Study of Dental Fluorosis in Subjects Related to a Phosphatic Fertilizer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Table S8. Species Identified by Random Forests Analysis of Shotgun Sequencing Data That Exhibit Significant Differences In
Table S8. Species identified by random forests analysis of shotgun sequencing data that exhibit significant differences in their representation in the fecal microbiomes between each two groups of mice. (a) Species discriminating fecal microbiota of the Soil and Control mice. Mean importance of species identified by random forest are shown in the 5th column. Random forests assigns an importance score to each species by estimating the increase in error caused by removing that species from the set of predictors. In our analysis, we considered a species to be “highly predictive” if its importance score was at least 0.001. T-test was performed for the relative abundances of each species between the two groups of mice. P-values were at least 0.05 to be considered statistically significant. Microbiological Taxonomy Random Forests Mean of relative abundance P-Value Species Microbiological Function (T-Test) Classification Bacterial Order Importance Score Soil Control Rhodococcus sp. 2G Engineered strain Bacteria Corynebacteriales 0.002 5.73791E-05 1.9325E-05 9.3737E-06 Herminiimonas arsenitoxidans Engineered strain Bacteria Burkholderiales 0.002 0.005112829 7.1580E-05 1.3995E-05 Aspergillus ibericus Engineered strain Fungi 0.002 0.001061181 9.2368E-05 7.3057E-05 Dichomitus squalens Engineered strain Fungi 0.002 0.018887472 8.0887E-05 4.1254E-05 Acinetobacter sp. TTH0-4 Engineered strain Bacteria Pseudomonadales 0.001333333 0.025523638 2.2311E-05 8.2612E-06 Rhizobium tropici Engineered strain Bacteria Rhizobiales 0.001333333 0.02079554 7.0081E-05 4.2000E-05 Methylocystis bryophila Engineered strain Bacteria Rhizobiales 0.001333333 0.006513543 3.5401E-05 2.2044E-05 Alteromonas naphthalenivorans Engineered strain Bacteria Alteromonadales 0.001 0.000660472 2.0747E-05 4.6463E-05 Saccharomyces cerevisiae Engineered strain Fungi 0.001 0.002980726 3.9901E-05 7.3043E-05 Bacillus phage Belinda Antibiotic Phage 0.002 0.016409765 6.8789E-07 6.0681E-08 Streptomyces sp. -
Systematic Research on Actinomycetes Selected According
Systematic Research on Actinomycetes Selected according to Biological Activities Dissertation Submitted in fulfillment of the requirements for the award of the Doctor (Ph.D.) degree of the Math.-Nat. Fakultät of the Christian-Albrechts-Universität in Kiel By MSci. - Biol. Yi Jiang Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Marine Mikrobiologie, Düsternbrooker Weg 20, D-24105 Kiel, Germany Supervised by Prof. Dr. Johannes F. Imhoff Kiel 2009 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: ______________________ Tag der mündlichen Prüfung: Kiel, ____________ Zum Druck genehmigt: Kiel, _____________ Summary Content Chapter 1 Introduction 1 Chapter 2 Habitats, Isolation and Identification 24 Chapter 3 Streptomyces hainanensis sp. nov., a new member of the genus Streptomyces 38 Chapter 4 Actinomycetospora chiangmaiensis gen. nov., sp. nov., a new member of the family Pseudonocardiaceae 52 Chapter 5 A new member of the family Micromonosporaceae, Planosporangium flavogriseum gen nov., sp. nov. 67 Chapter 6 Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea 87 Chapter 7 Discussion 99 Appendix a Resume, Publication list and Patent 115 Appendix b Medium list 122 Appendix c Abbreviations 126 Appendix d Poster (2007 VAAM, Germany) 127 Appendix e List of research strains 128 Acknowledgements 134 Erklärung 136 Summary Actinomycetes (Actinobacteria) are the group of bacteria producing most of the bioactive metabolites. Approx. 100 out of 150 antibiotics used in human therapy and agriculture are produced by actinomycetes. Finding novel leader compounds from actinomycetes is still one of the promising approaches to develop new pharmaceuticals. The aim of this study was to find new species and genera of actinomycetes as the basis for the discovery of new leader compounds for pharmaceuticals. -
Of the 16 Strains Obtained from Salty Soil in Mongolia, Six Strains Were
African Journal of Microbiology Research Vol. 7(4), pp. 298-308, 22 January, 2013 Available online at http://www.academicjournals.org/AJMR DOI: 10.5897/AJMR12.498 ISSN 1996 0808 ©2013 Academic Journals Full Length Research Paper Isolation, classification, phylogenetic analysis and scanning electron microscopy of halophilic, halotolerant and alkaliphilic actinomycetes isolated from hypersaline soil Ismet Ara1,2*, D. Daram4, T. Baljinova4, H. Yamamura5, W. N. Hozzein3, M. A. Bakir1, M. Suto2 and K. Ando2 1Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 22452, Riyadh-11495, Kingdom of Saudi Arabia. 2Biotechnology Development Center, Department of Biotechnology (DOB), National Institute of Technology and Evaluation (NITE), Kazusakamatari 2-5-8, Kisarazu, Chiba, 292-0818, Japan. 3Bioproducts Research Chair (BRC), College of Science, King Saud University. 4Division of Applied Biological Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Takeda-4, Kofu 400-8511, Japan. Accepted 9 January, 2013 Actinomycetes were isolated by plating of serially diluted samples onto humic acid-vitamin agar prepared with or without NaCl and characterized by physiological and phylogenetical studies. A total of 16 strains were isolated from hypersaline soil in Mongolia. All strains showed alkaliphilic characteristics and were able to abundantly grow in media with pH 9.0. Six strains were halotolerant actinomycetes (0 to 12.0% NaCl) and 10 strains were moderately halophiles (3.0 to 12.0% NaCl). Most strains required moderately high salt (5.0 to 10.0%) for optimal growth but were able to grow at lower NaCl concentrations. Among the 16 strains, 5 were able to grow at 45°C. -
Isoptericola Hypogeus Sp. Nov., Isolated from the Roman Catacomb of Domitilla
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC International Journal of Systematic and Evolutionary Microbiology (2005), 55, 1715–1719 DOI 10.1099/ijs.0.63632-0 Isoptericola hypogeus sp. nov., isolated from the Roman catacomb of Domitilla Ingrid Groth,1 Peter Schumann,2 Barbara Schu¨tze,1 Juan M. Gonzalez,3 Leonila Laiz,3 Cesareo Saiz-Jimenez3 and Erko Stackebrandt2 Correspondence 1Leibniz-Institut fu¨r Naturstoff-Forschung und Infektionsbiologie e. V., Hans-Kno¨ll-Institut, Ingrid Groth Beutenbergstrasse 11a, 07745 Jena, Germany [email protected] 2DSMZ–Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, 38124 Braunschweig, Germany 3Instituto de Recursos Naturales y Agrobiologia, CSIC, Apartado 1052, 41080 Sevilla, Spain In order to clarify the taxonomic position of an actinobacterium from the Roman catacomb of Domitilla, a combination of phenotypic characterization, phylogenetic analysis based on the 16S rRNA gene sequence and DNA–DNA relatedness studies was used. The results from the polyphasic taxonomic study of this organism showed that strain HKI 0342T (=DSM 16849T=NCIMB 14033T) should be considered as the type strain of a novel species of the genus Isoptericola, for which the name Isoptericola hypogeus sp. nov. is proposed. The genus Isoptericola has been proposed by Stackebrandt oxygen requirements) and antibiotic-susceptibility tests et al. (2004) for the misclassified species Cellulosimicro- were performed, using solid or liquid organic medium 79 bium variabile Bakalidou et al. 2002 and is currently based (Prauser & Falta, 1968) and an incubation temperature of on this single species. The type strain, which is the only 28 uC. -
Metagenomics and Metatranscriptomics of Lake Erie Ice
METAGENOMICS AND METATRANSCRIPTOMICS OF LAKE ERIE ICE Opeoluwa F. Iwaloye A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2021 Committee: Scott Rogers, Advisor Paul Morris Vipaporn Phuntumart © 2021 Opeoluwa Iwaloye All Rights Reserved iii ABSTRACT Scott Rogers, Lake Erie is one of the five Laurentian Great Lakes, that includes three basins. The central basin is the largest, with a mean volume of 305 km2, covering an area of 16,138 km2. The ice used for this research was collected from the central basin in the winter of 2010. DNA and RNA were extracted from this ice. cDNA was synthesized from the extracted RNA, followed by the ligation of EcoRI (NotI) adapters onto the ends of the nucleic acids. These were subjected to fractionation, and the resulting nucleic acids were amplified by PCR with EcoRI (NotI) primers. The resulting amplified nucleic acids were subject to PCR amplification using 454 primers, and then were sequenced. The sequences were analyzed using BLAST, and taxonomic affiliations were determined. Information about the taxonomic affiliations, important metabolic capabilities, habitat, and special functions were compiled. With a watershed of 78,000 km2, Lake Erie is used for agricultural, forest, recreational, transportation, and industrial purposes. Among the five great lakes, it has the largest input from human activities, has a long history of eutrophication, and serves as a water source for millions of people. These anthropogenic activities have significant influences on the biological community. Multiple studies have found diverse microbial communities in Lake Erie water and sediments, including large numbers of species from the Verrucomicrobia, Proteobacteria, Bacteroidetes, and Cyanobacteria, as well as a diverse set of eukaryotic taxa. -
Cucumis Sativus
International Journal of Systematic and Evolutionary Microbiology (2016), 66, 2784–2788 DOI 10.1099/ijsem.0.001055 Isoptericola cucumis sp. nov., isolated from the root tissue of cucumber (Cucumis sativus) Peter Kampfer,€ 1 Stefanie P. Glaeser,1 Joseph W. Kloepper,2 Chia-Hui Hu,2 John A. McInroy,2 Karin Martin3 and Hans-Jürgen Busse4 Correspondence 1Institut für Angewandte Mikrobiologie, Justus-Liebig-Universitat€ Giessen, D-35392 Giessen, Peter Kampfer€ Germany [email protected] 2Department of Entomology and Plant Pathology, Auburn University, Alabama 36849, USA giessen.de 3Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e. V., Hans-Knöll-Institut-, D- 07745 Jena, Germany 4Institut für Mikrobiologie, Veterinarmedizinische€ Universitat,€ A-1210 Wien, Austria A Gram-stain-positive, aerobic organism, showing an irregular cell morphology, was isolated from the root tissue of cucumber (Cucumis sativus) and investigated in detail for its taxonomic position. On the basis of the 16S rRNA gene sequence analysis, strain AP-38T was shown to be most closely related to Isoptericola variabilis (99.1 %) and Isoptericola nanjingensis (98.9 %). The 16S rRNA gene sequence similarity to all other species of the genus Isoptericola was 98.5 %. DNA–DNA relatedness to Isoptericola variablis DSM 10177T and Isoptericola nanjingensis DSM 24300T was 31(reciprocal 41 %) and 34 (reciprocal 34 %), respectively. The diagnostic diamino acid of the peptidoglycan was L-lysine. The quinone system contained predominantly menaquinones MK-9(H4) and MK-9(H2). In the polar lipid profile, major compounds were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two phosphatidylinositol mannosides. The polyamine pattern contained the major components spermidine and spermine and significant amounts of tyramine. -
Community of Actinomycetes in 42 Species of Animal Feces
Online International Interdisciplinary Research Journal, {Bi-Monthly}, ISSN2249-9598, Volume-IV, July 2014 Special Issue Community of actinomycetes in 42 species of animal feces Yi Jiang a*, Xiu Chen 1,2,Li Han b, Xueshi Huang b, Chenglin Jiang a,b aYunnan Institute of Microbiology, Yunnan University, 650091 Kunming, Yunnan, P. R. China. bInstitute of Microbial pharmaceuticals, College of Life and Health Science, Northeastern University, 110819 Shenyang, P. R. China Abstract The study on animal fecal actinomycete, as a source for discovering new drug laeds, is a few in the past. There is a great deal of and un-exlroited actinomycete resources in animal feces. To provide new sources for discovering new drug leads, the diversity and bioactivities of cultivable actinobacteria from animal feces have been studied. 42 species of animal fecal samples were collected from Yunnan Wild Animal Park and other habitats. The purified cultures of actinobacteria were isolated from these samples by using 5 media. 3049 pure strains were isolated. The 16S rRNA gene sequences of 1869 selected strains of them were determined, the phylogenetic analysis was carried out, and anti-microbial anti-tumor, enzyme activities as well as toxin to mice were determined. 51 genera (including a new genus, Enteractinococcus ) of actinobacteria from the 42 species of animal feces were identified. Results of this study indicate that there is a great deal of and un-exlroited actinomycete resources in animal feces. Animal fecal actinomycete is considered as a new resource for discovering drug leads, agricultural chemicals and other industry products. KEYWORDS Actinobacteria; diversity; animal feces. 1. Introduction Actinomycetes (Actinobacteria) have recently received much attention, as these bacteria produce a variety of natural drugs and other bioactive metabolites, including antibiotics, enzyme inhibitors and enzymes. -
Records of Potential Antimicrobial Activity of Soil Actinomycetes Isolated from a Community Forest in Ban Khoklam Sang Aram, Udon Thani Province
Proceedings of International Conference on Biodiversity: IBD2019 (2019); 41 - 47 Records of potential antimicrobial activity of soil actinomycetes isolated from a community forest in Ban Khoklam Sang Aram, Udon Thani Province Metinee Wasoontharawat 1* and Panthong Kulsantiwong 2 1Department of Biology, Faculty of Science, Udon Thani Rajabhat University, Muang District, Udon Thani, Thailand 2Department of Biology, Faculty of Science, Udon Thani Rajabhat University, Muang District, Udon Thani, Thailand *Corresponding author e-mail: [email protected] Abstract: The WHO (2015) released a report of an increasing number of infections due to the global antimicrobial drug resistance crisis. Unexplored areas may be possible for sources of actinomycetes with potent antimicrobial compounds. This study was directed towards isolation of actinomycetes that produce antimicrobial substances from unexplored soil in a community forest in Ban Khoklam Sang Aram, Udon Thani Province. The survey showed diversity of actinomycetes and rare actinomycetes in this area. Ten of 232 isolated actinomycetes showed potent antimicrobial activity by growth inhibition of Bacillus subtillis, Candida albicans, Escherichia coli, Pseudomonas aeroginosa and Staphylococcus spp. after testing using agar disc diffusion and agar well diffusion tests. These isolates were identified as species in the genera Streptomyces (9 isolates) and Microbispora (1 isolate). Keywords: Microbial diversity, actinomycetes, Antimicrobial activity, Soil microorganism, Pathogenic microorganism Introduction Actinomycetes are Gram-positive bacteria. They are unique in their formation of branching filaments with fungi like hyphae and asexual spores. Their bacterial DNA has a high G+C content, 55-75% (Lechevalier and Lechevalier, 1967; Embley and Stackebrandt, 1994). Actinomycetes is a major microbial population that is widely distributed and inhabits the soil (Jaralla et al., 2014). -
Provided for Non-Commercial Research and Educational Use. Not for Reproduction, Distribution Or Commercial Use
Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in the Encyclopedia of Microbiology published by Elsevier, and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial E M Wellington. Actinobacteria. Encyclopedia of Microbiology. (Moselio Schaechter, Editor), pp. 26-[44] Oxford: Elsevier. Author's personal copy BACTERIA Contents Actinobacteria Bacillus Subtilis Caulobacter Chlamydia Clostridia Corynebacteria (including diphtheria) Cyanobacteria Escherichia Coli Gram-Negative Cocci, Pathogenic Gram-Negative Opportunistic Anaerobes: Friends and Foes Haemophilus Influenzae Helicobacter Pylori Legionella, Bartonella, Haemophilus Listeria Monocytogenes Lyme Disease Mycoplasma and Spiroplasma Myxococcus Pseudomonas Rhizobia Spirochetes Staphylococcus Streptococcus Pneumoniae Streptomyces -
Proposed Minimal Standards for Describing New Genera and Species of the Suborder Micrococcineae
International Journal of Systematic and Evolutionary Microbiology (2009), 59, 1823–1849 DOI 10.1099/ijs.0.012971-0 Proposed minimal standards for describing new genera and species of the suborder Micrococcineae Peter Schumann,1 Peter Ka¨mpfer,2 Hans-Ju¨rgen Busse 3 and Lyudmila I. Evtushenko4 for the Subcommittee on the Taxonomy of the Suborder Micrococcineae of the International Committee on Systematics of Prokaryotes Correspondence 1DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, P. Schumann 38124 Braunschweig, Germany [email protected] 2Institut fu¨r Angewandte Mikrobiologie, Justus-Liebig-Universita¨t, 35392 Giessen, Germany 3Institut fu¨r Bakteriologie, Mykologie und Hygiene, Veterina¨rmedizinische Universita¨t, A-1210 Wien, Austria 4All-Russian Collection of Microorganisms (VKM), G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Pushchino, Moscow Region 142290, Russia The Subcommittee on the Taxonomy of the Suborder Micrococcineae of the International Committee on Systematics of Prokaryotes has agreed on minimal standards for describing new genera and species of the suborder Micrococcineae. The minimal standards are intended to provide bacteriologists involved in the taxonomy of members of the suborder Micrococcineae with a set of essential requirements for the description of new taxa. In addition to sequence data comparisons of 16S rRNA genes or other appropriate conservative genes, phenotypic and genotypic criteria are compiled which are considered essential for the comprehensive characterization of new members of the suborder Micrococcineae. Additional features are recommended for the characterization and differentiation of genera and species with validly published names. INTRODUCTION Aureobacterium and Rothia/Stomatococcus) and one pair of homotypic synonyms (Pseudoclavibacter/Zimmer- The suborder Micrococcineae was established by mannella) (Table 1 and http://www.the-icsp.org/taxa/ Stackebrandt et al. -
Comparative Genomics of Actinomycetes with a Focus on Natural Product Biosynthetic Genes James R Doroghazi1* and William W Metcalf1,2
Doroghazi and Metcalf BMC Genomics 2013, 14:611 http://www.biomedcentral.com/1471-2164/14/611 RESEARCH ARTICLE Open Access Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes James R Doroghazi1* and William W Metcalf1,2 Abstract Background: Actinomycetes are a diverse group of medically, industrially and ecologically important bacteria, studied as much for the diseases they cause as for the cures they hold. The genomes of actinomycetes revealed that these bacteria have a large number of natural product gene clusters, although many of these are difficult to tie to products in the laboratory. Large scale comparisons of these clusters are difficult to perform due to the presence of highly similar repeated domains in the most common biosynthetic machinery: polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). Results: We have used comparative genomics to provide an overview of the genomic features of a set of 102 closed genomes from this important group of bacteria with a focus on natural product biosynthetic genes. We have focused on well-represented genera and determine the occurrence of gene cluster families therein. Conservation of natural product gene clusters within Mycobacterium, Streptomyces and Frankia suggest crucial roles for natural products in the biology of each genus. The abundance of natural product classes is also found to vary greatly between genera, revealing underlying patterns that are not yet understood. Conclusions: A large-scale analysis of natural product gene clusters presents a useful foundation for hypothesis formulation that is currently underutilized in the field. Such studies will be increasingly necessary to study the diversity and ecology of natural products as the number of genome sequences available continues to grow.