An Important Family of Lichens with Medicinal Importance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fossil Usnea and Similar Fruticose Lichens from Palaeogene Amber
The Lichenologist (2020), 52, 319–324 doi:10.1017/S0024282920000286 Standard Paper Fossil Usnea and similar fruticose lichens from Palaeogene amber Ulla Kaasalainen1 , Jouko Rikkinen2,3 and Alexander R. Schmidt1 1Department of Geobiology, University of Göttingen, Göttingen, Germany; 2Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland and 3Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland Abstract Fruticose lichens of the genus Usnea Dill. ex Adans. (Parmeliaceae), generally known as beard lichens, are among the most iconic epiphytic lichens in modern forest ecosystems. Many of the c. 350 currently recognized species are widely distributed and have been used as bioin- dicators in air pollution studies. Here we demonstrate that usneoid lichens were present in the Palaeogene amber forests of Europe. Based on general morphology and annular cortical fragmentation, one fossil from Baltic amber can be assigned to the extant genus Usnea. The unique type of cortical cracking indirectly demonstrates the presence of a central cord that keeps the branch intact even when its cortex is split into vertebrae-like segments. This evolutionary innovation has remained unchanged since the Palaeogene, contributing to the considerable ecological flexibility that allows Usnea species to flourish in a wide variety of ecosystems and climate regimes. The fossil sets the minimum age for Usnea to 34 million years (late Eocene). While the other similar fossils from Baltic and Bitterfeld ambers cannot be definitely assigned to the same genus, they underline the diversity of pendant lichens in Palaeogene amber forests. Key words: Ascomycota, Baltic amber, Bitterfeld amber, lichen fossils (Accepted 16 April 2020) Introduction et al. -
The Puzzle of Lichen Symbiosis
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1503 The puzzle of lichen symbiosis Pieces from Thamnolia IOANA ONUT, -BRÄNNSTRÖM ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9887-0 UPPSALA urn:nbn:se:uu:diva-319639 2017 Dissertation presented at Uppsala University to be publicly examined in Lindhalsalen, EBC, Norbyvägen 14, Uppsala, Thursday, 1 June 2017 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Associate Professor Anne Pringle (University of Wisconsin-Madison, Department of Botany). Abstract Onuț-Brännström, I. 2017. The puzzle of lichen symbiosis. Pieces from Thamnolia. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1503. 62 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9887-0. Symbiosis brought important evolutionary novelties to life on Earth. Lichens, the symbiotic entities formed by fungi, photosynthetic organisms and bacteria, represent an example of a successful adaptation in surviving hostile environments. Yet many aspects of the lichen symbiosis remain unexplored. This thesis aims at bringing insights into lichen biology and the importance of symbiosis in adaptation. I am using as model system a successful colonizer of tundra and alpine environments, the worm lichens Thamnolia, which seem to only reproduce vegetatively through symbiotic propagules. When the genetic architecture of the mating locus of the symbiotic fungal partner was analyzed with genomic and transcriptomic data, a sexual self-incompatible life style was revealed. However, a screen of the mating types ratios across natural populations detected only one of the mating types, suggesting that Thamnolia has no potential for sexual reproduction because of lack of mating partners. -
Phytochemical Studies of Endolichenic Fungi Isolated from Hypotrachyna Infirma (Kurok.) Hale
International Journal of Pharmacy and Pharmaceutical Sciences Print ISSN: 2656-0097 | Online ISSN: 0975-1491 Vol 13, Issue 8, 2021 Original Article PHYTOCHEMICAL STUDIES OF ENDOLICHENIC FUNGI ISOLATED FROM HYPOTRACHYNA INFIRMA (KUROK.) HALE GOKILAVANI R.1, H. REHANA BANU2 1,2Department of Botany, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641004, Tamil Nadu, India Email: [email protected] Received: 08 Apr 2021, Revised and Accepted: 19 Jun 2021 ABSTRACT Objective: The aim of this study is to investigate of phytopharmaceutical importance of endolichenic fungi isolated from Hypotrachyna infirma (Kurok.) Hale. Methods: The lichen species were collected from Sholaiyar hills, Coimbatore and identified as Hypotrachyna infirma (Kurok.)Hale. From this lichen, 29 endolichenic fungi were isolated and 13 endolichenic fungi were identified. From the identified endolichenic fungi, 26 extracts were prepared by successive solvent extraction methods using Ethyl acetate and chloroform. Results: The phytochemical study revealed the presence of important constituents like Alkaloids, Tannins, Carbohydrates, Phenols, Protein, Terpenoids, Steroids, Glycosides Flavonoids and Saponins. From the 13 endolichenic fungi, only 5 endolichenic fungi (Nigrospora oryzae (Berkand Broome)Petch, Geotrichum candidum Link, Scytalidium lignicola pesante, Aspergillus oryzae(Ahlb.) cohn, Aspergillus niger Gr.) have more constitutents. These 5 endolichenic fungi have good results in Quantitative analysis also. Conclusion: Compared to ethyl acetate extracts Chloroform extracts showed very less concentration of the phytochemicals. From this study we conclutated Nigrospora oryzae (Berk and Broome) Petch gave the best results in both qualitative and quantitative compared to other endolichenic fungi. Keywords: Hypotrachyna infirma, Endolichenic fungus, Ethyl acetate, Chloroform and phytochemical © 2021 The Authors. Published by Innovare Academic Sciences Pvt Ltd. -
Cuivre Bryophytes
Trip Report for: Cuivre River State Park Species Count: 335 Date: Multiple Visits Lincoln County Agency: MODNR Location: Lincoln Hills - Bryophytes Participants: Bryophytes from Natural Resource Inventory Database Bryophyte List from NRIDS and Bruce Schuette Species Name (Synonym) Common Name Family COFC COFW Acarospora unknown Identified only to Genus Acarosporaceae Lichen Acrocordia megalospora a lichen Monoblastiaceae Lichen Amandinea dakotensis a button lichen (crustose) Physiaceae Lichen Amandinea polyspora a button lichen (crustose) Physiaceae Lichen Amandinea punctata a lichen Physiaceae Lichen Amanita citrina Citron Amanita Amanitaceae Fungi Amanita fulva Tawny Gresette Amanitaceae Fungi Amanita vaginata Grisette Amanitaceae Fungi Amblystegium varium common willow moss Amblystegiaceae Moss Anisomeridium biforme a lichen Monoblastiaceae Lichen Anisomeridium polypori a crustose lichen Monoblastiaceae Lichen Anomodon attenuatus common tree apron moss Anomodontaceae Moss Anomodon minor tree apron moss Anomodontaceae Moss Anomodon rostratus velvet tree apron moss Anomodontaceae Moss Armillaria tabescens Ringless Honey Mushroom Tricholomataceae Fungi Arthonia caesia a lichen Arthoniaceae Lichen Arthonia punctiformis a lichen Arthoniaceae Lichen Arthonia rubella a lichen Arthoniaceae Lichen Arthothelium spectabile a lichen Uncertain Lichen Arthothelium taediosum a lichen Uncertain Lichen Aspicilia caesiocinerea a lichen Hymeneliaceae Lichen Aspicilia cinerea a lichen Hymeneliaceae Lichen Aspicilia contorta a lichen Hymeneliaceae Lichen -
Lectotypification of Usnea Confusa (Parmeliaceae, Ascomycota)
Bull. Natl. Mus. Nat. Sci., Ser. B, 45(2), pp. 63–70, May 22, 2019 Lectotypification of Usnea confusa (Parmeliaceae, Ascomycota) Yoshihito Ohmura1, * and Philippe Clerc2 1 Department of Botany, National Museum of Nature and Science, 4–1–1 Amakubo Tsukuba, Ibaraki 305–0005, Japan 2 Conservatoire et Jardin botaniques de la Ville de Genève, Geneva, Switzerland * E-mail: [email protected] (Received 25 February 2019; accepted 27 March 2019) Abstract The original material of Usnea confusa Asahina consists of several thalli glued on a cardboard. In order to avoid any future taxonomic confusion especially presence or absence of “isidiate soredia”, a single specimen with numerous isidiofibrils developing on the soralia was cho- sen as lectotype. The lectotype of U. confusa contains usnic, salazinic, constictic acids and trace amount of protocetraric acid as the secondary substances. ITS rDNA sequences of Japanese and Taiwanese specimens that have the same morphology and chemistry with the lectotype form two distinct clades nested within the strongly supported clade representing the core group of Usnea cornuta (containing U. cornuta Körber s.str.). Our molecular phylogenetic result based only on ITS rDNA sequences doesn’t allow to confirm or contradict the conspecificity of U. confusa with U. cornuta. Key words: isidiofibrils, ITS rDNA, lectotype, lichenized fungi, phylogeny, soralia, taxonomy. Introduction type (Gerlach et al., 2017), the density of medul- lary hyphae varies from dense to lax; the many In lichenology, the genus Usnea Adans. is chemotypes designated by main substances such known as one of the most difficult genera due to as: salazinic, constictic, stictic, norstictic, proto- the high morphological variability within species cetraric, psoromic, galbinic, thamnolic or lobaric (Clerc, 1998). -
A New Species of Allocetraria (Parmeliaceae, Ascomycota) in China
The Lichenologist 47(1): 31–34 (2015) 6 British Lichen Society, 2015 doi:10.1017/S0024282914000528 A new species of Allocetraria (Parmeliaceae, Ascomycota) in China Rui-Fang WANG, Xin-Li WEI and Jiang-Chun WEI Abstract: Allocetraria yunnanensis R. F. Wang, X. L. Wei & J. C. Wei is described as a new species from the Yunnan Province of China, and is characterized by having a shiny upper surface, strongly wrinkled lower surface, and marginal pseudocyphellae present on the lower side in the form of a white continuous line or spot. The phylogenetic analysis based on nrDNA ITS sequences suggests that the new species is related to A. sinensis X. Q. Gao. Key words: Allocetraria yunnanensis, lichen, taxonomy Accepted for publication 26 June 2014 Introduction genus, as all ten species have been reported there (Kurokawa & Lai 1991; Thell et al. The lichenized genus Allocetraria Kurok. & 1995; Randlane et al. 2001; Wang et al. M. J. Lai was described in 1991, with a new 2014). During our taxonomic study of Allo- species A. isidiigera Kurok. & M. J. Lai, and cetraria, a new species was found. two new combinations: A. ambigua (C. Bab.) Kurok. & M. J. Lai and A. stracheyi (C. Bab.) Kurok. & M. J. Lai (Kurokawa & Lai 1991). The main distribution area of Allocetraria Materials and Methods species was reported to be in the Himalayas, A dissecting microscope (ZEISS Stemi SV11) and com- including China, India, and Nepal. pound microscope (ZEISS Axioskop 2 plus) were used Allocetraria is characterized by dichoto- to study the morphology and anatomy of the specimens. Colour test reagents [10% aqueous KOH, saturated mously or subdichotomously branched lobes aqueous Ca(OCl)2, and concentrated alcoholic p- and a foliose to suberect or erect thallus with phenylenediamine] and thin-layer chromatography sparse rhizines, angular to sublinear pseudo- (TLC, solvent system C) were used for the detection cyphellae, palisade plectenchymatous upper of lichen substances (Culberson & Kristinsson 1970; Culberson 1972). -
Thamnolia Subuliformis – (Ehrh.) Culb
SPECIES: Scientific [common] Thamnolia subuliformis – (Ehrh.) Culb. [Whiteworm lichen] Forest: Salmon–Challis National Forest Forest Reviewer: Jessica M Dhaemers; Brittni Brown; John Proctor, Rose Lehman Date of Review: 10/13/2017; 13 February 2018; 15 March 2018 Forest concurrence (or NO recommendation if new) for inclusion of species on list of potential SCC: (Enter Yes or No) FOREST REVIEW RESULTS: 1. The Forest concurs or recommends the species for inclusion on the list of potential SCC: Yes___ No_X__ 2. Rationale for not concurring is based on (check all that apply): Species is not native to the plan area _______ Species is not known to occur in the plan area _______ Species persistence in the plan area is not of substantial concern ___X____ FOREST REVIEW INFORMATION: 1. Is the Species Native to the Plan Area? Yes _X_ No___ If no, provide explanation and stop assessment. 2. Is the Species Known to Occur within the Planning Area? Yes _X _ No___ If no, stop assessment. Table 1. All Known Occurrences, Years, and Frequency within the Planning Area Year Number of Location of Observations (USFS Source of Information Observed Individuals District, Town, River, Road Intersection, HUC, etc.) 1987 Not Middle Fork Ranger District IDFG Element Occurrence EO reported Along the Middle Fork Salmon Number: 1 River, across from Hospital Bar; EO_ID: 3589 in Frank Church–River of No Old EO_ID: 9675 Return Wilderness and Middle Fork Salmon River Wild and Scenic River Corridor (Wild classification); moss-covered, north-facing small cliff band, 4,100 feet in elevation 1996 Not Lost River Ranger District Consortium of North American reported Vicinity of Mill Lake in Mill Lake Lichen Herbarium. -
Monitoring Air Quality in Class I Wilderness Areas of the Northeastern United States Using Lichens and Bryophytes Alison C
United States Department of Agriculture Monitoring Air Quality in Class I Wilderness Areas of the Northeastern United States Using Lichens and Bryophytes Alison C. Dibble, James W. Hinds, Ralph Perron, Natalie Cleavitt, Richard L. Poirot, and Linda H. Pardo Forest Service Northern Research Station General Technical Report NRS-165 December 2016 1 Abstract To address a need for air quality and lichen monitoring information for the Northeast, we compared bulk chemistry data from 2011-2013 to baseline surveys from 1988 and 1993 in three Class I Wilderness areas of New Hampshire and Vermont. Plots were within the White Mountain National Forest (Presidential Range—Dry River Wilderness and Great Gulf Wilderness, New Hampshire) and the Green Mountain National Forest (Lye Brook Wilderness, Vermont). We sampled epiphyte communities and found 58 macrolichen species and 55 bryophyte species. We also analyzed bulk samples for total N, total S, and 27 additional elements. We detected a decrease in Pb at the level of the National Forest and in a subset of plots. Low lichen richness and poor thallus condition at Lye Brook corresponded to higher N and S levels at these sites. Lichen thallus condition was best where lichen species richness was also high. Highest Hg content, from a limited subset, was on the east slope of Mt. Washington near the head of Great Gulf. Most dominant lichens in good condition were associated with conifer boles or acidic substrates. The status regarding N and S tolerance for many lichens in the northeastern United States is not clear, so the influence of N pollution on community data cannot be fully assessed. -
1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families ⇑ Jolanta Miadlikowska A, , Frank Kauff B,1, Filip Högnabba C, Jeffrey C
Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10, Soili Stenroos c,10 a Department of Biology, Duke University, Durham, NC 27708-0338, USA b FB Biologie, Molecular Phylogenetics, 13/276, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany c Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland d Department of Ecology and Evolutionary Biology, Yale University, 358 ESC, 21 Sachem Street, New Haven, CT 06511, USA e Institut für Botanik, Karl-Franzens-Universität, Holteigasse 6, A-8010 Graz, Austria f Department of Plant Taxonomy and Nature Conservation, University of Gdan´sk, ul. Wita Stwosza 59, 80-308 Gdan´sk, Poland g Science and Education, The Field Museum, 1400 S. -
Habitat Quality and Disturbance Drive Lichen Species Richness in a Temperate Biodiversity Hotspot
Oecologia (2019) 190:445–457 https://doi.org/10.1007/s00442-019-04413-0 COMMUNITY ECOLOGY – ORIGINAL RESEARCH Habitat quality and disturbance drive lichen species richness in a temperate biodiversity hotspot Erin A. Tripp1,2 · James C. Lendemer3 · Christy M. McCain1,2 Received: 23 April 2018 / Accepted: 30 April 2019 / Published online: 15 May 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The impacts of disturbance on biodiversity and distributions have been studied in many systems. Yet, comparatively less is known about how lichens–obligate symbiotic organisms–respond to disturbance. Successful establishment and development of lichens require a minimum of two compatible yet usually unrelated species to be present in an environment, suggesting disturbance might be particularly detrimental. To address this gap, we focused on lichens, which are obligate symbiotic organ- isms that function as hubs of trophic interactions. Our investigation was conducted in the southern Appalachian Mountains, USA. We conducted complete biodiversity inventories of lichens (all growth forms, reproductive modes, substrates) across 47, 1-ha plots to test classic models of responses to disturbance (e.g., linear, unimodal). Disturbance was quantifed in each plot using a standardized suite of habitat quality variables. We additionally quantifed woody plant diversity, forest density, rock density, as well as environmental factors (elevation, temperature, precipitation, net primary productivity, slope, aspect) and analyzed their impacts on lichen biodiversity. Our analyses recovered a strong, positive, linear relationship between lichen biodiversity and habitat quality: lower levels of disturbance correlate to higher species diversity. With few exceptions, additional variables failed to signifcantly explain variation in diversity among plots for the 509 total lichen species, but we caution that total variation in some of these variables was limited in our study area. -
Lichens and Associated Fungi from Glacier Bay National Park, Alaska
The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O. -
A Multigene Phylogenetic Synthesis for the Class Lecanoromycetes (Ascomycota): 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families
A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., ... & Stenroos, S. (2014). A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution, 79, 132-168. doi:10.1016/j.ympev.2014.04.003 10.1016/j.ympev.2014.04.003 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10,