'Biodeterioration of Limestone: Role of Bacterial Biofilms and Possible Intervention Strategies'

Total Page:16

File Type:pdf, Size:1020Kb

'Biodeterioration of Limestone: Role of Bacterial Biofilms and Possible Intervention Strategies' 'Biodeterioration of limestone: role of bacterial biofilms and possible intervention strategies' Philip Skipper (12255097) PhD Thesis June / 2018 1 To my wife, Lynda Skipper. Without whom none of this would have been possible. 2 Acknowledgements I would like to thank my supervisor, Doctor Ronald Dixon, for all his support, help, advice and encouragement, and for bravely allowing a slightly late topic change. I would also like to thank Doctor Ross Williams and Henning Schulze, my co-supervisors, for their advice and encouragement. Thanks also go to Michael Shaw for use of his 16S rRNA primers (p. 48, 49) as well as his friendship, to Alice Gillet for her friendship and provision of the surface profilometer work (p. 47, 66 & 67), and of course to the rest of the Microbiology laboratory team. I would also like to thank Doctor Lynda Skipper for her assistance in note taking and taking photographs during the initial sampling (p. 45, 46 & 60) as well as salt and biocide treatment, SEM imaging and EDX testing of the stone blocks for the salting analysis of biocides (p.53 & 163). I would like to thank Mary Webster for allowing me to use the isolates gathered during her Masters project and providing her sampling sheets (p. 45, 61 & Appendix A) and Doctor Alan McNally for PCR amplification and sequencing of the total population genomic DNA isolates for metagenomics and providing the raw data generated by the sequencer (p. 51 & 61). I am grateful to the School of Life Sciences, especially the former Head of School Professor Libby John, for covering the main research costs of this study. In addition I would like to thank Ronald Dixon for support for laboratory consumables from his gift fund and the College of Arts Research Resources Fund at the University of Lincoln which financially supported the initial sampling. This dissertation is the result of my own work and includes nothing that is the outcome of work done in collaboration except where it is specifically indicated in the text. 3 Abstract Limestone built heritage is at risk from the effects of biofilms, a microbial community encapsulated in a matrix of sugars, protein and extracellular DNA. Although biofilm research has been carried out in Mediterranean regions, few studies cover temperate Northern Europe climates, or the UK. This study concentrates on bacterial colonisation of Lincoln limestone, a highly vulnerable building material, and identifies the species, their role in biodeterioration and the efficacy of biocides against them. As part of this study the core species which comprise the bacterial component of the limestone microbiome have been characterised for the first time; this has allowed the identification of non- core species which are significantly associated with damaged and undamaged surfaces. Four mechanisms of biodeterioration have been identified, one previously unidentified, and isolated species have been characterised as to whether they are biodeteriorative and the mechanisms of biodeterioration that they employ. Two species, Curtobacterium flaccumfaciens and Solibacillus silvestris, have been characterised as producing biofilm matrix which actively causes biomechanical damage to the oolitic limestone structure as opposed to the passive enhancement of physical weathering which has been previously associated with biofilm matrix. Species capable of biodeterioration have also been shown to be present on both damaged and undamaged surfaces, something which has not been previously investigated. Environmental sampling, species identification and characterisation of species for biodeterioration have all combined to identify markers of biodeterioration, ie both physical markers and biomarkers. Specifically, a surface pH of 5.5 or lower and the presence of B. licheniformis is indicative of biodeterioration with a proportionally higher level of M. luteus when comparing damaged and undamaged stone. Finally this study brings the literature on conservation methods up to date by testing biocides which are in current usage, as many biocides in the literature are discontinued. This study is also the first in the field to show their efficacy against biofilm encapsulated bacteria and their propensity for chemically disrupting the biofilm matrix. 4 Table of Contents Acknowledgements 3 Abstract 4 Table of Figures 8 Professional development from this study 12 Research outputs from this study. 12 Training and Development 13 1 Introduction 14 1.1 Aims 14 1.2 Limestone 17 1.2.1 Lincolnshire limestones 18 1.2.2 The bioreceptivity of limestone 20 1.3 Limestone microbiome and its role in biodeterioration 22 1.3.1 The bacterial microbiome 24 1.3.2 Interpreting the bacterial microbiome 28 1.3.3 Biodeterioration 32 1.4 Conservation cleaning of limestone 36 1.4.1 Biocides 38 1.4.2 UVC light and cold plasma 41 1.4.3 Laser cleaning 42 1.4.4 Presure washing and steam cleaning 42 1.4.5 Selecting the appropriate method 43 2 Materials and Methods 44 2.1 Sampling 44 2.1.1 Sellotape and swab method to sample surfaces 44 2.1.2 Environmental data recording 44 2.1.3 Staining of sampled biofilms 46 2.1.4 Characterisation of Lincoln limestone 46 2.2 Characterisation of microorganisms 46 2.2.1 Culturing and isolation of bacteria 46 2.2.2 Identification of isolated species 47 2.2.3 Identification of micro-organisms – 16S rRNA sequencing with primer sequences. 47 2.2.4 Planktonic growth curves 48 2.2.5 pH profiling 49 5 2.2.6 Characterisation of biofilm formation 49 2.3 Metagenomics 50 2.4 Biocide testing 51 2.4.1 Agar spot test 51 2.4.2 Microdilution 52 2.4.3 Biofilm Calgary Peg method 52 2.4.4 Testing for potential enhancement of salt weathering by biocide 52 2.5 Testing for active dissolution of limestone 53 2.5.1 Effects of bacterial metabolism on the dissolution of calcium carbonate 53 2.5.2 pH modification of environment through growth curve. 53 2.5.3 SEM analysis of monoculture biofilms 54 2.6 Analysis of data 54 2.6.1 Analysis of metagenomic data 54 2.6.2 Statistical analysis of data 55 3 Sampling of the limestone microbiome 59 3.1 Introduction 59 3.2 Environmental sampling results 63 3.3 Physical characterisation of bioreceptivity 65 3.4 Identification of cultured isolates 69 3.5 Identification of species from metagenomic data 76 3.6 Analysis of the microbiome at the OTU level 78 3.6.1 Analysis of cultured isolates 78 3.6.2 Analysis of metagenomic isolates 81 3.7 Analysis of the microbiome at the Species level 87 3.7.1 Analysis of cultured isolates 87 3.7.2 Analysis of metagenomic isolates 90 3.7.3 Analysis of species common to both metagenomics and direct isolation 93 3.8 Discussion 95 3.8.1 Environmental measurements 95 3.8.2 Limestone as a habitable environment 96 3.8.3 The limestone bacterial microbiome 99 4 Characterisation of isolated bacteria 110 4.1 Introduction 110 4.2 Planktonic growth curves 111 6 4.3 Biofilm formation 114 4.4 Optimal growth pH 118 4.5 Metabolism of Industrial methylated spirits as a sole carbon source 123 4.6 Discussion 127 5 Bacterial biocorrosion of limestone 130 5.1 Introduction 130 5.2 pH modification of the environment. 130 5.3 Bacterial dissolution of calcium carbonate 136 5.4 SEM analysis of monoculture biofilms on limestone 137 5.5 Discussion 143 6 Biocide testing 148 6.1 Introduction 148 6.2 Spot plate testing of Microtech biocide and IMS 149 6.3 Biocide testing against bacteria growing planktonically. 151 6.4 Biocide testing against biofilm matrix and encapsulated bacteria 153 6.5 Analysis of salt deposition from biocides. 161 6.6 Discussion 165 7 Discussion 171 7.1 Conclusions 171 7.1.1 Bioreceptivity of Lincoln limestone 171 7.1.2 Microbiome 172 7.1.3 Biodeterioration 174 7.1.4 Biocides 178 7.2 Future work 178 References 183 Appendix A: Data from M. Webster Thesis 198 Appendix B: Köppen – Geiger definitions. 205 Appendix C: Species identified in metagenomic analysis 207 Appendix D: Species solely found in the rural environment. 217 7 Table of Figures Figure 1: Relative humidity for Lincolnshire, for the period from April 2012 to February 2016 with RH of 97% and higher indicated by the red dashed line. Chart produced using weatheronline.co.uk. Between October and February the RH regularly peaks over 97% RH with occasional peaks between March and June. .................................................................................... 20 Figure 2: Biofilm structure on a stone surface, the biofilm matrix consists of polysaccharides, extracellular DNA and proteins making up a structural matrix which the bacteria inhabit. Chemical gradients occur in the matrix with secretion of waste products such as nitric oxide and acids into the atmosphere and the stone surface. The matrix also provides protection against biocides. Diffusion of the waste products such as organic acids into the limestone results in weakening of the structure allowing increased penetration of the biofilm matrix into the stone. These mechanisms both result in the deterioration of the stone surface. Diagram by author and not to scale. ................................................................................................................................................. 23 Figure 3: Lincoln Cathedral between the Women’s Chapel and the Song School. Stonework in the foreground shows biological patina (dark stains) and damage, stonework in the background has been recently cleaned. On the left hand wall biological growth and spalling of the stone work are evident, especially where overhanging stonework provides a protective environment; this is especially clear at the bottom of the wall where there is a clear gradient between patinated stone and clean stone moving down from the overhang. On the right hand of the image, the Song School, water flow down the wall due to insufficient guttering, and shelter of the courtyard, has led to a damper environment than that on the left, patina is clearly evident working from the left near the door across towards the gutter downpipe where a combination of improved guttering and lead salts, which can be seen as a slight greying of the stone behind the downpipe itself, have led to a reduction in biological growth.
Recommended publications
  • The Role of Earthworm Gut-Associated Microorganisms in the Fate of Prions in Soil
    THE ROLE OF EARTHWORM GUT-ASSOCIATED MICROORGANISMS IN THE FATE OF PRIONS IN SOIL Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Taras Jur’evič Nechitaylo aus Krasnodar, Russland 2 Acknowledgement I would like to thank Prof. Dr. Kenneth N. Timmis for his guidance in the work and help. I thank Peter N. Golyshin for patience and strong support on this way. Many thanks to my other colleagues, which also taught me and made the life in the lab and studies easy: Manuel Ferrer, Alex Neef, Angelika Arnscheidt, Olga Golyshina, Tanja Chernikova, Christoph Gertler, Agnes Waliczek, Britta Scheithauer, Julia Sabirova, Oleg Kotsurbenko, and other wonderful labmates. I am also grateful to Michail Yakimov and Vitor Martins dos Santos for useful discussions and suggestions. I am very obliged to my family: my parents and my brother, my parents on low and of course to my wife, which made all of their best to support me. 3 Summary.....................................................………………………………………………... 5 1. Introduction...........................................................................................................……... 7 Prion diseases: early hypotheses...………...………………..........…......…......……….. 7 The basics of the prion concept………………………………………………….……... 8 Putative prion dissemination pathways………………………………………….……... 10 Earthworms: a putative factor of the dissemination of TSE infectivity in soil?.………. 11 Objectives of the study…………………………………………………………………. 16 2. Materials and Methods.............................…......................................................……….. 17 2.1 Sampling and general experimental design..................................................………. 17 2.2 Fluorescence in situ Hybridization (FISH)………..……………………….………. 18 2.2.1 FISH with soil, intestine, and casts samples…………………………….……... 18 Isolation of cells from environmental samples…………………………….……….
    [Show full text]
  • Autotrophy in Groundwater Ecosystems
    Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München Autotrophy in Groundwater Ecosystems Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades vorgelegt von Claudia Sabine Kellermann aus München München im November 2008 1. Gutachter: Prof. Dr. Anton Hartmann, LMU München 2. Gutachter: Prof. Dr. Dirk Schüler, LMU München Tag der Abgabe: 06.11.2008 Tag des Promotionskolloquiums: 15.07.2009 Publications originating from this Thesis Chapter 2 Kellermann, C & Griebler, C (2008) Thiobacillus thiophilus D24TNT sp. nov., a chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments. International Journal of Systematic and Evolutionary Microbiology (IJSEM), 59: 583-588 Chapter 3 Kellermann, C, Selesi, D, Hartmann, A, Lee, N, Hügler, M, Esperschütz, J, & Griebler, C (2008) Chemolithoautotrophy in an organically polluted aquifer – Potential for CO2 fixation and in situ bacterial autotrophic activity. (in preparation) Contributions Chapter 3 Enzyme assays were performed in cooperation with Dr. Michael Hügler at the IFM- GEOMAR, Kiel, Germany. Chapter 4 FISH-MAR analysis was performed in cooperation with Prof. Dr. Natuschka Lee at the Technical University Munich, Germany. Enzyme assays were performed in cooperation with Dr. Michael Hügler at the IFM-GEOMAR, Kiel, Germany. PLFA analysis was performed by Dr. Jürgen Esperschütz at the Institute of Soil Ecology, Helmholtz Center Munich, Germany. I hereby confirm the above statements Claudia Kellermann Prof. Dr. Anton Hartmann Autotrophy in Groundwater Ecosystems Claudia Kellermann Abstract: The major role in global net CO2 fixation plays photosynthesis of green plants, algae and cyanobacteria, but other microorganisms are also important concerning autotrophy; i.e. autotrophic microorganisms can be found in most bacterial groups (Eubacteria) and there are even numerous representatives within the Archaea.
    [Show full text]
  • Draft Genome Sequence of Acidobacteria Group 1 Acidipila Sp
    GENOME SEQUENCES crossm Draft Genome Sequence of Acidobacteria Group 1 Acidipila sp. Strain EB88, Isolated from Forest Soil Luiz A. Domeignoz-Horta,a Kristen M. DeAngelis,a Grace Poldb aDepartment of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA bGraduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, USA ABSTRACT Here, we present the genome sequence of a member of the group I Acidobacteria, Acidipila sp. strain EB88, which was isolated from temperate forest soil. Like many other members of its class, its genome contains evidence of the potential to utilize a broad range of sugars. roup I Acidobacteria are abundant members of acidic-soil microbial communities G(1), typically characterized by slow growth, heterotrophy, and the production of copious extracellular polysaccharides (2). Within this group, members of the genus Acidipila are characterized as acidophilic heterotrophs that use sugars as favored growth substrates (3, 4). Acidipila sp. strain EB88 was isolated from the Ͻ0.8-␮m size fraction of a deciduous forest mineral soil slurry plated onto VL45 plus glucose-yeast extract (GYE) medium (5). It was selected for sequencing based on the paucity of cultivated group I Acidobacteria, its peculiar bright-red waxy colonies on solid medium, and its undetectable growth in liquid medium unless a solid substrate, such as sand, is added. DNA was prepared for sequencing by repeatedly freeze-thawing 9-day-old biomass scraped from pH 5 R2A medium and extracted using the Qiagen genomic DNA protocol. Sequencing at UMass Worcester using the PacBio RS II sequencer resulted in 476,266 filtered reads, with a mean length of 3,208 bp.
    [Show full text]
  • Deinococcus Radiodurans : La Recombinaison Entre S´Equencesr´Ep´Et´Eeset La Transformation Naturelle Solenne Ithurbide
    Variabilit´eg´en´etiquechez la bact´erieradior´esistante Deinococcus radiodurans : la recombinaison entre s´equencesr´ep´et´eeset la transformation naturelle Solenne Ithurbide To cite this version: Solenne Ithurbide. Variabilit´eg´en´etiquechez la bact´erieradior´esistante Deinococcus radio- durans : la recombinaison entre s´equencesr´ep´et´eeset la transformation naturelle. Biologie mol´eculaire.Universit´eParis Sud - Paris XI, 2015. Fran¸cais. <NNT : 2015PA112193>. <tel- 01374867> HAL Id: tel-01374867 https://tel.archives-ouvertes.fr/tel-01374867 Submitted on 2 Oct 2016 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE 426 GÈNES GÉNOMES CELLULES Institut de Biologie Intégrative de la Cellule THÈSE DE DOCTORAT SCIENCES DE LA VIE ET DE LA SANTÉ par Solenne ITHURBIDE Variabilité génétique chez la bactérie radiorésistante Deinococcus radiodurans : La recombinaison entre séquences répétées et la transformation naturelle Soutenue le 23 Septembre 2015 Composition du jury : Directeur de thèse : Suzanne SOMMER Professeur
    [Show full text]
  • Genomic Stability and Genetic Defense Systems in Dolosigranulum Pigrum A
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.16.440249; this version posted April 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic Stability and Genetic Defense Systems in Dolosigranulum pigrum a 2 Candidate Beneficial Bacterium from the Human Microbiome 3 4 Stephany Flores Ramosa, Silvio D. Bruggera,b,c, Isabel Fernandez Escapaa,c,d, Chelsey A. 5 Skeetea, Sean L. Cottona, Sara M. Eslamia, Wei Gaoa,c, Lindsey Bomara,c, Tommy H. 6 Trand, Dakota S. Jonese, Samuel Minote, Richard J. Robertsf, Christopher D. 7 Johnstona,c,e#, Katherine P. Lemona,d,g,h# 8 9 aThe Forsyth Institute (Microbiology), Cambridge, MA, USA 10 bDepartment of Infectious Diseases and Hospital Epidemiology, University Hospital 11 Zurich, University of Zurich, Zurich, Switzerland 12 cDepartment of Oral Medicine, Infection and Immunity, Harvard School of Dental 13 Medicine, Boston, MA, USA 14 dAlkek Center for Metagenomics & Microbiome Research, Department of Molecular 15 Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA 16 eVaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 17 Seattle, WA, USA 18 fNew England Biolabs, Ipswich, MA, USA 19 gDivision of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 20 Boston, MA, USA 21 hSection of Infectious Diseases, Texas Children’s Hospital, Department of Pediatrics, 22 Baylor College of Medicine, Houston, Texas, USA 23 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.16.440249; this version posted April 18, 2021.
    [Show full text]
  • Genomic Analysis of Family UBA6911 (Group 18 Acidobacteria)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 Genomic analysis of family UBA6911 (Group 18 3 Acidobacteria) expands the metabolic capacities of the 4 phylum and highlights adaptations to terrestrial habitats. 5 6 Archana Yadav1, Jenna C. Borrelli1, Mostafa S. Elshahed1, and Noha H. Youssef1* 7 8 1Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, 9 OK 10 *Correspondence: Noha H. Youssef: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 11 Abstract 12 Approaches for recovering and analyzing genomes belonging to novel, hitherto unexplored 13 bacterial lineages have provided invaluable insights into the metabolic capabilities and 14 ecological roles of yet-uncultured taxa. The phylum Acidobacteria is one of the most prevalent 15 and ecologically successful lineages on earth yet, currently, multiple lineages within this phylum 16 remain unexplored. Here, we utilize genomes recovered from Zodletone spring, an anaerobic 17 sulfide and sulfur-rich spring in southwestern Oklahoma, as well as from multiple disparate soil 18 and non-soil habitats, to examine the metabolic capabilities and ecological role of members of 19 the family UBA6911 (group18) Acidobacteria.
    [Show full text]
  • Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample
    geosciences Article Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample Andrey A. Belov 1,*, Vladimir S. Cheptsov 1,2 , Elena A. Vorobyova 1,2, Natalia A. Manucharova 1 and Zakhar S. Ezhelev 1 1 Soil Science Faculty, Lomonosov Moscow State University, Moscow 119991, Russia; [email protected] (V.S.C.); [email protected] (E.A.V.); [email protected] (N.A.M.); [email protected] (Z.S.E.) 2 Space Research Institute, Russian Academy of Sciences, Moscow 119991, Russia * Correspondence: [email protected]; Tel.: +7-917-584-44-07 Received: 28 February 2019; Accepted: 8 April 2019; Published: 10 April 2019 Abstract: The arid Mojave Desert is one of the most significant terrestrial analogue objects for astrobiological research due to its genesis, mineralogy, and climate. However, the knowledge of culturable bacterial communities found in this extreme ecotope’s soil is yet insufficient. Therefore, our research has been aimed to fulfil this lack of knowledge and improve the understanding of functioning of edaphic bacterial communities of the Central Mojave Desert soil. We characterized aerobic heterotrophic soil bacterial communities of the central region of the Mojave Desert. A high total number of prokaryotic cells and a high proportion of culturable forms in the soil studied were observed. Prevalence of Actinobacteria, Proteobacteria, and Firmicutes was discovered. The dominance of pigmented strains in culturable communities and high proportion of thermotolerant and pH-tolerant bacteria were detected. Resistance to a number of salts, including the ones found in Martian regolith, as well as antibiotic resistance, were also estimated.
    [Show full text]
  • Taxonomy and Systematics of Plant Probiotic Bacteria in the Genomic Era
    AIMS Microbiology, 3(3): 383-412. DOI: 10.3934/microbiol.2017.3.383 Received: 03 March 2017 Accepted: 22 May 2017 Published: 31 May 2017 http://www.aimspress.com/journal/microbiology Review Taxonomy and systematics of plant probiotic bacteria in the genomic era Lorena Carro * and Imen Nouioui School of Biology, Newcastle University, Newcastle upon Tyne, UK * Correspondence: Email: [email protected]. Abstract: Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics. Keywords: phylogeny; plant; probiotic; PGPR; IAA; ACC; genome; metagenomics Abbreviations: ACC 1-aminocyclopropane-1-carboxylate ANI average nucleotide identity FAO Food and Agriculture Organization DDH DNA-DNA hybridization IAA indol acetic acid JA jasmonic acid OTUs Operational taxonomic units NGS next generation sequencing PGP plant growth promoters WHO World Health Organization PGPR plant growth-promoting rhizobacteria 384 1.
    [Show full text]
  • Isolation and Characterization of a Biosurfactant from Deinococcus Caeni PO5 Using Jackfruit Seed Powder As a Substrate
    Ann Microbiol (2014) 64:1007–1020 DOI 10.1007/s13213-013-0738-2 ORIGINAL ARTICLE Isolation and characterization of a biosurfactant from Deinococcus caeni PO5 using jackfruit seed powder as a substrate Chanika Saenge Chooklin & Sirirat Petmeaun & Suppasil Maneerat & Atipan Saimmai Received: 15 April 2013 /Accepted: 18 October 2013 /Published online: 22 January 2014 # Springer-Verlag Berlin Heidelberg and the University of Milan 2014 Abstract Biosurfactant-producing bacteria were isolated Keywords Deinococcus caeni . Isolation . Jackfruit seed from various sources in the south of Thailand. Isolates were powder . Surface tension . Biosurfactant . Polyaromatic screened for biosurfactant production using jackfruit seed hydrocarbons . Microbial oil recovery powder (JSP) as a novel and promising substrate. The highest biosurfactant activity was obtained with a bacterial strain which was identified by 16S rRNA gene sequence analysis Introduction as Deinococcus caeni PO5. D. caeni PO5 was able to grow and reduce the surface tension of the culture supernatant from Biosurfactants are a diverse group of surface-active agents 67.0 to 25.0 mN/m after 87 h of cultivation when 40 g/l of JSP with both hydrophilic and hydrophobic moieties and are pro- and 1 g/l of commercial monosodium glutamate were used as duced by many living microorganisms, such as bacteria and carbon and nitrogen sources, respectively. The biosurfactant fungi (Desai and Banat 1997). Biosurfactants have many obtained by ethyl acetate extraction showed high surface advantages over synthetic surfactants. These include a lower tension reduction (47.0 mN/m), a small critical micelle con- toxicity and higher biodegradability, which makes them more centration value (8 mg/l), thermal and pH stability with re- environmentally friendly, better foaming properties, milder spect to surface tension reduction and emulsification activity, production conditions, lower critical micelle concentration, and a high level of salt tolerance.
    [Show full text]
  • Epidemiological and Molecular Analysis of Virulence and Antibiotic Resistance in Acinetobacter Baumannii
    UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA DEPARTAMENTO DE BIOQUÍMICA Y BIOLOGÍA MOLECULAR IV TESIS DOCTORAL Epidemiological and Molecular Analysis of Virulence and Antibiotic Resistance in Acinetobacter baumannii Análisis Epidemiológico y Molecular de la Virulencia y la Antibiorresistencia en Acinetobacter baumannii MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Elias Dahdouh DIRECTORA Mónica Suárez Rodríguez Madrid, 2017 © Elias Dahdouh, 2016 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA DEPARTAMENTO DE BIOQUIMICA Y BIOLOGIA MOLECULAR IV TESIS DOCTORAL Análisis Epidemiológico y Molecular de la Virulencia y la Antibiorresistencia en Acinetobacter baumannii Epidemiological and Molecular Analysis of Virulence and Antibiotic Resistance in Acinetobacter baumannii MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Elias Dahdouh Directora Mónica Suárez Rodríguez Madrid, 2016 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA Departamento de Bioquímica y Biología Molecular IV ANALYSIS EPIDEMIOLOGICO Y MOLECULAR DE LA VIRULENCIA Y LA ANTIBIORRESISTENCIA EN Acinetobacter baumannii EPIDEMIOLOGICAL AND MOLECULAR ANALYSIS OF VIRULENCE AND ANTIBIOTIC RESISTANCE IN Acinetobacter baumannii MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Elias Dahdouh Bajo la dirección de la doctora Mónica Suárez Rodríguez Madrid, Diciembre de 2016 First and foremost, I would like to thank God for the continued strength and determination that He has given me. I would also like to thank my father Abdo, my brother Charbel, my fiancée, Marisa, and all my friends for their endless support and for standing by me at all times. Moreover, I would like to thank Dra. Monica Suarez Rodriguez and Dr. Ziad Daoud for giving me the opportunity to complete this doctoral study and for their guidance, encouragement, and friendship.
    [Show full text]
  • Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 2 Microalgae
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley,
    [Show full text]
  • Which Organisms Are Used for Anti-Biofouling Studies
    Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E.
    [Show full text]