Isoptericola Hypogeus Sp. Nov., Isolated from the Roman Catacomb of Domitilla

Total Page:16

File Type:pdf, Size:1020Kb

Isoptericola Hypogeus Sp. Nov., Isolated from the Roman Catacomb of Domitilla View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC International Journal of Systematic and Evolutionary Microbiology (2005), 55, 1715–1719 DOI 10.1099/ijs.0.63632-0 Isoptericola hypogeus sp. nov., isolated from the Roman catacomb of Domitilla Ingrid Groth,1 Peter Schumann,2 Barbara Schu¨tze,1 Juan M. Gonzalez,3 Leonila Laiz,3 Cesareo Saiz-Jimenez3 and Erko Stackebrandt2 Correspondence 1Leibniz-Institut fu¨r Naturstoff-Forschung und Infektionsbiologie e. V., Hans-Kno¨ll-Institut, Ingrid Groth Beutenbergstrasse 11a, 07745 Jena, Germany [email protected] 2DSMZ–Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, 38124 Braunschweig, Germany 3Instituto de Recursos Naturales y Agrobiologia, CSIC, Apartado 1052, 41080 Sevilla, Spain In order to clarify the taxonomic position of an actinobacterium from the Roman catacomb of Domitilla, a combination of phenotypic characterization, phylogenetic analysis based on the 16S rRNA gene sequence and DNA–DNA relatedness studies was used. The results from the polyphasic taxonomic study of this organism showed that strain HKI 0342T (=DSM 16849T=NCIMB 14033T) should be considered as the type strain of a novel species of the genus Isoptericola, for which the name Isoptericola hypogeus sp. nov. is proposed. The genus Isoptericola has been proposed by Stackebrandt oxygen requirements) and antibiotic-susceptibility tests et al. (2004) for the misclassified species Cellulosimicro- were performed, using solid or liquid organic medium 79 bium variabile Bakalidou et al. 2002 and is currently based (Prauser & Falta, 1968) and an incubation temperature of on this single species. The type strain, which is the only 28 uC. Cell morphology and cell dimensions were examined representative of Isoptericola variabilis at the time of writing, by using phase-contrast microscopy with a Zeiss Axioscope was isolated from the hindgut of the Australian termite 2 microscope equipped with image-analysing software Mastotermes darwiniensis (Frogatt). I. variabilis is phylo- (Axio Vision 2.05). The colony morphology of 2–10-day- genetically closely related to members of the genera Xyl- old cultures was studied using a stereo microscope animonas (Rivas et al., 2003), Xylanibacterium (Rivas et al., (Olympus). Standard physiological tests were carried out 2004) and Xylanimicrobium (Stackebrandt & Schumann, according to the methods described by Cowan & Steel 2004). The latter genus has been recently established to (1965), Gordon et al. (1974), Lanyi (1987) and Smibert & harbour the misclassified species Promicromonospora Krieg (1994). Acid production from carbon sources and pachnodae (Cazemier et al., 2003, 2004), the type strain of enzyme activities were studied using the API 50 CHB/E kit which was isolated from the hindgut of larvae of the scarab (incubation times of up to 7 days) and API ZYM galleries beetle Pachnoda marginata. Together, these four genera (bioMe´rieux). Additionally, the utilization of carbon constitute a phylogenetically distinct cluster within the sources was tested using Biolog GP2 MicroPlates and suborder Micrococcineae, and have cellulolytic and xylano- MicroLog computer software (Biolog Identification Sys- lytic activities in common. tem). Xylanolytic activity was determined on medium II, described by Cazemier et al. (2003), and incubation times of T Strain HKI 0342 was isolated from a sample of tufa up to 28 days. Susceptibility to antibiotics was examined by collected in the burial chamber of the first arcosolium placing antibiotic discs (Difco) on agar plates that were behind the entrance to the Roman catacomb of Domitilla seeded with suspensions of the test strains grown in a soft (Rome, Italy); PY-BHI agar (Yokota et al., 1993) and a agar layer for 24 h at 28 uC. Oxygen requirements were standard dilution-plate procedure were used. General studied with the GENbag microaer and GENbag anaer laboratory cultivation, morphological studies, determina- incubation systems (bioMe´rieux). The pH range for growth tion of optimal growth parameters (temperature, pH, was established by using liquid medium adjusted to pH values between 4 and 11 with either 1 M HCl or 20 % (w/v) Published online ahead of print on 15 April 2005 as DOI 10.1099/ Na2CO3 solution and incubated at 28 uC for up to 10 days. ijs.0.63632-0. The reference strains used for comparisons in physiological The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene tests and DNA–DNA pairing studies were I. variabilis sequence of strain HKI 0342T is AJ854061. DSM 10177T, Xylanimicrobium pachnodae DSM 12657T, T Detailed physiological characteristics of strain HKI 0342T are available Xylanimonas cellulosilytica DSM 15894 and Myceligene- T as supplementary material in IJSEM Online. rans xiligouense DSM 15700 . Biomass for chemotaxonomic 63632 G 2005 IUMS Printed in Great Britain 1715 I. Groth and others Table 1. Differential physiological characteristics of strain Table 1. cont. HKI 0342T and I. variabilis DSM 10177T Characteristic HKI DSM Characteristic HKI DSM 0342T 10177T 0342T 10177T 29-Deoxyadenosine 2 + Decomposition of: Inosine 2 + Urea 2 + Thymidine 2 + Utilization of: Adenosine 59-monophosphate 2 + Aconitate 2 + Citrate 2 + *Delayed reaction. Malate +* 2 DData from Cui et al. (2004). Growth characteristics GENbag anaer 2 +D Growth at 10 uC + 2 and molecular systematic studies was prepared by growing Growth at 42 uC 2 + the strain in shake flasks containing liquid organic medium Growth in the presence of 10?0 % NaCl 2 + 79 or Bacto tryptic soy broth (Sigma–Aldrich) for 24–48 h. + Susceptibility to streptomycin (10 mg) 2 Stock cultures of strain HKI 0342T in liquid organic medium Enzyme assay (API ZYM) 79 supplemented with 5 % DMSO were maintained in either + a-Galactosidase 2 the vapour phase of liquid nitrogen or at 280 uC by adding API 50 CH/BE a 1 : 1 mixture of glycerol and a medium that consisted of + Methyl b-xyloside 2 K HPO (1?26 %), KH PO (0?36 %), MgSO (0?01 %), + 2 4 2 4 4 Methyl a-D-glucoside 2 sodium citrate (0?09 %), (NH ) SO (0?18 %) and glycerol + 4 2 4 Melibiose 2 (8?8 %). Melezitose 2 + T D-Raffinose 2 + On medium 79, strain HKI 0342 formed wrinkled, circular, Biolog GP2 MicroPlate (24 h incubation) smooth, pale-yellow colonies about 1–4 mm in diameter. In Glycogen 2 + young cultures (8–24 h), a well-developed primary myce- N-Acetyl-D-mannosamine 2 + lium (width 0?6–0?7 mm) was observed which fragmented, Amygdalin 2 + in the stationary growth phase (48–72 h), into irregular, L-Fucose 2 + non-motile, short rods and cocci (diameter 0?8–1?0 mm). In Gentiobiose 2 + contrast to stationary-phase cultures of I. variabilis, both D-Gluconic acid 2 + cell types were arranged mainly as short flexible chains or as a-D-Lactose 2 + clusters. Furthermore, strain HKI 0342T and I. variabilis Lactulose 2 + DSM 10177T exhibited different growth characteristics D-Mannitol 2 + (Table 1). The catacomb isolate was an aerobic to micro- D-Melezitose 2 + aerophilic organism and did not grow in an anaerobic D-Melibiose 2 + atmosphere, unlike I. variabilis DSM 10177T, which is a Methyl a-D-galactoside 2 + facultatively anaerobic organism (Bakalidou et al., 2002). Methyl b-D-galactoside 2 + I. variabilis grew at temperatures up to 45 uC, but not at Methyl a-D-glucoside 2 + 10 uC, while strain HKI 0342T did not grow above 40 uC, but Methyl b-D-glucoside 2 + grew well at 10 uC. Both strains had in common the ability Methyl a-D-mannoside 2 + to hydrolyse xylan. However, they could be readily distin- Palatinose 2 + guished from one another by means of a broad spectrum D-Raffinose 2 + of physiological properties. Clearly differential characteris- L-Rhamnose 2 + tics of the two strains under study are listed in Table 1. D-Sorbitol 2 + Full detailed results (classical physiological tests, API kits Stachyose 2 + and Biolog test) are provided as supplementary tables in Sucrose 2 + IJSEM Online. D-Trehalose 2 + Turanose 2 + For sequence analysis of the 16S rRNA gene, bacterial Acetic acid 2 + DNA was extracted according to the method described by c-Hydroxybutyric acid + 2 Marmur (1961). The 16S rRNA gene was amplified by a PCR L-Lactic acid 2 + using the conserved primers 27F (59-AGAGTTTGATCC- Monomethyl succinate 2 + TGGCTCAG-39) and 1522R (59-AAGGAGGTGATCCAG- Propionic acid 2 + CCGCA-39). PCR thermal conditions were as follows: 95 uC L-Glutamic acid 2 + for 1 min; 35 cycles of 95 uC for 15 s, 55 uC for 15 s and 72 uC L-Serine 2 + for 2 min; and a final extension cycle at 72 uC for 10 min. Forward and reverse strands of the amplified DNA fragment 1716 International Journal of Systematic and Evolutionary Microbiology 55 Isoptericola hypogeus sp. nov. were sequenced in an ABI 3700 sequencer (Applied (1987), Groth et al. (1996) and Frank et al. (1980); the acyl Biosystems). The 16S rRNA gene sequences of the strains type of the muramic acid, as described by Uchida et al. studied were aligned manually with nucleotide sequences (1999); the whole-cell sugars present, as described by Becker obtained from the GenBank and EMBL databases. The et al. (1965) and Saddler et al. (1991); the menaquinones algorithm of Jukes & Cantor (1969) was applied in order to present, as described by Groth et al. (1996); the polar lipids transform sequence dissimilarities into evolutionary dis- present, as described by Minnikin et al. (1979) and Collins & tances. Phylogenetic dendrograms were reconstructed by Jones (1980); the mycolic acids present, as described by using the method of De Soete (1983) and the neighbour- Minnikin et al. (1975); and the fatty acid profile (MIDI joining method (Felsenstein, 1993). system; Agilent). The binary 16S rRNA gene sequence similarity values The chemotaxonomic characteristics of strain HKI 0342T between strain HKI 0342T and its nearest phylogenetic were most similar to those of I.
Recommended publications
  • Corynebacterium Sp.|NML98-0116
    1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album
    [Show full text]
  • Study of Dental Fluorosis in Subjects Related to a Phosphatic Fertilizer
    Indian Journal of Geo Marine Sciences Vol. 46 (06), June 2017, pp. 1116-1127 Diversity and enzymatic profile of bacterial flora in the gut of an estuarine fish, Mugil jerdoni Ankita A. Datta, Amit K. Sharma, Rahul Kundu & Satya P. Singh* UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, India *[E-mail: [email protected]] Received 12 August 2015 ; revised 07 December 2015 In order to examine the bacterial diversity and enzymatic potential, the isolates were screened for the amylolytic, cellulolytic, lipolytic and proteolytic activities using selective media. Significant proportion of the isolates (44%) exhibited lipase activity, while only few (11%) had protease activity. The 16S rRNA gene sequence analysis revealed that most of the isolates related to the genera Bacillus, Acinetobacter, Staphylococcus, Aeromonas, Psychrobacter, Dietzia and Isoptericola. Examined bacteria displayed significant tolerance against varying salt concentrations. Most of the isolates displayed antagonism against 10 selected target organisms. Bacteria were also assessed for their resistance and sensitivity against different antibiotics. Staphylococcus epidermis MJMG8.1 and Dietzia sp. MJMG8.2 grew significantly in the presence of different organic solvents. [Key Words: Microbial enzymes, antibiotic resistance, 16S rRNA sequencing, phylogeny, microbial diversity, fish-gut microflora] Introduction The culturable bacterial flora in the gut of Staphylococcus, unidentified anaerobes and yeast are freshwater and marine water fishes has been explored reported to produce exogenous enzymes. Amylases, in limited sense 1. Bacterial population in the fish gut proteases, lipases, cellulases, chitinases and few is governed by various environmental and intrinsic others have been produced by the gut flora 5, 7. factors such as species, developmental stage, feeding Studies have revealed that the gut microflora prevents strategy, structure of the digestive system and other the establishment of opportunistic pathogens in the physiological factors 2.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Microbial and Geochemical Characterization of Wellington Oil Field, Southcentral Kansas, and Potential Applications to Microbial Enhanced Oil Recovery
    Microbial and Geochemical Characterization of Wellington Oil Field, Southcentral Kansas, and Potential Applications to Microbial Enhanced Oil Recovery By Breanna L. Huff Submitted to the graduate degree program in Geology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Arts. ________________________________ Jennifer A. Roberts, Chair ________________________________ David A. Fowle, Co-Chair ________________________________ Gwendolyn L. Macpherson ________________________________ Leigh A. Stearns Date Defended: May 12, 2014 The Thesis Committee for Breanna L. Huff certifies that this is the approved version of the following thesis: Microbial and Geochemical Characterization of Wellington Oil Field, Southcentral Kansas, and Potential Applications to Microbial Enhanced Oil Recovery ________________________________ Jennifer A. Roberts, Chairperson Date approved: May 12, 2014 ii Abstract The aqueous geochemistry and microbiology of subsurface environments are intimately linked and in oil reservoir fluids. This interdependence may result in a number of processes including biodegradation of oil, corrosion of pipes, bioclogging of porous media, and biosurfactant production. During production of oil and reinjection of production water, surface exposed fluids are introduced to oxygen and exogenous microbes, both of which may alter reservoir biogeochemistry. In this study, production waters from six wells within the Wellington Field in SE Kansas, which has been water flooded continuously for 60 years, were sampled and analyzed for geochemistry, microbial ecology, microbial biomass, and biosurfactant production to better understand the relationship between the microbiology and oil production in the field. Minor differences in aqueous geochemistry were detected among the five production wells and single injection well, and data analysis and modeling indicate that depth-specific water-rock reactions play a major role in controlling the major ion geochemistry in the field.
    [Show full text]
  • Report on 31 Unrecorded Bacterial Species in Korea That Belong to the Phylum Actinobacteria
    Journal of Species Research 5(1):1­13, 2016 Report on 31 unrecorded bacterial species in Korea that belong to the phylum Actinobacteria Jung­Hye Choi1, Ju­Hee Cha1, Jin­Woo Bae2, Jang­Cheon Cho3, Jongsik Chun4, Wan­Taek Im5, Kwang Yeop Jahng6, Che Ok Jeon7, Kiseong Joh8, Seung Bum Kim9, Chi Nam Seong10, Jung­Hoon Yoon11 and Chang­Jun Cha1,* 1Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea 2Department of Biology, Kyung Hee University, Seoul 02447, Korea 3Department of Biological Sciences, Inha University, Incheon 22212, Korea 4School of Biological Sciences, Seoul National University, Seoul 08826, Korea 5Department of Biotechnology, Hankyong National University, Anseong 17579, Korea 6Department of Life Sciences, Chonbuk National University, Jeonju-si 54896, Korea 7Department of Life Science, Chung-Ang University, Seoul 06974, Korea 8Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Korea 9Department of Microbiology, Chungnam National University, Daejeon 34134, Korea 10Department of Biology, Sunchon National University, Suncheon 57922, Korea 11Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea *Correspondent: [email protected] To discover and characterize indigenous species in Korea, a total of 31 bacterial strains that belong to the phylum Actinobacteria were isolated from various niches in Korea. Each strain showed the high sequence similarity (>99.1%) with the closest bacterial species, forming a robust phylogenetic clade. These strains have not been previously recorded in Korea. According to the recently updated taxonomy of the phylum Actinobacteria based upon 16S rRNA trees, we report 25 genera of 13 families within 5 orders of the class Actinobacteria as actinobacterial species found in Korea.
    [Show full text]
  • Cv15866 JGI PR CR:JGI Progress Report
    15866_JGI_PR_CR:Cover 3/23/09 11:07 AM Page 1 U.S. DEPARTMENT OF ENERGY 2008 Progress Joint Genome Institute Report DOE JGI—powering a sustainable future with the science we need for biofuels, environmental cleanup, and carbon capture. 15866_JGI_PR_CR:Cover 3/23/09 11:07 AM Page 2 DISCLAIMER This document was prepared as an account of work sponsored by the United States Gov- ernment. While this document is believed to contain correct information, neither the United States Govern- ment nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect uencing targets of the DOE Joint Genome those of the United States Government or any agency thereof or The Regents of the University of California. The cover depicts various DOE mission-relevant genome seq Institute. This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Labora- tory under contract No.
    [Show full text]
  • Succession of Lignocellulolytic Bacterial Consortia Bred Anaerobically from Lake Sediment
    bs_bs_banner Succession of lignocellulolytic bacterial consortia bred anaerobically from lake sediment Elisa Korenblum,*† Diego Javier Jimenez and A total of 160 strains was isolated from the enrich- Jan Dirk van Elsas ments. Most of the strains tested (78%) were able to Department of Microbial Ecology,Groningen Institute for grow anaerobically on carboxymethyl cellulose and Evolutionary Life Sciences,University of Groningen, xylan. The final consortia yield attractive biological Groningen,The Netherlands. tools for the depolymerization of recalcitrant ligno- cellulosic materials and are proposed for the produc- tion of precursors of biofuels. Summary Anaerobic bacteria degrade lignocellulose in various Introduction anoxic and organically rich environments, often in a syntrophic process. Anaerobic enrichments of bacte- Lignocellulose is naturally depolymerized by enzymes of rial communities on a recalcitrant lignocellulose microbial communities that develop in soil as well as in source were studied combining polymerase chain sediments of lakes and rivers (van der Lelie et al., reaction–denaturing gradient gel electrophoresis, 2012). Sediments in organically rich environments are amplicon sequencing of the 16S rRNA gene and cul- usually waterlogged and anoxic, already within a cen- turing. Three consortia were constructed using the timetre or less of the sediment water interface. There- microbiota of lake sediment as the starting inoculum fore, much of the organic detritus is probably degraded and untreated switchgrass (Panicum virgatum) (acid by anaerobic processes in such systems (Benner et al., or heat) or treated (with either acid or heat) as the 1984). Whereas fungi are well-known lignocellulose sole source of carbonaceous compounds. Addition- degraders in toxic conditions, due to their oxidative ally, nitrate was used in order to limit sulfate reduc- enzymes (Wang et al., 2013), in anoxic environments tion and methanogenesis.
    [Show full text]
  • Diversity and Prevalence of ANTAR Rnas Across Actinobacteria
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.11.335034; this version posted October 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Diversity and prevalence of ANTAR RNAs across actinobacteria Dolly Mehta1,2 and Arati Ramesh1,+ 1National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, India 560065. 2SASTRA University, Tirumalaisamudram, Thanjavur – 613401. +Corresponding Author: Arati Ramesh National Centre for Biological Sciences GKVK Campus, Bellary Road Bangalore, 560065 Tel. 91-80-23666930 e-mail: [email protected] Running title: Identification of ANTAR RNAs across Actinobacteria Keywords: ANTAR protein:RNA regulatory system, structured RNA, actinobacteria 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.11.335034; this version posted October 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Computational approaches are often used to predict regulatory RNAs in bacteria, but their success is limited to RNAs that are highly conserved across phyla, in sequence and structure. The ANTAR regulatory system consists of a family of RNAs (the ANTAR-target RNAs) that selectively recruit ANTAR proteins. This protein-RNA complex together regulates genes at the level of translation or transcriptional elongation.
    [Show full text]
  • Thermophilic and Alkaliphilic Actinobacteria: Biology and Potential Applications
    REVIEW published: 25 September 2015 doi: 10.3389/fmicb.2015.01014 Thermophilic and alkaliphilic Actinobacteria: biology and potential applications L. Shivlata and Tulasi Satyanarayana * Department of Microbiology, University of Delhi, New Delhi, India Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive Edited by: compounds, which find multifarious applications. Wen-Jun Li, Sun Yat-Sen University, China Keywords: Actinobacteria, thermophiles, alkaliphiles, polyextremophiles, bioactive compounds, enzymes Reviewed by: Erika Kothe, Friedrich Schiller University Jena, Introduction Germany Hongchen Jiang, The phylum Actinobacteria is one of the most dominant phyla in the bacteria domain (Ventura Miami University, USA et al., 2007), that comprises a heterogeneous Gram-positive and Gram-variable genera. The Qiuyuan Huang, phylum also includes a few Gram-negative species such as Thermoleophilum sp. (Zarilla and Miami University, USA Perry, 1986), Gardenerella vaginalis (Gardner and Dukes, 1955), Saccharomonospora
    [Show full text]
  • Diversity of Cultivated Aerobic Poly-Hydrolytic Bacteria in Saline Alkaline Soils
    Diversity of cultivated aerobic poly-hydrolytic bacteria in saline alkaline soils Dimitry Y. Sorokin1,2, Tatiana V. Kolganova3, Tatiana V. Khijniak1, Brian E. Jones4 and Ilya V. Kublanov1,5 1 Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia 2 Department of Biotechnology, Delft University of Technology, Delft, Netherlands 3 Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia 4 DuPont Industrial Biosciences/Genencor International BV, Leiden, Netherlands 5 Immanuel Kant Baltic Federal University, Kaliningrad, Russia ABSTRACT Alkaline saline soils, known also as ``soda solonchaks'', represent a natural soda habitat which differs from soda lake sediments by higher aeration and lower humidity. The microbiology of soda soils, in contrast to the more intensively studied soda lakes, remains poorly explored. In this work we investigate the diversity of culturable aerobic haloalkalitolerant bacteria with various hydrolytic activities from soda soils at different locations in Central Asia, Africa, and North America. In total, 179 pure cultures were obtained by using media with various polymers at pH 10 and 0.6 M total Na+. According to the 16S rRNA gene sequence analysis, most of the isolates belonged to Firmicutes and Actinobacteria. Most isolates possessed multiple hydrolytic activities, including endoglucanase, xylanase, amylase and protease. The pH profiling of selected representatives of actinobacteria and endospore-forming bacteria showed, that the former were facultative alkaliphiles, while the latter were mostly obligate alkaliphiles. The hydrolases of selected representatives from both groups were active at a broad pH range from six to 11. Overall, this work demonstrates the presence of a rich hydrolytic Submitted 9 June 2017 bacterial community in soda soils which might be explored further for production of Accepted 21 August 2017 haloalkalistable hydrolases.
    [Show full text]
  • Table S8. Species Identified by Random Forests Analysis of Shotgun Sequencing Data That Exhibit Significant Differences In
    Table S8. Species identified by random forests analysis of shotgun sequencing data that exhibit significant differences in their representation in the fecal microbiomes between each two groups of mice. (a) Species discriminating fecal microbiota of the Soil and Control mice. Mean importance of species identified by random forest are shown in the 5th column. Random forests assigns an importance score to each species by estimating the increase in error caused by removing that species from the set of predictors. In our analysis, we considered a species to be “highly predictive” if its importance score was at least 0.001. T-test was performed for the relative abundances of each species between the two groups of mice. P-values were at least 0.05 to be considered statistically significant. Microbiological Taxonomy Random Forests Mean of relative abundance P-Value Species Microbiological Function (T-Test) Classification Bacterial Order Importance Score Soil Control Rhodococcus sp. 2G Engineered strain Bacteria Corynebacteriales 0.002 5.73791E-05 1.9325E-05 9.3737E-06 Herminiimonas arsenitoxidans Engineered strain Bacteria Burkholderiales 0.002 0.005112829 7.1580E-05 1.3995E-05 Aspergillus ibericus Engineered strain Fungi 0.002 0.001061181 9.2368E-05 7.3057E-05 Dichomitus squalens Engineered strain Fungi 0.002 0.018887472 8.0887E-05 4.1254E-05 Acinetobacter sp. TTH0-4 Engineered strain Bacteria Pseudomonadales 0.001333333 0.025523638 2.2311E-05 8.2612E-06 Rhizobium tropici Engineered strain Bacteria Rhizobiales 0.001333333 0.02079554 7.0081E-05 4.2000E-05 Methylocystis bryophila Engineered strain Bacteria Rhizobiales 0.001333333 0.006513543 3.5401E-05 2.2044E-05 Alteromonas naphthalenivorans Engineered strain Bacteria Alteromonadales 0.001 0.000660472 2.0747E-05 4.6463E-05 Saccharomyces cerevisiae Engineered strain Fungi 0.001 0.002980726 3.9901E-05 7.3043E-05 Bacillus phage Belinda Antibiotic Phage 0.002 0.016409765 6.8789E-07 6.0681E-08 Streptomyces sp.
    [Show full text]
  • Systematic Research on Actinomycetes Selected According
    Systematic Research on Actinomycetes Selected according to Biological Activities Dissertation Submitted in fulfillment of the requirements for the award of the Doctor (Ph.D.) degree of the Math.-Nat. Fakultät of the Christian-Albrechts-Universität in Kiel By MSci. - Biol. Yi Jiang Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Marine Mikrobiologie, Düsternbrooker Weg 20, D-24105 Kiel, Germany Supervised by Prof. Dr. Johannes F. Imhoff Kiel 2009 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: ______________________ Tag der mündlichen Prüfung: Kiel, ____________ Zum Druck genehmigt: Kiel, _____________ Summary Content Chapter 1 Introduction 1 Chapter 2 Habitats, Isolation and Identification 24 Chapter 3 Streptomyces hainanensis sp. nov., a new member of the genus Streptomyces 38 Chapter 4 Actinomycetospora chiangmaiensis gen. nov., sp. nov., a new member of the family Pseudonocardiaceae 52 Chapter 5 A new member of the family Micromonosporaceae, Planosporangium flavogriseum gen nov., sp. nov. 67 Chapter 6 Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea 87 Chapter 7 Discussion 99 Appendix a Resume, Publication list and Patent 115 Appendix b Medium list 122 Appendix c Abbreviations 126 Appendix d Poster (2007 VAAM, Germany) 127 Appendix e List of research strains 128 Acknowledgements 134 Erklärung 136 Summary Actinomycetes (Actinobacteria) are the group of bacteria producing most of the bioactive metabolites. Approx. 100 out of 150 antibiotics used in human therapy and agriculture are produced by actinomycetes. Finding novel leader compounds from actinomycetes is still one of the promising approaches to develop new pharmaceuticals. The aim of this study was to find new species and genera of actinomycetes as the basis for the discovery of new leader compounds for pharmaceuticals.
    [Show full text]