A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels
Total Page:16
File Type:pdf, Size:1020Kb
A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels by Kylen D. Clark B.S., University of Toledo, 2013 A thesis submitted to the Faculty of Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Master of Science Department of Aerospace Engineering and Engineering Mechanics of the College of Engineering and Applied Science Committee Chair: Paul D. Orkwis Date: October 21, 2015 Abstract Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASA’s OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of ii a symmetric configuration, specifically one that has been scaled to have equal aspect ratio. Comparisons of numerous parameters, such as flow angles, pressure (both static and stagnation), entropy, boundary layers and displacement thickness, vorticity, etc. paint a picture that shows the symmetric equal aspect ratio configuration to be decidedly better at producing desirable test section flow. It has been shown that virtually all parameters of interest are both more consistent and have lower deviation from ideal conditions for the symmetric equal area configuration. iii iv Acknowledgements For Jess, whose love and support made this endeavor possible. For my sisters, Denaya, Deneika, and Caitria, who provided me with advice, wisdom, and set an example for me to which I can only hope to measure up. For my parents, Kyle and Janet, who encouraged me to look toward the skies. Special thanks to Dr. Paul Orkwis, Dr. Mark Turner, and Dr. Shaaban Abdallah for their expertise in this field. Special thanks to Sean Duncan and Nathan Wukie for their assistance in and knowledge of OVERFLOW, Pointwise, Tecplot, and all things CFD. v Table of Contents Abstract ......................................................................................................................................................... ii Acknowledgements ....................................................................................................................................... v Table of Contents ......................................................................................................................................... vi List of Figures ............................................................................................................................................... ix List of Tables ................................................................................................................................................ xi Nomenclature ............................................................................................................................................. xii 1. Introduction .............................................................................................................................................. 1 Shock Wave Boundary Layer Interactions ................................................................................................ 2 The Importance of SWBLIs ........................................................................................................................ 4 CFD and Shock Wave Boundary Layer Interactions .................................................................................. 5 Motivation for Research ........................................................................................................................... 6 Overview ................................................................................................................................................... 7 2. Previous Research ..................................................................................................................................... 8 SWBLI Workshops ..................................................................................................................................... 8 Corner Flows ........................................................................................................................................... 13 Data Validation ....................................................................................................................................... 15 Physical Wind Tunnel .............................................................................................................................. 17 Mitigation of Negative SWBLI Effects ..................................................................................................... 18 Bleed Air .............................................................................................................................................. 18 Vortex Generators............................................................................................................................... 22 Why Mitigation Matters/SWBLI Modeling Tie-In ............................................................................... 27 Design of Wind Tunnels, a Historical Perspective ................................................................................... 28 Review of Asymmetric Wind Tunnels/Nozzles ....................................................................................... 37 Implications for Current Research .......................................................................................................... 45 3. Methodology ........................................................................................................................................... 47 Navier Stokes .......................................................................................................................................... 47 CFD Theory and Variations...................................................................................................................... 50 Direct Numerical Simulation ............................................................................................................... 51 Large Eddy Simulation ......................................................................................................................... 51 Reynolds Averaged Navier Stokes....................................................................................................... 52 Turbulence Models ............................................................................................................................. 54 vi Grids and/or Meshes .......................................................................................................................... 55 Boundary Conditions ........................................................................................................................... 58 Summary of OVERFLOW Code ................................................................................................................ 58 OVERFLOW Grid Embedding Technique ............................................................................................. 59 Pertinent OVERFLOW Turbulence Model ........................................................................................... 60 OVERFLOW and Grids ......................................................................................................................... 62 OVERFLOW and Boundary Conditions ................................................................................................ 63 4. Numerical Procedures and Considerations ............................................................................................. 64 CFD Simulations ...................................................................................................................................... 64 Three Wind Tunnel Configurations ....................................................................................................