ON AN END WALL OF A CURVED TWO-DIMENSIONAL DIFFUSER by Marvin Dale Smith A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of Tlie Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subjects; Mechanical Engineering Aerospace Engineering
    [Show full text]
  • Numerical Investigation of the Turbulent Wake-Boundary Interaction in a Translational Cascade of Airfoils and Flat Plate
    energies Article Numerical Investigation of the Turbulent Wake-Boundary Interaction in a Translational Cascade of Airfoils and Flat Plate Xiaodong Ruan 1,*, Xu Zhang 1, Pengfei Wang 2 , Jiaming Wang 1 and Zhongbin Xu 3 1 State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; [email protected] (X.Z.); [email protected] (J.W.) 2 School of Engineering, Zhejiang University City College, Hangzhou 310015, China; [email protected] 3 Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China; [email protected] * Correspondence: [email protected]; Tel.: +86-1385-805-3612 Received: 24 July 2020; Accepted: 27 August 2020; Published: 31 August 2020 Abstract: Rotor stator interaction (RSI) is an important phenomenon influencing performances in the pump, turbine, and compressor. In this paper, the correlation-based transition model is used to study the RSI phenomenon between a translational cascade of airfoils and a flat plat. A comparison was made between computational results and experimental results. The computational boundary layer velocity is in reasonable agreement with the experimental velocity. The thickness of boundary layer decreases as the RSI frequency increases and it increases as the fluid flows downstream. The spectral plots of velocity fluctuations at leading edge x/c = 2 under RSI partial flow condition f = 20 Hz and f = 30 Hz are dominated by a narrowband component. RSI frequency mainly affects the turbulence intensity in the freestream region. However, it has little influence on the turbulence intensity of boundary layer near the wall. A secondary vortex is induced by the wake–boundary layer interaction and it leads to the formation of a thickened laminar boundary layer.
    [Show full text]
  • 0 Exam: 01 Aerodynamics: Boundary Layer Theory
    Aerodynamics EETAC Final Exams Compilation Perm: 0 Exam: 01 Aerodynamics: Boundary Layer Theory { Multiple Choice Test 2018/19 Q2 7. The boundary layer (BL) integral equations... 1. Under which circumstances may the volume rate-of-change (a) result from integrating the BL local equations in the entail viscous shear stresses? wall-normal coordinate over the BL thickness. (b) result from integrating the BL local equations along (a) Never for incompressible flow. the streamwise coordinate. (b) Always under the Stokes hypothesis. (c) result in as many unknowns as there are equations. (c) Always. (d) differ for laminar and turbulent BLs. (d) Never. (e) None of the other options. (e) None of the other options. 8. How is the D'Alembert's paradox removed and the form 2. What is true about the viscous blockage? drag obtained in an inviscid flow { boundary layer coupling (a) All options are correct. calculation? (b) It corresponds to a massflow reduction in the near-wall (a) By solving the inviscid problem for a second time over region due to the effects of viscosity. a body enlarged by the displacement thickness and (c) It corresponds to a momentum flux reduction in the extended with the wake. near-wall region due to the effects of viscosity. (b) By directly solving the boundary layer equations. (d) It follows from the no-slip condition at the wall due to (c) The paradox remains no matter what. viscous effects. (d) By solving the inviscid problem over the original body. (e) It may be quantified by the displacement and momen- (e) The paradox was never there in the first place.
    [Show full text]