Diagnostics of Halitosis Complaints by a Multidisciplinary Team

Total Page:16

File Type:pdf, Size:1020Kb

Diagnostics of Halitosis Complaints by a Multidisciplinary Team JOP. J Pancreas (Online) 2014 Sep 28; 15(5): 465-474 ORIGINAL ARTICLE Nicotine Alters the Proteome of Two Human Pancreatic Duct Cell Lines Joao A Paulo Department of Cell Biology, Harvard Medical School, Boston, USA ABSTRACT Context Cigarette smoking is a known risk factor of pancreatic disease. Nicotine - a major cigarette tobacco component - can adenocarcinoma, respectively. However, at the biomolecular level, particularly in pancreatic research, the effects of nicotine remaintraffic through unresolved. the circulatory Methods system The effects and may of nicotine induce fibrosis on the andproteomes metastasis, of two hallmarks pancreatic of chronic duct cellpancreatitis lines–an and immortalized pancreatic normal cell line (HPNE) and a cancer cell line (PanC1)- were investigated using mass spectrometry-based proteomics. For each cell line, the global proteomesof cells exposed to nicotine for 24 hrswere compared with untreated cells in triplicate using 6-plex tandem mass tag-based isobaric labeling techniques. Results Over 5,000 proteins were detectedper cell line. Of treatment, 57 of which were so in both cell lines. Amyloid precursor protein, previously observed to increase expression in pancreaticthese, over stellate 900 proteins cells when were exposed differentially to nicotine, abundant was alsowith up-regulated statistical significance in both cell (corrected lines.In general, p-value the <0.01) two cell upon lines nicotine varied in the classes of proteins altered by nicotine treatment, supporting published evidence that nicotine may play different roles in the initiation and progression of pancreatic disease. Conclusions Understanding the underlying mechanisms associating nicotine with pancreatic function is paramount to intervention aiming to retard, arrest, or ameliorate pancreatic disease. INTRODUCTION promote the development of chronic pancreatitis by In the United States, pancreatic cancer is the fourth most common cause of death due to cancer and has theincreasing underlying disease cellular severity events and promoted pancreatic by calcifications smoking in thewhich development can further of damage pancreatic the pancreasdisease is [6]. vital Elucidating to timely intervention aimed at counteracting the disease. thean averagemajor form one ofand pancreatic five year cancersurvival - tumorrate of cells25% arise and from5%, respectivelypancreatic ductal[1]. In epithelium.pancreas adenocarcinomaPancreatic ductal - Many of the toxic compounds found in tobacco smoke are absorbed into the blood stream and several have adenocarcinoma has a mortality rate of nearly 100% an admixture of over 4,000 compounds, for which over linewithin the 2 branched years and tubes comprises of the organ,over 90% secrete of all bicarbonate, pancreatic been detected in pancreatic fluid [7]. Cigarette smoke is andcancers thus [2]. conduct Pancreatic enzymes duct produced cells are byepithelial acinar cells thatinto implicated in cancer, nicotine is a major toxic component of tobacco.50 are suspected In addition, carcinogens cigarette smoking [8]. Although cessation not programs directly regulating pancreatic duct cell function, in addition to often rely on nicotine replacement therapy (NRT), alterationsthe duodenum produced [3]. Delineating by cellular the stresses, molecular such mechanisms as nicotine, such as transdermal patches, nasal sprays or emerging will add to our general understanding of the disease. e-Cigarette technology. Nicotine is readily absorbed by the lungs as well as other, more distal organs via systemic One of the most prominent risk factors correlated with the nicotinic acetylcholine receptors (nAChR), with varying circulation [9]. Nicotine interacts with a population of todevelopment investigate of this pancreatic association. cancer Cigarette is cigarette smoking smoking may [4, 5]. However, only limited research has been performed affinities and downstream effectors [10] and as such is as Received May 31st, 2014 – Accepted July 10th, 2014 bindinga contributing of nicotine factor to to cell myocardial surface receptors[11, 12] , transducesatrial [13], Key words Amyloid; Nicotine; Pancreatic Ducts; Pancreatic extracellularpulmonary [14, signals 15] and to biliarythe intracellular fibrosis [16] space diseases. resulting The Neoplasms; Receptors, Nicotinic in ion transport and/or initiation of phosphorylation Abbreviations APP: amyloid precursor protein; FBS: fetal bovine serum; PaDC: pancreatic duct cells; TMT: tandem mass tag Correspondence Joao A Paulo cascadesVarious cancers and other and signaling chronic pathwaysdiseases have [17-19]. been linked to Department of Cell Biology, Harvard Medical School, Boston, nicotine, yet the mechanisms of such are poorly understood MA 02115, USA Phone + 617/432-6767; Fax: + 617/264-5277 E-mail [email protected] pancreatitis[20, 21]. Concerning and pancreatic pancreatic adenocarcinoma, disease, cigarette respectively smoking may induce fibrosis and metastasis, hallmarks of chronic JOP. Journal of the Pancreas–http://www.serena.unina.it/index.php/jop–Vol. 15 No. 5 – Sep 2014. [ISSN 1590-8577] 4 65 JOP. J Pancreas (Online) 2014 Sep 28; 15(5): 465-474 Experimental Strategy pancreatic duct cells (PaDC), and such cellular changes are The experimental strategy was outlined in Figure 1. This implicated[22] . Evidence in pancreatic suggests that cancer protein and expression chronic pancreatitis is altered in procedure was performed in parallel for both HPNE and PanC1 cell lines. Cells were lysed and proteins were effects of nicotine on PaDC in an in vitro environment has extracted via methanol-chloroform precipitation and then been[23]. However,published. to In date,various no cellcomprehensive types, nicotine analysis is known of the to digested with LysC and trypsin. Each sample was labeled induce alterations in protein expression that affect cellular proliferation, chemotaxis, and attachment to various was fractionated by basic pH reversed-phase (BpRP) chromatographywith a specific andTMT subjected isobaric totag. LC-MS3 The analysis.pooled sample Here, I focus on changes in the global proteome of cultured surfaces [24, 25]. Cell Growth and Harvesting of Pancreatic Duct Cells pancreatic cells when subjected to nicotine treatment. I Methods of cell growth and propagation followed cell line, HPNE (human pancreatic Nestin-expressing), and secondinvestigate a well-studied two PaDC cellpancreatic lines, first cancer a normal cell line, epithelial PanC1 (pancreatic cancer 1). Identifying differences in proteins previously utilized techniques [28, 29]. In brief, cells were that are altered in abundance under nicotine stress is an propagated in Dulbecco's modified Eagle's-F12 medium initial step to gain a comprehensive understanding of aspirated(DMEM) supplemented and the cells werewith 10%washed fetal 3 bovine times withserum ice-cold (FBS). the cellular physiology regulating the development and phosphate-bufferedUpon achieving 85-90% saline confluency, (PBS). This the growthcell density media was progression of pancreatic disease. Research such as that chosen so as to maximize the amount of cells for harvesting presented herein may broaden our knowledge of the while ensuring that the cells are proliferating. Assigned cell effects of nicotine on the pancreas and further validation culture dishes were supplemented with 1 µM nicotine and via targeted studies may provide targets for drug therapies control cell culture dishes were mock treated with an equal aiming to retard or reverse the clinical manifestations of volume of sterile deionized water. Twenty-four hours after pancreatic disease. the addition of fresh media, the cells were dislodged with a non-enzymatic reagent, harvested by trituration following MATERIALS AND METHODS the addition of 10 mL PBS, pelleted by centrifugation Materials at 3,000 x g for 5 min at 4°C, and the supernatant was removed. One milliliter of buffer containing TBSp (50 mM Tris, 150 mM NaCl, pH 7.4 supplemented with 1X Roche 11330) was purchased from Gibco (Carlsbad, CA). Fetal Dulbecco's modified Eagle's-F12 medium (DMEM/F12; bovine serum (FBS; F0392) was purchased from Sigma (St. SDS was added to each 10 cm cell culture dish. Louis, MO). CellStripper (25-056-CL) for non-enzymatic Complete protease inhibitors), 1% Triton X-100 and 0.5% cell dislodgement was purchased from Mediatech Cell Lysis and Protein Digestion (Manassas, VA). Tandem mass tag (TMT) isobaric reagents Cells were homogenized by 12 passes through a 27 gauge (1.25 inches long) needle and incubated at 4°C with gentle organic solvents were purchased from J.T. Baker (Center agitation for 1 hr. The homogenate was sedimented by were from Thermo Scientific (Rockford, IL). Water and ultracentrifugation at 100,000 x g for 60 min at 4°C. Protein concentrations were determined using the trypsinValley, PA).(V5111) (-)-Nicotine was obtained (≥99%) from (N3876) Promega was purchased(Madison, from Sigma (St. Louis, MO). Sequencing-grade modified were from Sigma-Aldrich and Burdick & Jackson, 5bicinchoninic mM dithiotreitol acid (BCA)(37°C, assay 25 min) (ThermoFisher and alkylation Scientific). with 10 respectively.WI). Unless otherwise Primary antibody noted, other against reagents amyloid and precursor solvents mMProteins iodo wereacetamide subjected (room to disulfidetemperature, bond 30reduction min in with the protein (ab15272) was from Abcam (Cambridge, MA), dark). Excess iodoacetamide was quenched with 15 mM while secondary horseradish peroxidase anti-rabbit dithiotreitol (room temperature,
Recommended publications
  • Mouse Germ Line Mutations Due to Retrotransposon Insertions Liane Gagnier1, Victoria P
    Gagnier et al. Mobile DNA (2019) 10:15 https://doi.org/10.1186/s13100-019-0157-4 REVIEW Open Access Mouse germ line mutations due to retrotransposon insertions Liane Gagnier1, Victoria P. Belancio2 and Dixie L. Mager1* Abstract Transposable element (TE) insertions are responsible for a significant fraction of spontaneous germ line mutations reported in inbred mouse strains. This major contribution of TEs to the mutational landscape in mouse contrasts with the situation in human, where their relative contribution as germ line insertional mutagens is much lower. In this focussed review, we provide comprehensive lists of TE-induced mouse mutations, discuss the different TE types involved in these insertional mutations and elaborate on particularly interesting cases. We also discuss differences and similarities between the mutational role of TEs in mice and humans. Keywords: Endogenous retroviruses, Long terminal repeats, Long interspersed elements, Short interspersed elements, Germ line mutation, Inbred mice, Insertional mutagenesis, Transcriptional interference Background promoter and polyadenylation motifs and often a splice The mouse and human genomes harbor similar types of donor site [10, 11]. Sequences of full-length ERVs can TEs that have been discussed in many reviews, to which encode gag, pol and sometimes env, although groups of we refer the reader for more in depth and general infor- LTR retrotransposons with little or no retroviral hom- mation [1–9]. In general, both human and mouse con- ology also exist [6–9]. While not the subject of this re- tain ancient families of DNA transposons, none view, ERV LTRs can often act as cellular enhancers or currently active, which comprise 1–3% of these genomes promoters, creating chimeric transcripts with genes, and as well as many families or groups of retrotransposons, have been implicated in other regulatory functions [11– which have caused all the TE insertional mutations in 13].
    [Show full text]
  • Molecular Mechanisms Involved Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2010 Molecular Mechanisms Involved Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis Ryan Fassnacht Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Physiology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2246 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Ryan C. Fassnacht 2010 All Rights Reserved Molecular Mechanisms Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. by Ryan Christopher Fassnacht, B.S. Hampden Sydney University, 2005 M.S. Virginia Commonwealth University, 2010 Director: Valeria Mas, Ph.D., Associate Professor of Surgery and Pathology Division of Transplant Department of Surgery Virginia Commonwealth University Richmond, Virginia July 9, 2010 Acknowledgement The Author wishes to thank his family and close friends for their support. He would also like to thank the members of the molecular transplant team for their help and advice. This project would not have been possible with out the help of Dr. Valeria Mas and her endearing
    [Show full text]
  • Broad Poster Vivek
    A novel computational method for finding regions with copy number abnormalities in cancer cells Vivek, Manuel Garber, and Mike Zody Broad Institute of MIT and Harvard, Cambridge, MA, USA Introduction Results Cancer can result from the over expression of oncogenes, genes which control and regulate cell growth. Sometimes oncogenes increase in 1 2 3 activity due to a specific genetic mutation called a translocation (Fig 1). SMAD4 – a gene known to be deleted in pancreatic COX10 – a gene deleted in cytochrome c oxidase AK001392 – a hereditary prostate cancer protein This translocation allows the oncogene to remain as active as its paired carcinoma deficiency, known to be related to cell proliferation gene. Amplification of this mutation can occur, thereby creating the proper conditions for uncontrolled cell growth; consequently, each Results from Analysis Program Results from Analysis Program Results from Analysis Program component of the translocation will amplify in similar quantities. In this mutation, the chromosomal region containing the oncogene displaces to Region 1 Region 2 R2 Region 1 Region 2 R2 Region 1 Region 2 R2 a region on another chromosome containing a gene that is expressed Chr18:47044749-47311978 Chr17:13930739-14654741 0.499070821478475 Chr17:13930739-14654741 Chr18:26861790-27072166 0.47355172850856 Chr17:12542326-13930738 Chr8:1789292-1801984 0.406208680312004 frequently. Actual region containing gene Actual region containing gene Actual region containing gene chr18: 45,842,214 - 48,514,513 chr17: 13,966,862 - 14,068,461 chr17: 12,542,326 - 13,930,738 Fig 1. Two chromosomal regions (abcdef and ghijk) are translocating to create two new regions (abckl and ghijedf).
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Mutations in Pi(3,5)P2 Signaling and Neurodegeneration in Mouse and Human
    MUTATIONS IN PI(3,5)P2 SIGNALING AND NEURODEGENERATION IN MOUSE AND HUMAN by Clement Y. Chow A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Human Genetics) in The University of Michigan 2008 Doctoral Committee: Professor Miriam H. Meisler, Chair Professor Sally A. Camper Professor David Ginsburg Associate Professor David C. Kohrman Assistant Professor Geoffrey G. Murphy Clement Y. Chow 2008 To my wife, Candace For all her love and support ii ACKNOWLEDGEMENTS I would first like to thank my mentor, Miriam Meisler. She is the consummate scientist. Miriam is inquisitive and interested in a wide range of topics. This trait has taught me to always ask the right questions and be skeptical of conclusions that are not supported by data. Miriam’s unending desire to make each oral presentation perfect drove me to improve my own skills. I came to this lab without any public presentation skills, but I am now greatly improved in my presentation abilities, a skill crucial for a successful scientific career. Miriam is a perfectionist when it comes to writing and always encouraged me to do the same. I will continue to strive to perfect my writing abilities. I came to the lab wanting to positionally clone a mouse mutant. I told Miriam that I would stay in the lab if she allowed me to do so. She was supportive and excited from the beginning, allowing me to pursue a project with an unknown future. This allowed me to learn, first hand, many aspects of genetics that such a project provides.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Effet De La Cryptorchidie Sur Le Transcriptome Testiculaire Humain
    MARIE EVE BERGERON EFFET DE LA CRYPTORCHIDIE SUR LE TRANSCRIPTOME TESTICULAIRE HUMAIN Mémoire présenté à la Faculté des études supérieures et postdoctorales de l’Université Laval dans le cadre du programme de maîtrise en Physiologie-Endocrinologie pour l’obtention du grade de Maître ès sciences (M.Sc.) DÉPARTEMENT D’OBSTÉTRIQUE ET DE GYNÉCOLOGIE FACULTÉ DE MÉDECINE UNIVERSITÉ LAVAL QUÉBEC 2012 © Marie Eve Bergeron, 2012 Résumé Les niveaux d’expression de nombreux gènes peuvent être affectés par l’environnement et mener au développement de la cryptorchidie. Cette malformation congénitale est la plus commune dont une des conséquences majeures est l’infertilité masculine due au testicule non-descendu, auquel un risque plus élevé de cancer testiculaire est associé. L’expression des ARN totaux isolés à partir de biopsies testiculaires ont été analysés par micropuces, puis par une analyse bio-informatique et une validation par RT-qPCR de plusieurs gènes sélectionnés. Ces analyses m’ont permis d’identifier plus de deux milles candidats montrant une expression différente entre des sujets cryptorchides et normaux. Certains de ces gènes sélectionnés peuvent être associés à la descente testiculaire, d’autres au cancer testiculaire ou encore aux divers types cellulaires retrouvés dans cet organe. Les différences dans le transcriptome dues à la cryptorchidie vont nous aider à comprendre la cause génétique de cette maladie. ii Abstract Expression level of numerous genes may be affected by environmental condition and lead to development of cryptorchidism. The most common congenital malformation in male is cryptorchidism. One major consequence of this anomaly is infertility due to undescended testis, to which an increased risk of testicular cancer is associated.
    [Show full text]
  • Supplemental Figure S1 Differentially Methylated Regions (Dmrs
    Supplemental Figure S1 '$$#0#,2'**7+#2&7*2#"0#%'-,11 #25##,"'1#1#122#1 '!2-0'*"#.'!2'-,-$122&#20,1'2'-,$0-+2- !"Q !"2-$%," $ 31',% 25-$-*" !&,%# ," ' 0RTRW 1 !32V-$$ !0'2#0'T - #.0#1#,22'-, -$ "'$$#0#,2'**7+#2&7*2#"%#,#11',.0#,2&#1#1,"2&#'0 #&4'-022&#20,1'2'-, #25##,"'$$#0#,2"'1#1#122#1T-*!)00-51',"'!2#&7.#0+#2&7*2#"%#,#1Q%0700-51 &7.-+#2&7*2#"%#,#1Q31',%25-$-*"!&,%#,"'0RTRW1!32V-$$!0'2#0'T-%#,#1 +#22&# -4#!0'2#0'22&#20,1'2'-,$0-+$%2-$Q5#2&#0#$-0#*1-',!*3"#" %#,#15'2&V4*3#0RTRWT$$#!2#"%#,10#&'%&*'%&2#" 712#0'1)1#T Supplemental Figure S2 Validation of results from the HELP assay using Epityper MassarrayT #13*21 $0-+ 2&# 1$ 117 5#0# !-00#*2#" 5'2& /3,2'22'4# +#2&7*2'-, ,*78#" 7 '13*$'2#11007$-04V-,"6U-%#,#.0-+-2#00#%'-,1T11007 51.#0$-0+#"31',%**4'* *#1+.*#1T S Supplemental Fig. S1 A unique hypermethylated genes (methylation sites) 454 (481) 5693 (6747) 120 (122) NLMGUS NEWMM REL 2963 (3207) 1338 (1560) 5 (5) unique hypomethylated genes (methylation sites) B NEWMM 0 (0) MGUS 454 (481) 0 (0) NEWMM REL NL 3* (2) 2472 (3066) NEWMM 2963 REL (3207) 2* (2) MGUS 0 (0) REL 2 (2) NEWMM 0 (0) REL Supplemental Fig. S2 A B ARID4B DNMT3A Methylation by MassArray Methylation by MassArray 0 0.2 0.4 0.6 0.8 1 1.2 0.5 0.6 0.7 0.8 0.9 1 2 0 NL PC MGUS 1.5 -0.5 NEW MM 1 REL MM -1 0.5 -1.5 0 -2 -0.5 -1 -2.5 -1.5 -3 Methylation by HELP Assay Methylation by HELP Methylation by HELP Assay Methylation by HELP -2 -3.5 -2.5 -4 Supplemental tables "3..*#+#,2*6 *#"SS 9*','!*!&0!2#0'12'!1-$.2'#,21+.*#1 DZ_STAGE Age Gender Ethnicity MM isotype PCLI Cytogenetics
    [Show full text]
  • Original Article a Database and Functional Annotation of NF-Κb Target Genes
    Int J Clin Exp Med 2016;9(5):7986-7995 www.ijcem.com /ISSN:1940-5901/IJCEM0019172 Original Article A database and functional annotation of NF-κB target genes Yang Yang, Jian Wu, Jinke Wang The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, People’s Republic of China Received November 4, 2015; Accepted February 10, 2016; Epub May 15, 2016; Published May 30, 2016 Abstract: Backgrounds: The previous studies show that the transcription factor NF-κB always be induced by many inducers, and can regulate the expressions of many genes. The aim of the present study is to explore the database and functional annotation of NF-κB target genes. Methods: In this study, we manually collected the most complete listing of all NF-κB target genes identified to date, including the NF-κB microRNA target genes and built the database of NF-κB target genes with the detailed information of each target gene and annotated it by DAVID tools. Results: The NF-κB target genes database was established (http://tfdb.seu.edu.cn/nfkb/). The collected data confirmed that NF-κB maintains multitudinous biological functions and possesses the considerable complexity and diversity in regulation the expression of corresponding target genes set. The data showed that the NF-κB was a central regula- tor of the stress response, immune response and cellular metabolic processes. NF-κB involved in bone disease, immunological disease and cardiovascular disease, various cancers and nervous disease. NF-κB can modulate the expression activity of other transcriptional factors. Inhibition of IKK and IκBα phosphorylation, the decrease of nuclear translocation of p65 and the reduction of intracellular glutathione level determined the up-regulation or down-regulation of expression of NF-κB target genes.
    [Show full text]
  • Identification of Transcriptional Mechanisms Downstream of Nf1 Gene Defeciency in Malignant Peripheral Nerve Sheath Tumors Daochun Sun Wayne State University
    Wayne State University DigitalCommons@WayneState Wayne State University Dissertations 1-1-2012 Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors Daochun Sun Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Sun, Daochun, "Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors" (2012). Wayne State University Dissertations. Paper 558. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. IDENTIFICATION OF TRANSCRIPTIONAL MECHANISMS DOWNSTREAM OF NF1 GENE DEFECIENCY IN MALIGNANT PERIPHERAL NERVE SHEATH TUMORS by DAOCHUN SUN DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2012 MAJOR: MOLECULAR BIOLOGY AND GENETICS Approved by: _______________________________________ Advisor Date _______________________________________ _______________________________________ _______________________________________ © COPYRIGHT BY DAOCHUN SUN 2012 All Rights Reserved DEDICATION This work is dedicated to my parents and my wife Ze Zheng for their continuous support and understanding during the years of my education. I could not achieve my goal without them. ii ACKNOWLEDGMENTS I would like to express tremendous appreciation to my mentor, Dr. Michael Tainsky. His guidance and encouragement throughout this project made this dissertation come true. I would also like to thank my committee members, Dr. Raymond Mattingly and Dr. John Reiners Jr. for their sustained attention to this project during the monthly NF1 group meetings and committee meetings, Dr.
    [Show full text]
  • Ana Isabel Borges Ferraz
    FACULDADE DE MEDICINA DA UNIVERSIDADE DE COIMBRA TRABALHO FINAL DO 6º ANO MÉDICO COM VISTA À ATRIBUIÇÃO DO GRAU DE MESTRE NO ÂMBITO DO CICLO DE ESTUDOS DE MESTRADO INTEGRADO EM MEDICINA ANA ISABEL BORGES FERRAZ CLINICAL RELEVANCE OF COPY NUMBER VARIATIONS DETECTED BY ARRAY-CGH IN SIX PATIENTS WITH UNEXPLAINED NON- SYNDROMIC INTELLECTUAL DISABILITY ARTIGO CIENTÍFICO ÁREA CIENTÍFICA DE PEDIATRIA TRABALHO REALIZADO SOB A ORIENTAÇÃO DE: PROFESSORA DRª GUIOMAR OLIVEIRA PROFESSORA DRª PATRÍCIA MACIEL MARÇO/2012 CLINICAL RELEVANCE OF COPY NUMBER VARIATIONS DETECTED BY ARRAY-CGH IN SIX PATIENTS WITH UNEXPLAINED NON-SYNDROMIC INTELLECTUAL DISABILITY FMUC CLINICAL RELEVANCE OF COPY NUMBER VARIATIONS DETECTED BY ARRAY-CGH IN SIX PATIENTS WITH UNEXPLAINED NON-SYNDROMIC INTELLECTUAL DISABILITY Ana Isabel Borges Ferraz Mestrado Integrado em Medicina - 6º ano Faculdade de Medicina da Universidade de Coimbra Morada: Torre de Vilela, 3020-928 Coimbra E-mail: [email protected] 2 Ana Isabel Borges Ferraz MarCh 2012 CLINICAL RELEVANCE OF COPY NUMBER VARIATIONS DETECTED BY ARRAY-CGH IN SIX PATIENTS WITH UNEXPLAINED NON-SYNDROMIC INTELLECTUAL DISABILITY Ana Ferraz 1,2, G. Oliveira 1, P. Maciel 2 1. Carmona da Mota Pediatric Hospital of Coimbra 2. Life and Health Sciences Research Institute (ICVS), Minho´s University Keywords: Intellectual disability, array-CGH, copy number variation, genotype, phenotype, non-syndromic ABSTRACT Intellectual disability (ID) represents a health problem of great relevance for the public health services and for the families and is one of the most common neurodevelopmental disorders, affecting 1 to 3% of children. Epidemiological studies show that genetic mutations contribute in about 15% to the etiology in milder forms.
    [Show full text]