Table S8. Species Identified by Random Forests Analysis of Shotgun Sequencing Data That Exhibit Significant Differences In

Total Page:16

File Type:pdf, Size:1020Kb

Table S8. Species Identified by Random Forests Analysis of Shotgun Sequencing Data That Exhibit Significant Differences In Table S8. Species identified by random forests analysis of shotgun sequencing data that exhibit significant differences in their representation in the fecal microbiomes between each two groups of mice. (a) Species discriminating fecal microbiota of the Soil and Control mice. Mean importance of species identified by random forest are shown in the 5th column. Random forests assigns an importance score to each species by estimating the increase in error caused by removing that species from the set of predictors. In our analysis, we considered a species to be “highly predictive” if its importance score was at least 0.001. T-test was performed for the relative abundances of each species between the two groups of mice. P-values were at least 0.05 to be considered statistically significant. Microbiological Taxonomy Random Forests Mean of relative abundance P-Value Species Microbiological Function (T-Test) Classification Bacterial Order Importance Score Soil Control Rhodococcus sp. 2G Engineered strain Bacteria Corynebacteriales 0.002 5.73791E-05 1.9325E-05 9.3737E-06 Herminiimonas arsenitoxidans Engineered strain Bacteria Burkholderiales 0.002 0.005112829 7.1580E-05 1.3995E-05 Aspergillus ibericus Engineered strain Fungi 0.002 0.001061181 9.2368E-05 7.3057E-05 Dichomitus squalens Engineered strain Fungi 0.002 0.018887472 8.0887E-05 4.1254E-05 Acinetobacter sp. TTH0-4 Engineered strain Bacteria Pseudomonadales 0.001333333 0.025523638 2.2311E-05 8.2612E-06 Rhizobium tropici Engineered strain Bacteria Rhizobiales 0.001333333 0.02079554 7.0081E-05 4.2000E-05 Methylocystis bryophila Engineered strain Bacteria Rhizobiales 0.001333333 0.006513543 3.5401E-05 2.2044E-05 Alteromonas naphthalenivorans Engineered strain Bacteria Alteromonadales 0.001 0.000660472 2.0747E-05 4.6463E-05 Saccharomyces cerevisiae Engineered strain Fungi 0.001 0.002980726 3.9901E-05 7.3043E-05 Bacillus phage Belinda Antibiotic Phage 0.002 0.016409765 6.8789E-07 6.0681E-08 Streptomyces sp. Mg1 Antibiotic Bacteria Streptomycetaceae 0.001333333 0.025944045 1.0137E-04 5.0762E-05 Streptosporangium sp. Antibiotic Bacteria Streptosporangiales 0.001333333 0.005225191 1.4746E-04 6.8699E-05 Pseudomonas sp. Os17 Antibiotic Bacteria Pseudomonadales 0.001333333 0.019992445 4.0231E-05 1.3165E-05 Acanthamoeba castellanii Antibiotic Fungi 0.001 0.002183997 1.9172E-04 1.2956E-04 Pseudoalteromonas luteoviolacea Antibiotic Bacteria Alteromonadales 0.001333333 0.004368358 5.4894E-05 8.6223E-05 Pseudoalteromonas piscicida Antibiotic Bacteria Alteromonadales 0.001333333 0.003338405 4.6886E-05 8.2059E-05 Lactobacillus fermentum Antibiotic Bacteria Lactobacillales 0.001 0.025570099 1.9693E-04 4.6536E-04 Burkholderia sp. JP2-270 Antibiotic Bacteria Burkholderiales 0.001 0.001144007 4.0309E-05 9.2851E-05 Tetrapisispora phaffii Antibiotic Fungi 0.001 0.021789983 1.0335E-04 1.7016E-04 Legionella anisa Pathogany (no infecting mice) Bacteria Legionellales 0.002333333 0.003555933 4.0114E-05 1.3879E-05 Scale drop disease virus Pathogany (no infecting mice) Bacteria 0.002333333 0.047897164 3.2350E-06 0.0000E+00 Bordetella avium Pathogany (no infecting mice) Bacteria Burkholderiales 0.002 0.004001233 5.7584E-05 3.0745E-05 Staphylococcus condimenti Pathogany (no infecting mice) Bacteria Bacillales 0.001333333 0.013666952 3.3692E-05 1.4869E-05 Tropheryma whipplei Pathogany (no infecting mice) Bacteria Micrococcales 0.001333333 0.000588819 1.5019E-05 6.5443E-06 Rahnella aquatilis Pathogany (no infecting mice) Bacteria Enterobacterales 0.001333333 0.029064014 6.8549E-05 4.3551E-05 Brucella abortus Pathogany (no infecting mice) Bacteria Rhizobiales 0.001333333 0.004137196 8.4396E-06 1.1050E-06 Borrelia duttonii Pathogany (no infecting mice) Bacteria Borreliaceae 0.001333333 0.002099125 3.3756E-05 1.2974E-05 Macrococcus canis Pathogany (no infecting mice) Bacteria Bacillales 0.001 0.000562255 3.6211E-05 1.5288E-05 Mycobacterium ulcerans Pathogany (no infecting mice) Bacteria Corynebacteriales 0.001 0.003869858 1.0380E-05 2.0078E-06 Salmonella enterica Pathogany (no infecting mice) Bacteria Enterobacterales 0.001 0.010304803 3.4115E-03 2.3240E-03 Lelliottia amnigena Pathogany (no infecting mice) Bacteria Enterobacterales 0.001 0.019044704 7.0061E-05 3.6456E-05 Pseudomonas oryzihabitans Pathogany (no infecting mice) Bacteria Pseudomonadales 0.001 0.002847013 2.8164E-05 2.0365E-05 Ralstonia insidiosa Pathogany (no infecting mice) Bacteria Burkholderiales 0.001 0.001367639 1.0216E-04 5.8764E-05 Parachlamydia acanthamoebae Pathogany (no infecting mice) Chlamydia 0.001 0.000544995 2.4367E-05 1.5029E-05 Leptospira alstonii Pathogany (no infecting mice) Bacteria Leptospiraceae 0.001 0.000830812 4.9841E-05 3.3563E-05 Plasmodium vinckei Pathogany (no infecting mice) Parasite 0.001 0.024245509 8.1069E-05 5.9239E-05 Cryptococcus neoformans Pathogany (no infecting mice) Fungi 0.001 0.00096144 1.0665E-04 4.5948E-05 Leptospira borgpetersenii Pathogany (infecting mice) Bacteria Legionellales 0.002333333 0.014135181 6.2940E-05 3.1533E-05 Mycoplasma penetrans Pathogany (infecting mice) Mycoplasma 0.0018 0.014209115 2.4312E-05 1.5115E-05 Paracoccidioides brasiliensis Pathogany (infecting mice) Fungi 0.001 0.000499713 7.2846E-05 4.3384E-05 Rhodobacter capsulatus Unreported Bacteria Rhodobacterales 0.001333333 0.001634871 1.2132E-04 4.4714E-05 Acetobacter tropicalis Unreported Bacteria Rhodospirillales 0.001333333 0.002692973 2.9932E-05 1.5084E-05 Cellulophaga phage phi19:1 Unreported Virus 0.003333333 0.008122172 5.1419E-06 7.1203E-07 Tessaracoccus aquimaris Unreported Bacteria Propionibacteriales 0.002933333 0.000772982 1.5977E-04 8.0103E-05 Thermocrinis albus Unreported Bacteria Aquificales 0.002333333 0.001225119 3.2967E-05 7.3177E-06 halophilic archaeon DL31 Unreported Archaea 0.002333333 0.004364837 2.8682E-05 1.4195E-05 Streptomyces sp. GBA 94-10 Unreported Bacteria Streptomycetales 0.002 0.015059096 5.8274E-05 2.4043E-05 Chthonomonas calidirosea Unreported Bacteria Chthonomonadales 0.002 0.003175406 6.6221E-05 2.0497E-05 Lutibacter profundi Unreported Bacteria Flavobacteriales 0.002 0.012388797 6.9978E-05 4.4559E-05 Enterobacter cloacae complex sp. 35734 Unreported Bacteria Enterobacterales 0.002 0.025039797 5.0645E-05 8.4808E-06 Bathymodiolus septemdierum thioautotrophic gill symbiont Unreported Bacteria Gammaproteobacteria 0.002 8.12284E-05 1.9922E-05 1.1641E-05 Hammondia hammondi Unreported Parasite 0.002 0.01219127 1.8657E-04 1.1765E-04 Edwardsiella phage PEi20 Unreported Virus 0.002 0.005972022 1.3045E-05 7.4631E-07 Microbulbifer agarilyticus Unreported Bacteria Cellvibrionales 0.0016 6.71021E-05 3.6501E-05 2.2731E-05 Parvibaculum lavamentivorans Unreported Bacteria Rhizobiales 0.0016 0.005553949 1.0266E-04 6.3333E-05 Thielavia terrestris Unreported Fungi 0.001466667 0.03131429 1.2684E-04 8.9564E-05 Veillonella rodentium Unreported Bacteria Veillonellales 0.001333333 0.026301936 1.1501E-04 7.6491E-05 Mycobacterium sp. WY10 Unreported Bacteria Corynebacteriales 0.001333333 0.001679688 1.0795E-05 5.6407E-06 Aeromicrobium choanae Unreported Bacteria Propionibacteriales 0.001333333 0.001752489 4.6754E-05 2.8824E-05 Tenericutes bacterium MO-XQ Unreported Bacteria unclassified Tenericutes 0.001333333 0.010895761 8.5206E-05 5.8651E-05 Pseudomonas savastanoi Unreported Bacteria Pseudomonadales 0.001333333 0.000487371 1.2039E-05 3.7777E-06 Pseudomonas psychrotolerans Unreported Bacteria Pseudomonadales 0.001333333 0.010464629 3.3400E-05 2.0807E-05 Pseudomonas psychrophila Unreported Bacteria Pseudomonadales 0.001333333 0.00759328 2.4340E-05 1.1078E-05 Pseudomonas sp. PONIH3 Unreported Bacteria Pseudomonadales 0.001333333 0.004419775 4.5263E-05 1.4885E-05 Psychrobacter sp. PRwf-1 Unreported Bacteria Pseudomonadales 0.001333333 0.009784621 4.1590E-05 6.8389E-06 Stenotrophomonas sp. WZN-1 Unreported Bacteria Xanthomonadales 0.001333333 0.016570077 1.0117E-04 4.0934E-05 Alteromonas sp. RW2A1 Unreported Bacteria Alteromonadales 0.001333333 2.0299E-05 2.3511E-05 6.3903E-06 Sinorhizobium sp. CCBAU 05631 Unreported Bacteria Rhizobiales 0.001333333 0.003366292 1.2685E-05 5.0010E-06 Ensifer sojae Unreported Bacteria Rhizobiales 0.001333333 0.000235271 5.5267E-05 3.1256E-05 Bradyrhizobium sp. WSM471 Unreported Bacteria Rhizobiales 0.001333333 0.007090958 1.8885E-05 1.1666E-05 Rhodomicrobium vannielii Unreported Bacteria Rhizobiales 0.001333333 0.000845025 5.5689E-05 2.8716E-05 Rickettsia canadensis Unreported Bacteria Rickettsiales 0.001333333 0.010681269 1.0533E-05 3.4078E-06 Nitrosomonas communis Unreported Bacteria Nitrosomonadales 0.001333333 0.000127601 3.2601E-05 1.5366E-05 Methanobrevibacter millerae Unreported Archaea 0.001333333 0.008346112 4.9261E-05 2.0660E-05 Lactobacillus prophage Lj771 Unreported Virus 0.001333333 0.002946531 2.5356E-06 6.1759E-08 Beihai tombus-like virus 19 Unreported Virus 0.001333333 0.001201982 4.8762E-07 5.7830E-08 Bacillus sp. FJAT-22090 Unreported Bacteria Bacillales 0.001 0.027450499 1.1774E-04 4.9264E-05 Streptomyces sp. P3 Unreported Bacteria Streptomycetales 0.001 0.006365747 7.9812E-05 3.6799E-05 Mycobacteroides saopaulense Unreported Bacteria Corynebacteriales 0.001 0.044473572 2.9008E-05 1.7792E-05 Arthrobacter sp. Rue61a Unreported Bacteria Micrococcales 0.001 0.003741133 2.9955E-05 9.4745E-06 Synechococcus sp. SynAce01 Unreported Bacteria Synechococcales 0.001 0.015984543 6.7792E-05 2.9752E-05 Mesoplasma coleopterae Unreported Bacteria Entomoplasmatales 0.001 0.009546766 7.6010E-06 1.6952E-06 Deinococcus maricopensis Unreported Bacteria Deinococcales 0.001 0.001004967 6.9074E-05
Recommended publications
  • Growth and Adaptation of Microorganisms on the Cheese Surface Christophe Monnet, Sophie Landaud-Liautaud, Pascal Bonnarme, Dominique Swennen
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Growth and adaptation of microorganisms on the cheese surface Christophe Monnet, Sophie Landaud-Liautaud, Pascal Bonnarme, Dominique Swennen To cite this version: Christophe Monnet, Sophie Landaud-Liautaud, Pascal Bonnarme, Dominique Swennen. Growth and adaptation of microorganisms on the cheese surface. FEMS Microbiology Letters, Wiley-Blackwell, 2015, 362 (1), pp.1-9. 10.1093/femsle/fnu025. hal-01535275 HAL Id: hal-01535275 https://hal.archives-ouvertes.fr/hal-01535275 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Growth and adaptation of microorganisms on the cheese surface 2 3 4 Christophe Monnet1,2, Sophie Landaud2,1, Pascal Bonnarme1,2 & Dominique Swennen3,4 5 6 1 INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78370 Thiverval- 7 Grignon, France 8 2 AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78370 9 Thiverval-Grignon, France 10 3 INRA, UMR1319 Micalis, 78370 Thiverval-Grignon, France 11 4 AgroParisTech, UMR1319 Micalis, 78370 Thiverval-Grignon, France 12 13 * Corresponding author.
    [Show full text]
  • Abstract Betaproteobacteria Alphaproteobacteria
    Abstract N-210 Contact Information The majority of the soil’s biosphere containins biodiveristy that remains yet to be discovered. The occurrence of novel bacterial phyla in soil, as well as the phylogenetic diversity within bacterial phyla with few cultured representatives (e.g. Acidobacteria, Anne Spain Dr. Mostafa S.Elshahed Verrucomicrobia, and Gemmatimonadetes) have been previously well documented. However, few studies have focused on the Composition, Diversity, and Novelty within Soil Proteobacteria Department of Botany and Microbiology Department of Microbiology and Molecular Genetics novel phylogenetic diversity within phyla containing numerous cultured representatives. Here, we present a detailed University of Oklahoma Oklahoma State University phylogenetic analysis of the Proteobacteria-affiliated clones identified in a 13,001 nearly full-length 16S rRNA gene clones 770 Van Vleet Oval 307 LSE derived from Oklahoma tall grass prairie soil. Proteobacteria was the most abundant phylum in the community, and comprised Norman, OK 73019 Stillwater, OK 74078 25% of total clones. The most abundant and diverse class within the Proteobacteria was Alphaproteobacteria, which comprised 405 325 5255 405 744 6790 39% of Proteobacteria clones, followed by the Deltaproteobacteria, Betaproteobacteria, and Gammaproteobacteria, which made Anne M. Spain (1), Lee R. Krumholz (1), Mostafa S. Elshahed (2) up 37, 16, and 8% of Proteobacteria clones, respectively. Members of the Epsilonproteobacteria were not detected in the dataset. [email protected] [email protected] Detailed phylogenetic analysis indicated that 14% of the Proteobacteria clones belonged to 15 novel orders and 50% belonged (1) Dept. of Botany and Microbiology, University of Oklahoma, Norman, OK to orders with no described cultivated representatives or were unclassified.
    [Show full text]
  • Corynebacterium Sp.|NML98-0116
    1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album
    [Show full text]
  • Accurate and Rapid Identification of the Burkholderia Pseudomallei Near-Neighbour, Burkholderia Ubonensis, Using Real-Time PCR
    Accurate and Rapid Identification of the Burkholderia pseudomallei Near-Neighbour, Burkholderia ubonensis, Using Real-Time PCR Erin P. Price1*, Derek S. Sarovich1, Jessica R. Webb1, Jennifer L. Ginther2, Mark Mayo1, James M. Cook2, Meagan L. Seymour2, Mirjam Kaestli1, Vanessa Theobald1, Carina M. Hall2, Joseph D. Busch2, Jeffrey T. Foster2, Paul Keim2, David M. Wagner2, Apichai Tuanyok2, Talima Pearson2, Bart J. Currie1 1 Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia, 2 Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America Abstract Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc), a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown’s medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B.
    [Show full text]
  • Study of Dental Fluorosis in Subjects Related to a Phosphatic Fertilizer
    Indian Journal of Geo Marine Sciences Vol. 46 (06), June 2017, pp. 1116-1127 Diversity and enzymatic profile of bacterial flora in the gut of an estuarine fish, Mugil jerdoni Ankita A. Datta, Amit K. Sharma, Rahul Kundu & Satya P. Singh* UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, India *[E-mail: [email protected]] Received 12 August 2015 ; revised 07 December 2015 In order to examine the bacterial diversity and enzymatic potential, the isolates were screened for the amylolytic, cellulolytic, lipolytic and proteolytic activities using selective media. Significant proportion of the isolates (44%) exhibited lipase activity, while only few (11%) had protease activity. The 16S rRNA gene sequence analysis revealed that most of the isolates related to the genera Bacillus, Acinetobacter, Staphylococcus, Aeromonas, Psychrobacter, Dietzia and Isoptericola. Examined bacteria displayed significant tolerance against varying salt concentrations. Most of the isolates displayed antagonism against 10 selected target organisms. Bacteria were also assessed for their resistance and sensitivity against different antibiotics. Staphylococcus epidermis MJMG8.1 and Dietzia sp. MJMG8.2 grew significantly in the presence of different organic solvents. [Key Words: Microbial enzymes, antibiotic resistance, 16S rRNA sequencing, phylogeny, microbial diversity, fish-gut microflora] Introduction The culturable bacterial flora in the gut of Staphylococcus, unidentified anaerobes and yeast are freshwater and marine water fishes has been explored reported to produce exogenous enzymes. Amylases, in limited sense 1. Bacterial population in the fish gut proteases, lipases, cellulases, chitinases and few is governed by various environmental and intrinsic others have been produced by the gut flora 5, 7. factors such as species, developmental stage, feeding Studies have revealed that the gut microflora prevents strategy, structure of the digestive system and other the establishment of opportunistic pathogens in the physiological factors 2.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Isolation, Cloning and Co-Expression of Lipase and Foldase Genes of Burkholderia Territorii GP3 from Mount Papandayan Soil
    J. Microbiol. Biotechnol. (2019), 29(6), 944–951 https://doi.org/10.4014/jmb.1812.12013 Research Article Review jmb Isolation, Cloning and Co-Expression of Lipase and Foldase Genes of Burkholderia territorii GP3 from Mount Papandayan Soil Ludwinardo Putra1, Griselda Herman Natadiputri2, Anja Meryandini1, and Antonius Suwanto1,2* 1Graduate School of Biotechnology, Bogor Agricultural University, Bogor 16680, Indonesia 2Biotechnology Research and Development, PT Wilmar Benih Indonesia, Bekasi 17530, Indonesia Received: December 8, 2018 Revised: May 1, 2019 Lipases are industrial enzymes that catalyze both triglyceride hydrolysis and ester synthesis. Accepted: May 1, 2019 The overexpression of lipase genes is considered one of the best approaches to increase the First published online enzymatic production for industrial applications. Subfamily I.2. lipases require a chaperone or May 14, 2019 foldase in order to become a fully-activated enzyme. The goal of this research was to isolate, *Corresponding author clone, and co-express genes that encode lipase and foldase from Burkholderia territorii GP3, a Phone: +62-812-9973-680; lipolytic bacterial isolate obtained from Mount Papandayan soil via growth on Soil Extract E-mail: [email protected] Rhodamine Agar. Genes that encode for lipase (lipBT) and foldase (lifBT) were successfully cloned from this isolate and co-expressed in the E. coli BL21 background. The highest expression was shown in E. coli BL21 (DE3) pLysS, using pET15b expression vector. LipBT was particulary unique as it showed highest activity with optimum temperature of 80°C at pH 11.0. The optimum substrate for enzyme activity was C10, which is highly stable in methanol solvent.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Gut Microbiome Alterations in Ulcerative Colitis and After Moxibustion Intervention
    Gut Microbiome Alterations In Ulcerative Colitis And After Moxibustion Intervention Qin Qi Shanghai University of Traditional Chinese Medicine Ya-Nan Liu Shanghai University of Traditional Chinese Medicine Si-Yi Lv Shanghai University of Traditional Chinese Medicine Huan-Gan Wu Shanghai University of Traditional Chinese Medicine Lin-Shuang Zhang Zhejiang Institute for Food and Drug Control Zhan Cao Tongji University School of Medicine Hui-Rong Liu Shanghai University of Traditional Chinese Medicine Xiao-Mei Wang ( [email protected] ) Shanghai University of Traditional Chinese Medicine Lu-Yi Wu Shanghai University of Traditional Chinese Medicine Research Article Keywords: Ulcerative colitis, Moxibustion, Gut microbiota, Metagenomic Posted Date: August 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-789670/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/22 Abstract Background: Recent studies have shown that the pathogenesis of ulcerative colitis (UC) is closely related to the gut microbiota. Moxibustion, a common treatment in traditional Chinese medicine, is the burning of the herb moxa over acupuncture points. Moxibustion has been used to improve the inammation and gastrointestinal dysfunctions in gastrointestinal disorders such as UC. In this study, we investigated whether moxibustion could improve the gut microbial dysbiosis induced by dextran sulphate sodium (DSS). Methods: Twenty-ve male rats were randomly assigned into ve groups: normal (NG), UC model (UC), moxibustion (UC+MOX), mesalazine (UC+MES), and normal rats with moxibustion (NG+MOX). The UC rat model was established by administering DSS solution. The rats in the UC+MOX and NG+MOX groups were treated with moxibustion at Tianshu (bilateral, ST25) points once daily for 7 consecutive days, and the UC+MES group rats were treated with mesalazine once daily for 7 consecutive days.
    [Show full text]
  • Exploring the Diversity and Antimicrobial Potential of Marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile
    ORIGINAL RESEARCH published: 19 July 2016 doi: 10.3389/fmicb.2016.01135 Exploring the Diversity and Antimicrobial Potential of Marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile Agustina Undabarrena 1, Fabrizio Beltrametti 2, Fernanda P. Claverías 1, Myriam González 1, Edward R. B. Moore 3, 4, Michael Seeger 1 and Beatriz Cámara 1* 1 Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile, 2 Actygea S.r.l., Gerenzano, Italy, 3 Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, 4 Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden Edited by: Bioprospecting natural products in marine bacteria from fjord environments are attractive Learn-Han Lee, due to their unique geographical features. Although, Actinobacteria are well known Monash University Malaysia Campus, Malaysia for producing a myriad of bioactive compounds, investigations regarding fjord-derived Reviewed by: marine Actinobacteria are scarce. In this study, the diversity and biotechnological Atte Von Wright, potential of Actinobacteria isolated from marine sediments within the Comau University of Eastern Finland, Finland fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. Polpass Arul Jose, Central Salt and Marine Chemicals The 16S rRNA gene sequences revealed that members phylogenetically related Research Institute, India to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, *Correspondence: Microbacteriaceae, Dietziaceae, Nocardiaceae, and Streptomycetaceae families were Beatriz Cámara [email protected] present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera) was retrieved by using only five different isolation media.
    [Show full text]
  • Iron Transport Strategies of the Genus Burkholderia
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Iron transport strategies of the genus Burkholderia Mathew, Anugraha Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-113412 Dissertation Published Version Originally published at: Mathew, Anugraha. Iron transport strategies of the genus Burkholderia. 2015, University of Zurich, Faculty of Science. Iron transport strategies of the genus Burkholderia Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Anugraha Mathew aus Indien Promotionskomitee Prof. Dr. Leo Eberl (Vorsitz) Prof. Dr. Jakob Pernthaler Dr. Aurelien carlier Zürich, 2015 2 Table of Contents Summary .............................................................................................................. 7 Zusammenfassung ................................................................................................ 9 Abbreviations ..................................................................................................... 11 Chapter 1: Introduction ....................................................................................... 14 1.1.Role and properties of iron in bacteria ...................................................................... 14 1.2.Iron transport mechanisms in bacteria .....................................................................
    [Show full text]
  • Report on 31 Unrecorded Bacterial Species in Korea That Belong to the Phylum Actinobacteria
    Journal of Species Research 5(1):1­13, 2016 Report on 31 unrecorded bacterial species in Korea that belong to the phylum Actinobacteria Jung­Hye Choi1, Ju­Hee Cha1, Jin­Woo Bae2, Jang­Cheon Cho3, Jongsik Chun4, Wan­Taek Im5, Kwang Yeop Jahng6, Che Ok Jeon7, Kiseong Joh8, Seung Bum Kim9, Chi Nam Seong10, Jung­Hoon Yoon11 and Chang­Jun Cha1,* 1Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea 2Department of Biology, Kyung Hee University, Seoul 02447, Korea 3Department of Biological Sciences, Inha University, Incheon 22212, Korea 4School of Biological Sciences, Seoul National University, Seoul 08826, Korea 5Department of Biotechnology, Hankyong National University, Anseong 17579, Korea 6Department of Life Sciences, Chonbuk National University, Jeonju-si 54896, Korea 7Department of Life Science, Chung-Ang University, Seoul 06974, Korea 8Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Korea 9Department of Microbiology, Chungnam National University, Daejeon 34134, Korea 10Department of Biology, Sunchon National University, Suncheon 57922, Korea 11Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea *Correspondent: [email protected] To discover and characterize indigenous species in Korea, a total of 31 bacterial strains that belong to the phylum Actinobacteria were isolated from various niches in Korea. Each strain showed the high sequence similarity (>99.1%) with the closest bacterial species, forming a robust phylogenetic clade. These strains have not been previously recorded in Korea. According to the recently updated taxonomy of the phylum Actinobacteria based upon 16S rRNA trees, we report 25 genera of 13 families within 5 orders of the class Actinobacteria as actinobacterial species found in Korea.
    [Show full text]