Chapter9 Externalflow Chapter 9 External Flow Past Bodies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 4: Immersed Body Flow [Pp
MECH 3492 Fluid Mechanics and Applications Univ. of Manitoba Fall Term, 2017 Chapter 4: Immersed Body Flow [pp. 445-459 (8e), or 374-386 (9e)] Dr. Bing-Chen Wang Dept. of Mechanical Engineering Univ. of Manitoba, Winnipeg, MB, R3T 5V6 When a viscous fluid flow passes a solid body (fully-immersed in the fluid), the body experiences a net force, F, which can be decomposed into two components: a drag force F , which is parallel to the flow direction, and • D a lift force F , which is perpendicular to the flow direction. • L The drag coefficient CD and lift coefficient CL are defined as follows: FD FL CD = 1 2 and CL = 1 2 , (112) 2 ρU A 2 ρU Ap respectively. Here, U is the free-stream velocity, A is the “wetted area” (total surface area in contact with fluid), and Ap is the “planform area” (maximum projected area of an object such as a wing). In the remainder of this section, we focus our attention on the drag forces. As discussed previously, there are two types of drag forces acting on a solid body immersed in a viscous flow: friction drag (also called “viscous drag”), due to the wall friction shear stress exerted on the • surface of a solid body; pressure drag (also called “form drag”), due to the difference in the pressure exerted on the front • and rear surfaces of a solid body. The friction drag and pressure drag on a finite immersed body are defined as FD,vis = τwdA and FD, pres = pdA , (113) ZA ZA Streamwise component respectively. -
A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels
A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels by Kylen D. Clark B.S., University of Toledo, 2013 A thesis submitted to the Faculty of Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Master of Science Department of Aerospace Engineering and Engineering Mechanics of the College of Engineering and Applied Science Committee Chair: Paul D. Orkwis Date: October 21, 2015 Abstract Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. -
Experimental Study on Turbulent Boundary-Layer Flows with Wall
Experimental study on turbulent boundary-layer flows with wall transpiration by Marco Ferro October 2017 Technical Reports Royal Institute of Technology Department of Mechanics SE-100 44 Stockholm, Sweden Akademisk avhandling som med tillst˚andav Kungliga Tekniska H¨ogskolan i Stockholm framl¨agges till offentlig granskning f¨or avl¨aggande av teknologie doktorsexamen fredag den 24 November 2017 kl 10:15 i Kollegiesalen, Kungliga Tekniska H¨ogskolan, Brinellv¨agen 8, Stockholm. TRITA-MEK 2017:13 ISSN 0348-467X ISRN KTH/MEK/TR-17/13-SE ISBN 978-91-7729-556-3 c Marco Ferro 2017 Universitetsservice US{AB, Stockholm 2017 Experimental study on turbulent boundary-layer flows with wall transpiration Marco Ferro Linn´eFLOW Centre, KTH Mechanics, Royal Institute of Technology SE-100 44 Stockholm, Sweden Abstract Wall transpiration, in the form of wall-normal suction or blowing through a permeable wall, is a relatively simple and effective technique to control the be- haviour of a boundary layer. For its potential applications for laminar-turbulent transition and separation delay (suction) or for turbulent drag reduction and thermal protection (blowing), wall transpiration has over the past decades been the topic of a significant amount of studies. However, as far as the turbulent regime is concerned, fundamental understanding of the phenomena occurring in the boundary layer in presence of wall transpiration is limited and consid- erable disagreements persist even on the description of basic quantities, such as the mean streamwise velocity, for the rather simplified case of flat-plate boundary-layer flows without pressure gradients. In order to provide new experimental data on suction and blowing boundary layers, an experimental apparatus was designed and brought into operation. -
Blasius Boundary Layer
3 Fluid flow at a large Reynolds number. In our first application of matched asymptotic expansions to problems of fluid dynam- ics, let us consider a two-dimensional flow past a solid body, B, at a large Reynolds number. In non-dimensional variables we have the Navier-Stokes equations derived in Section 1 (see equations (1.71)-(1.74)) which, omitting over bars, can be written as ∂u ∂u ∂u ∂p ∂2u ∂2u! + u + v = − + Re−1 + , (3.1) ∂t ∂x ∂y ∂x ∂x2 ∂y2 ∂v ∂v ∂v ∂p ∂2v ∂2v ! + u + v = − + Re−1 + , (3.2) ∂t ∂x ∂y ∂y ∂x2 ∂y2 ∂u ∂v + = 0. (3.3) ∂x ∂y As boundary conditions we take a uniform stream far from the body, u → 1, v → 0, p → 0 as x2 + y2 → ∞, (3.4) and the no-slip conditions on the surface of the body, u = v = 0 at r = ∂B, (3.5) r being the position vector in the (x, y)-plane. One needs to be a little careful with formulating far-field conditions, especially when the solid surface extends to infinity downstream, however in every particular case this should not be an issue. 3.1 Outer limit - inviscid flow. Let Re → ∞. We attempt solution for the flow as an expansion, u = u0(x, y, t) + ..., v = v0(x, y, t) + ..., p = p0(x, y, t) + ..., (3.6) where the neglected terms are small but at this stage we do not know how small. The Navier-Stokes equations suggest correction terms of order Re−1but in fact the corrections prove to be O(Re−1/2). -
Effects of Wall Roughness on Adverse Pressure Gradient Boundary Layers
Effects of Wall Roughness on Adverse Pressure Gradient Boundary Layers by Pouya Mottaghian A thesis submitted to the Department of Mechanical and Materials Engineering in conformity with the requirements for the degree of Master of Applied Science Queen's University Kingston, Ontario, Canada December, 2015 Copyright © Pouya Mottaghian, 2015 Abstract Large-eddy Simulations were carried out on a at-plate boundary layer over smooth and rough surfaces in the presence of an adverse pressure gradient, strong enough to induce separation. The inlet Reynolds number (based on freestream velocity and momentum thick- ness at the reference plane) is 2300. A sand-grain roughness model was implemented and spatial-resolution requirements were determined. Two roughness heights were used and a fully-rough ow condition is achieved at the refer- ence plane with roughness Reynolds numbers 60 and 120. As the friction velocity decreases due to the adverse pressure gradient the roughness Reynolds number varies from fully-rough to transitionally rough and smooth regime before the separation. The double-averaging approach illustrates how the roughness contribution decreases before the separation as the dispersive stresses decrease markedly compared to the upstream region. Before the ow detachment, roughness intensies the Reynolds stresses. After the sep- aration, the normal stresses, production and dissipation substantially increase through the adverse pressure gradient region. In the recovery region, the ow is highly three dimensional, as turbulent structures impinge on the wall at the reattachment region. Roughness initially increases the skin friction, then causes it to decrease faster than on a smooth wall, generating a considerably larger recirculation bubble for rough cases with earlier separation and later reattachment; increasing the wall roughness also leads to larger separation bubble. -
Literature Review
SECTION VII GLOSSARY OF TERMS SECTION VII: TABLE OF CONTENTS 7. GLOSSARY OF TERMS..................................................................... VII - 1 7.1 CFD Glossary .......................................................................................... VII - 1 7.2. Particle Tracking Glossary.................................................................... VII - 3 Section VII – Glossary of Terms Page VII - 1 7. GLOSSARY OF TERMS 7.1 CFD Glossary Advection: The process by which a quantity of fluid is transferred from one point to another due to the movement of the fluid. Boundary condition(s): either: A set of conditions that define the physical problem. or: A plane at which a known solution is applied to the governing equations. Boundary layer: A very narrow region next to a solid object in a moving fluid, and containing high gradients in velocity. CFD: Computational Fluid Dynamics. The study of the behavior of fluids using computers to solve the equations that govern fluid flow. Clustering: Increasing the number of grid points in a region to better resolve a geometric or flow feature. Increasing the local grid resolution. Continuum: Having properties that vary continuously with position. The air in a room can be thought of as a continuum because any cube of air will behave much like any other chosen cube of air. Convection: A similar term to Advection but is a more generic description of the Advection process. Convergence: Convergence is achieved when the imbalances in the governing equations fall below an acceptably low level during the solution process. Diffusion: The process by which a quantity spreads from one point to another due to the existence of a gradient in that variable. Diffusion, molecular: The spreading of a quantity due to molecular interactions within the fluid. -
1 FLUID MECHANICS TUTORIAL No. 3 BOUNDARY LAYER THEORY In
FLUID MECHANICS TUTORIAL No. 3 BOUNDARY LAYER THEORY In order to complete this tutorial you should already have completed tutorial 1 and 2 in this series. This tutorial examines boundary layer theory in some depth. When you have completed this tutorial, you should be able to do the following. Discuss the drag on bluff objects including long cylinders and spheres. Explain skin drag and form drag. Discuss the formation of wakes. Explain the concept of momentum thickness and displacement thickness. Solve problems involving laminar and turbulent boundary layers. Throughout there are worked examples, assignments and typical exam questions. You should complete each assignment in order so that you progress from one level of knowledge to another. Let us start by examining how drag is created on objects. 1 1. DRAG When a fluid flows around the outside of a body, it produces a force that tends to drag the body in the direction of the flow. The drag acting on a moving object such as a ship or an aeroplane must be overcome by the propulsion system. Drag takes two forms, skin friction drag and form drag. 1.1 SKIN FRICTION DRAG Skin friction drag is due to the viscous shearing that takes place between the surface and the layer of fluid immediately above it. This occurs on surfaces of objects that are long in the direction of flow compared to their height. Such bodies are called STREAMLINED. When a fluid flows over a solid surface, the layer next to the surface may become attached to it (it wets the surface). -
Turbulence, Entropy and Dynamics
TURBULENCE, ENTROPY AND DYNAMICS Lecture Notes, UPC 2014 Jose M. Redondo Contents 1 Turbulence 1 1.1 Features ................................................ 2 1.2 Examples of turbulence ........................................ 3 1.3 Heat and momentum transfer ..................................... 4 1.4 Kolmogorov’s theory of 1941 ..................................... 4 1.5 See also ................................................ 6 1.6 References and notes ......................................... 6 1.7 Further reading ............................................ 7 1.7.1 General ............................................ 7 1.7.2 Original scientific research papers and classic monographs .................. 7 1.8 External links ............................................. 7 2 Turbulence modeling 8 2.1 Closure problem ............................................ 8 2.2 Eddy viscosity ............................................. 8 2.3 Prandtl’s mixing-length concept .................................... 8 2.4 Smagorinsky model for the sub-grid scale eddy viscosity ....................... 8 2.5 Spalart–Allmaras, k–ε and k–ω models ................................ 9 2.6 Common models ........................................... 9 2.7 References ............................................... 9 2.7.1 Notes ............................................. 9 2.7.2 Other ............................................. 9 3 Reynolds stress equation model 10 3.1 Production term ............................................ 10 3.2 Pressure-strain interactions -
Chapter 4: Immersed Body Flow [Pp
MECH 3492 Fluid Mechanics and Applications Univ. of Manitoba Fall Term, 2017 Chapter 4: Immersed Body Flow [pp. 445-459 (8e), or 374-386 (9e)] Dr. Bing-Chen Wang Dept. of Mechanical Engineering Univ. of Manitoba, Winnipeg, MB, R3T 5V6 When a viscous fluid flow passes a solid body (fully-immersed in the fluid), the body experiences a net force, F, which can be decomposed into two components: a drag force F , which is parallel to the flow direction, and • D a lift force F , which is perpendicular to the flow direction. • L The drag coefficient CD and lift coefficient CL are defined as follows: FD FL CD = 1 2 and CL = 1 2 , (112) 2 ρU A 2 ρU Ap respectively. Here, U is the free-stream velocity, A is the “wetted area” (total surface area in contact with fluid), and Ap is the “planform area” (maximum projected area of an object such as a wing). In the remainder of this section, we focus our attention on the drag forces. As discussed previously, there are two types of drag forces acting on a solid body immersed in a viscous flow: friction drag (also called “viscous drag”), due to the wall friction shear stress exerted on the • surface of a solid body; pressure drag (also called “form drag”), due to the difference in the pressure exerted on the front • and rear surfaces of a solid body. The friction drag and pressure drag on a finite immersed body are defined as FD,vis = τwdA and FD, pres = pdA , (113) ZA ZA Streamwise component respectively. -
Upwind Sail Aerodynamics : a RANS Numerical Investigation Validated with Wind Tunnel Pressure Measurements I.M Viola, Patrick Bot, M
Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements I.M Viola, Patrick Bot, M. Riotte To cite this version: I.M Viola, Patrick Bot, M. Riotte. Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements. International Journal of Heat and Fluid Flow, Elsevier, 2012, 39, pp.90-101. 10.1016/j.ijheatfluidflow.2012.10.004. hal-01071323 HAL Id: hal-01071323 https://hal.archives-ouvertes.fr/hal-01071323 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. I.M. Viola, P. Bot, M. Riotte Upwind Sail Aerodynamics: a RANS numerical investigation validated with wind tunnel pressure measurements International Journal of Heat and Fluid Flow 39 (2013) 90–101 http://dx.doi.org/10.1016/j.ijheatfluidflow.2012.10.004 Keywords: sail aerodynamics, CFD, RANS, yacht, laminar separation bubble, viscous drag. Abstract The aerodynamics of a sailing yacht with different sail trims are presented, derived from simulations performed using Computational Fluid Dynamics. A Reynolds-averaged Navier- Stokes approach was used to model sixteen sail trims first tested in a wind tunnel, where the pressure distributions on the sails were measured. -
Part III: the Viscous Flow
Why does an airfoil drag: the viscous problem – André Deperrois – March 2019 Rev. 1.1 © Navier-Stokes equations Inviscid fluid Time averaged turbulence CFD « RANS » Reynolds Averaged Euler’s equations Reynolds equations Navier-stokes solvers irrotational flow Viscosity models, uniform 3d Boundary Layer eq. pressure in BL thickness, Prandlt Potential flow mixing length hypothesis. 2d BL equations Time independent, incompressible flow Laplace’s equation 1d BL Integral 2d BL differential equations equations 2d mixed empirical + theoretical 2d, 3d turbulence and transition models 2d viscous results interpolation The inviscid flow around an airfoil Favourable pressure gradient, the flo! a""elerates ro# $ero at the leading edge%s stagnation point& Adverse pressure gradient, the low decelerates way from the surface, the flow free tends asymptotically towards the stream air freestream uniform flow flow inviscid ◀—▶ “laminar”, The boundary layer way from the surface, the fluid’s velocity tends !ue to viscosity, the asymptotically towards the tangential velocity at the velocity field of an ideal inviscid contact of the foil is " free flow around an airfoil$ stream air flow (magnified scale) The boundary layer is defined as the flow between the foil’s surface and the thic%ness where the fluid#s velocity reaches &&' or &&$(' of the inviscid flow’s velocity. The viscous flow around an airfoil at low Reynolds number Favourable pressure gradient, the low a""elerates ro# $ero at the leading edge%s stagnation point& Adverse pressure gradient, the low decelerates +n adverse pressure gradients, the laminar separation bubble forms. The flow goes flow separates. The velocity close to the progressively turbulent inside the bubble$ surface goes negative. -
Airfoil Boundary Layer Separation Prediction [Pdf]
Airfoil Boundary Layer Separation Prediction A project present to The Faculty of the Department of Aerospace Engineering San Jose State University in partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering By Kartavya Patel May 2014 approved by Dr. Nikos Mourtos Faculty Advisor ABSTRACT Airfoil Boundary Layer Separation Prediction by Kartavya Patel This project features a MatLab complied program that predicts airfoil boundary layer separation. The Airfoil Boundary Layer Separation program uses NACA 4 series, 5 series and custom coordinates to generate the airfoil geometry. It then uses Hess-Smith Panel Method to generate the pressure distribution. It will use the pressure distribution profile to display the boundary layer separation point based on Falkner-Skan Solution, Stratford’s Criterion for Laminar Boundary Layer and Stratford’s Criterion for Turbulent Boundary Layer. From comparison to Xfoil, it can be determined that for low angle of attacks the laminar flow separation point can be predicted from Stratford’s LBL criterion and the turbulent flow separation point can be predicted from Stratford’s TBL criterion. For high angle of attacks, the flow separation point can be predicted from Falkner-Skan Solution. The program requires MatLab Compiler Runtime version 8.1 (MCR) which can be downloaded free at http://www.mathworks.com/products/compiler/mcr/ . ACKNOWLEDGEMENTS I would like to thank Dr. Nikos Mourtos for his support and guidance throughout this project. I would also like to thank Hai Le, Tommy Blackwell and Ian Dupzyk for their contribution in previous project “Determination of Flow Separation Point on NACA Airfoils at Different Angles of Attack by Coupling the Solution of Panel Method with Three Different Separation Criteria”.