Acetylcholine Signaling System in Progression of Lung Cancers

Total Page:16

File Type:pdf, Size:1020Kb

Acetylcholine Signaling System in Progression of Lung Cancers Pharmacology & Therapeutics 194 (2019) 222–254 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Acetylcholine signaling system in progression of lung cancers Jamie R. Friedman a,1, Stephen D. Richbart a,1,JustinC.Merritta,KathleenC.Browna, Nicholas A. Nolan a, Austin T. Akers a, Jamie K. Lau b, Zachary R. Robateau a, Sarah L. Miles a,PiyaliDasguptaa,⁎ a Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755 b Biology Department, Center for the Sciences, Box 6931, Radford University, Radford, Virginia 24142 article info abstract Available online 3 October 2018 The neurotransmitter acetylcholine (ACh) acts as an autocrine growth factor for human lung cancer. Several lines of evidence show that lung cancer cells express all of the proteins required for the uptake of choline (choline Keywords: transporter 1, choline transporter-like proteins) synthesis of ACh (choline acetyltransferase, carnitine acetyl- Lung cancer transferase), transport of ACh (vesicular acetylcholine transport, OCTs, OCTNs) and degradation of ACh (acetyl- Acetylcholine cholinesterase, butyrylcholinesterase). The released ACh binds back to nicotinic (nAChRs) and muscarinic Cholinergic receptors on lung cancer cells to accelerate their proliferation, migration and invasion. Out of all components Proliferation of the cholinergic pathway, the nAChR-signaling has been studied the most intensely. The reason for this trend Invasion Anti-cancer drugs is due to genome-wide data studies showing that nicotinic receptor subtypes are involved in lung cancer risk, the relationship between cigarette smoke and lung cancer risk as well as the rising popularity of electronic ciga- rettes considered by many as a “safe” alternative to smoking. There are a small number of articles which review the contribution of the other cholinergic proteins in the pathophysiology of lung cancer. The primary objective of this review article is to discuss the function of the acetylcholine-signaling proteins in the progression of lung can- cer. The investigation of the role of cholinergic network in lung cancer will pave the way to novel molecular tar- gets and drugs in this lethal malignancy. © 2018 Elsevier Inc. All rights reserved. Contents Listofabbreviationsused3ormoretimes................................... 223 1. Introduction..............................................223 2. Acetylcholine(ACh)..........................................225 3. CholineTransporters(ChTs).......................................229 227 4. MuscarinicReceptors..........................................232 229 5. NicotinicReceptors(nAChRs)......................................235 229 6. Lymphocyte Antigen 6 (Ly-6) Proteins as allosteric modulators of Nicotinic Acetylcholine Receptor (nAChR): Lynx and Se- cretedly6/urokinase-typeplasminogenactivatorreceptorrelatedpeptide(SLURP)..............240 230 7. Cholinesterases(ChEs).........................................242 232 8. Conclusionsandfuturedirections....................................245 235 Acknowledgements.............................................247 240 References.................................................247 242 ⁎ Corresponding author at: Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Avenue, Huntington, WV 25755 E-mail address: [email protected] (P. Dasgupta). 1 These authors contributed equally to the work presented here and should therefore be regarded as equivalent authors. https://doi.org/10.1016/j.pharmthera.2018.10.002 0163-7258/© 2018 Elsevier Inc. All rights reserved. J.R. Friedman et al. / Pharmacology & Therapeutics 194 (2019) 222–254 223 List of abbreviations used 3 or more times α-NETA 2-(alpha-naphthoyl)ethyltrimethylammonium ACh Acetylcholine AChE Acetylcholinesterase or acetylcholineacetylhydrolase AFDX-116 {11-[[2-[(Diethylamino)methyl]-1-piperidinyl] acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4] benzodiazepin-6-one} BAC Bronchioalveolar carcinoma BChE Butyrylcholinesterase or acylcholine acylhydrolase BCX β-Cryptoxanthin BECs Bronchial epithelial cells BrdU Bromodeoxyuridine CarAT Carnitine acetyltransferase ChAT Choline acetyltransferase ChE Cholinesterase ChT Choline transporter ChT1/SLC5A7 High affinity choline transporter 1 COPD Chronic obstructive pulmonary disease CTL1-5 Choline transporter-like proteins 1-5 EGF Epidermal growth factor EGFR Epidermal growth factor receptor EMT Epithelial-to-mesenchymal transition ERK Extracellular related kinase H69 NCI-H69 H82 NCI-H82 HC-3 Hemicholinium-3 HMEC-L Human microvascular endothelial cells of the lung hsa-miR-132 microRNA-132 HUVECs Human umbilical cord microvascular endothelial cells Fig. 1. The spectrum of malignancies which comprise lung cancers. Small cell lung cancer IGF-2 Insulin growth factor-2 (SCLC; also called oat cell carcinoma) comprises of morphologically tiny cells. All other lung LAC Lung adenocarcinoma malignancies are put into a heterogenous group termed non-small cell lung cancer LCC Large cell carcinoma (NSCLC). Out of NSCLCs lung adenocarcinoma (LAC) accounts for majority of cases Ly-6 Lymphocyte antigen 6 followed by squamous cell carcinoma of the lung (SCC-L). Large cell carcinoma (LCC) and M1R to M5R Muscarinic Receptor 1-5 neuroendocrine carcinoid tumors of the lung are relatively less common than LAC and SCC-Ls. MAPK Mitogen activated protein kinase MMP Matrix metalloproteinases MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) carcinoma (BAC). According to the new WHO classification, BAC is now nAChR Nicotinic acetylcholine receptors included in the category of LAC. SCC-Ls usually develop in the tissues com- NEP Norepinephrine prising the air passages of the lung. Due to cigarette smoking, SCC-L is NHBE Normal bronchial epithelial cells NNK Nicotine-derived nitrosamine ketone, often preceded by a columnar-to-squamous metaplasia, which lasts for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone years before developing into an in situ carcinoma (Soldera & Leighl, NSCLC Non-small cell lung cancer 2017). Traditionally SCC-L has also been called as epidermoid carcinoma, OAT Organic anion transporter arising in central large bronchi which join the trachea to the lung. OCT Organic cation transporter Epidemiological data indicates that cigarette smoking bears a strong OCT1-3/SLC22A1-2 Polyspecific organic transporters OCTN1 and OCTN2 Carnitine/cation transporters etiological association with the development of all histological types of PI-3 kinase Phosphoinositol-3 kinase lung cancer (Furrukh, 2013). The association between smoking and poly-APS 3-alkyl pyridium polymers lung cancer is stronger with SCLC and SCC-L than with other forms of SAEC Primary small airway epithelial cells lung cancer (Khuder, 2001; Khuder & Mutgi, 2001). Nicotine is the ad- SCC-L Squamous cell carcinoma of the lung SCLC Small cell lung cancer dictive component of cigarette smoke. Several lines of evidence show shRNA Short-hairpin RNA that nicotine accelerates the growth, angiogenesis and metastasis of siRNA Small interfering RNA lung cancers (Dasgupta & Chellappan, 2006; Dasgupta et al., 2011; SLURP Secreted ly6/urokinase-type plasminogen activator receptor Dasgupta et al., 2009; Davis et al., 2009; C Heeschen et al., 2001; C. related peptide Heeschen, Weis, Aicher, Dimmler, & Cooke, 2002; Singh, Pillai, & SNPs Single nucleotide polymorphisms STAT3 Signal transducer and activator of transcription 3 Chellappan, 2011; Spindel, 2016; Zoli, Pucci, Vilella, & Gotti, 2018). Fur- TGF-β1 Transforming growth factor β1 thermore, nicotine protects lung cancers from cell death induced by VAChT Vesicular acetylcholine transporter chemotherapeutic drugs, oxidative stress and ionizing radiation VEGF Vascular endothelial growth factor (Dasgupta, Kinkade, et al., 2006; Egleton, Brown, & Dasgupta, 2008; Jin, Gao, Flagg, & Deng, 2004; Mai, May, Gao, Jin, & Deng, 2003; 1. Introduction Maneckjee & Minna, 1994; West, Linnoila, Belinsky, Harris, & Dennis, 2004; Zeidler, Albermann, & Lang, 2007). The growth-stimulatory ef- Lung cancer is comprised of a spectrum of malignancies. Small cell fects of nicotine are mediated via nicotinic acetylcholine receptors lung cancer (SCLC; formerly known as oat cell carcinoma) is a neuroendo- (nAChRs) on lung tumors and the surrounding stroma (S. Wang & Hu, crine carcinoma and accounts for about 15-20% of all lung cancer cases 2018; Zhao, 2016; Zoli et al., 2018). The endogenous ligand for nAChRs (Gazdar, Bunn, & Minna, 2017). All other forms of lung cancers are in- is the neurotransmitter acetylcholine (ACh; Kirkpatrick et al., 2001; cluded in a heterogeneous group called non-small cell lung cancer Kummer & Krasteva-Christ, 2014; Mucchietto, Crespi, Fasoli, Clementi, (NSCLC). NSCLC includes lung adenocarcinoma (LAC), squamous cell car- & Gotti, 2016; Niu & Lu, 2014; Saracino, Zorzetto, Inghilleri, Pozzi, & cinoma (SCC-L), large cell carcinoma (LCC) and neuroendocrine lung car- Stella, 2013). Genome-wide association studies (GWAS) identified a ge- cinoid tumors (Fig. 1; Doroshow & Herbst, 2018; Herbst, Morgensztern, & netic component of the association between tobacco components and Boshoff, 2018). LAC originates from the mucus secreting glands in the the development of lung cancer. Data collected from European popula- lungs (Meza, Meernik, Jeon, & Cote, 2015). A substantial number of early tions have discovered a locus in the long arm of chromosome 15 published reports involved
Recommended publications
  • Radiation Dosimetry of the Α4β2 Nicotinic Receptor Ligand (+)-[18F
    Kranz et al. EJNMMI Physics (2016) 3:25 EJNMMI Physics DOI 10.1186/s40658-016-0160-5 ORIGINAL RESEARCH Open Access Radiation dosimetry of the α4β2 nicotinic receptor ligand (+)-[18F]flubatine, comparing preclinical PET/MRI and PET/CT to first-in-human PET/CT results Mathias Kranz1†, Bernhard Sattler2†, Solveig Tiepolt2, Stephan Wilke2, Winnie Deuther-Conrad1, Cornelius K. Donat1,4, Steffen Fischer1, Marianne Patt2, Andreas Schildan2, Jörg Patt2, René Smits3, Alexander Hoepping3, Jörg Steinbach1, Osama Sabri2† and Peter Brust1*† * Correspondence: [email protected] †Equal contributors Abstract 1 Institute of Radiopharmaceutical 18 Cancer Research, Research Site Background: Both enantiomers of [ F]flubatine are new radioligands for neuroimaging Leipzig, Helmholtz-Zentrum of α4β2 nicotinic acetylcholine receptors with positron emission tomography (PET) Dresden-Rossendorf, exhibiting promising pharmacokinetics which makes them attractive for different clinical Permoserstraße 15, 04318 Leipzig, 18 Germany questions. In a previous preclinical study, the main advantage of (+)-[ F]flubatine 18 Full list of author information is compared to (−)-[ F]flubatine was its higher binding affinity suggesting that available at the end of the article 18 (+)-[ F]flubatine might be able to detect also slight reductions of α4β2 nAChRs and could be more sensitive than (−)-[18F]flubatine in early stages of Alzheimer’s disease. To support the clinical translation, we investigated a fully image-based internal dosimetry approach for (+)-[18F]flubatine, comparing mouse data collected on a preclinical PET/MRI system to piglet and first-in-human data acquired on a clinical PET/CT system. Time-activity curves (TACs) were obtained from the three species, the animal data extrapolated to human scale, exponentially fitted and the organ doses (OD), and effective dose (ED) calculated with OLINDA.
    [Show full text]
  • Role of Citicoline in the Management of Traumatic Brain Injury
    pharmaceuticals Review Role of Citicoline in the Management of Traumatic Brain Injury Julio J. Secades Medical Department, Ferrer, 08029 Barcelona, Spain; [email protected] Abstract: Head injury is among the most devastating types of injury, specifically called Traumatic Brain Injury (TBI). There is a need to diminish the morbidity related with TBI and to improve the outcome of patients suffering TBI. Among the improvements in the treatment of TBI, neuroprotection is one of the upcoming improvements. Citicoline has been used in the management of brain ischemia related disorders, such as TBI. Citicoline has biochemical, pharmacological, and pharmacokinetic characteristics that make it a potentially useful neuroprotective drug for the management of TBI. A short review of these characteristics is included in this paper. Moreover, a narrative review of almost all the published or communicated studies performed with this drug in the management of patients with head injury is included. Based on the results obtained in these clinical studies, it is possible to conclude that citicoline is able to accelerate the recovery of consciousness and to improve the outcome of this kind of patient, with an excellent safety profile. Thus, citicoline could have a potential role in the management of TBI. Keywords: CDP-choline; citicoline; pharmacological neuroprotection; brain ischemia; traumatic brain injury; head injury Citation: Secades, J.J. Role of 1. Introduction Citicoline in the Management of Traumatic brain injury (TBI) is among the most devastating types of injury and can Traumatic Brain Injury. result in a different profile of neurological and cognitive deficits, and even death in the most Pharmaceuticals 2021, 14, 410.
    [Show full text]
  • Submaxillary Gland and the A2a- and A2b-Adrenoceptor Subtypes 1Anton D
    Br. J. Pharmacol. (1989), 98, 890-897 Differences between the cx2-adrenoceptor in rat submaxillary gland and the a2A- and a2B-adrenoceptor subtypes 1Anton D. Michel, Dana N. Lodry & Roger L. Whiting Institute of Pharmacology, Syntex Research, 3401 Hillview Avenue, Palo Alto, CA, 94303, U.S.A. 1 The a2-adrenoceptors of rat submaxillary gland, labelled with [3H]-rauwolscine, were character- ized by use of a range of subtype selective ligands and were compared to rabbit spleen a2A-adrenoceptors and rat kidney a2B-adrenoceptors. 2 In rat submaxillary gland, [3H]-rauwolscine labelled an apparently homogeneous population of binding sites with relatively low affinity (Kd= 11.65 nM) compared to the affinity in rat kidney (Kd = 2.18 nM) and rabbit spleen (Kd = 4.64 nM). 3 In competition studies using 16 ligands the a2-adrenoceptors in rat submaxillary gland appeared to differ from both the x2A-adrenoceptor of rabbit spleen (r = 0.62) and also the a2B-adrenoceptor of rat kidney (r = 0.28). 4 The affinity data obtained with benoxathian, imiloxan and WB 4101 indicated the presence of an a2B-adrenoceptor in rat submaxillary gland. However, data for chlorpromazine, oxymetazoline, spiroxatrine and xylometazoline indicated that submaxillary gland a2-adrenoceptors were of the a2A subtype. The affinity estimate for prazosin in rat submaxillary gland was intermediate between its affinity at the ae2A- and a2B-adrenoceptors while affinity estimates for idazoxan and phentolamine in rat submaxillary gland were greater than those obtained at either the c2A- or x2B-adrenoceptor. 5 These data indicate that rat submaxillary gland a2-adrenoceptors differ from the CX2A- and a2B-adrenoceptors found in rabbit spleen and rat kidney, respectively.
    [Show full text]
  • The Role of Acetylcholine in Cocaine Addiction
    Neuropsychopharmacology (2008) 33, 1779–1797 & 2008 Nature Publishing Group All rights reserved 0893-133X/08 $30.00 www.neuropsychopharmacology.org Perspective The Role of Acetylcholine in Cocaine Addiction ,1 1,2 Mark J Williams* and Bryon Adinoff 1Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; 2Mental Health Service, VA North Texas Health Care System, Dallas, TX, USA Central nervous system cholinergic neurons arise from several discrete sources, project to multiple brain regions, and exert specific effects on reward, learning, and memory. These processes are critical for the development and persistence of addictive disorders. Although other neurotransmitters, including dopamine, glutamate, and serotonin, have been the primary focus of drug research to date, a growing preclinical literature reveals a critical role of acetylcholine (ACh) in the experience and progression of drug use. This review will present and integrate the findings regarding the role of ACh in drug dependence, with a primary focus on cocaine and the muscarinic ACh system. Mesostriatal ACh appears to mediate reinforcement through its effect on reward, satiation, and aversion, and chronic cocaine administration produces neuroadaptive changes in the striatum. ACh is further involved in the acquisition of conditional associations that underlie cocaine self-administration and context-dependent sensitization, the acquisition of associations in conditioned learning, and drug procurement through its effects on arousal and attention. Long-term cocaine use may induce neuronal alterations in the brain that affect the ACh system and impair executive function, possibly contributing to the disruptions in decision making that characterize this population. These primarily preclinical studies suggest that ACh exerts a myriad of effects on the addictive process and that persistent changes to the ACh system following chronic drug use may exacerbate the risk of relapse during recovery.
    [Show full text]
  • Viewed the Existence of Multiple Muscarinic CNS Penetration May Occur When the Blood-Brain Barrier Receptors in the Mammalian Myocardium and Have Is Compromised
    BMC Pharmacology BioMed Central Research article Open Access In vivo antimuscarinic actions of the third generation antihistaminergic agent, desloratadine G Howell III†1, L West†1, C Jenkins2, B Lineberry1, D Yokum1 and R Rockhold*1 Address: 1Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA and 2Tougaloo College, Tougaloo, MS, USA Email: G Howell - [email protected]; L West - [email protected]; C Jenkins - [email protected]; B Lineberry - [email protected]; D Yokum - [email protected]; R Rockhold* - [email protected] * Corresponding author †Equal contributors Published: 18 August 2005 Received: 06 October 2004 Accepted: 18 August 2005 BMC Pharmacology 2005, 5:13 doi:10.1186/1471-2210-5-13 This article is available from: http://www.biomedcentral.com/1471-2210/5/13 © 2005 Howell et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Muscarinic receptor mediated adverse effects, such as sedation and xerostomia, significantly hinder the therapeutic usefulness of first generation antihistamines. Therefore, second and third generation antihistamines which effectively antagonize the H1 receptor without significant affinity for muscarinic receptors have been developed. However, both in vitro and in vivo experimentation indicates that the third generation antihistamine, desloratadine, antagonizes muscarinic receptors. To fully examine the in vivo antimuscarinic efficacy of desloratadine, two murine and two rat models were utilized. The murine models sought to determine the efficacy of desloratadine to antagonize muscarinic agonist induced salivation, lacrimation, and tremor.
    [Show full text]
  • Actions of Methoctramine, a Muscarinic M2 Receptor Antagonist, on Muscarinic and Nicotinic Cholinoceptors in Guinea-Pig Airways in Vivo and in Vitro N
    Br. J. Pharmacol. (1992), 105, 107-112 k..; Macmillan Press Ltd, 1992 Actions of methoctramine, a muscarinic M2 receptor antagonist, on muscarinic and nicotinic cholinoceptors in guinea-pig airways in vivo and in vitro N. Watson, *P.J. Barnes & 'J. Maclagan Department of Academic Pharmacology, Royal Free Hospital School of Medicine, Rowland Hill Street, London, NW3, and *Department of Thoracic Medicine, National Heart and Lung Institute, Dovehouse Street, London, SW3 1 The effects of the muscarinic M2 receptor antagonist methoctramine, on contractions of airway smooth muscle induced by cholinergic nerve stimulation and by exogenously applied acetylcholine (ACh), have been investigated in vivo and in vitro in guinea-pigs. 2 Stimulation of the preganglionic cervical vagus nerve in anaesthetized guinea-pigs, caused broncho- constriction and bradycardia which were mimicked by an intravenous dose of ACh. The muscarinic M2 antagonist, methoctramine (7-240nmolkg-1), inhibited the bradycardia induced by both vagal stimu- lation and ACh (ED50: 38 + 5 and 38 + 9nmolkg-', respectively). In this dose-range, methoctramine facilitated vagally-induced bronchoconstriction (ED50: 58 + 5nmolkg-l), despite some inhibition of ACh-induced bronchoconstriction (ED50: 81 + llnmolkg-1). The inhibition of ACh-induced broncho- constriction and hypotension was dose-dependent, but was not statistically significant until doses of 120 nmol kg'- and 240 nmol kg1- respectively. 3 In the guinea-pig isolated, innervated tracheal tube preparation, methoctramine (0.01-1 uM) caused facilitation of contractions induced by both pre- and postganglionic nerve stimulation, whereas contrac- tions induced by exogenously applied ACh were unaffected. Higher concentrations of methoctramine (> 10 M), reduced responses to both nerve stimulation and exogenous ACh, indicating blockade of post- junctional muscarinic M3 receptors.
    [Show full text]
  • Alpha-GPC Introduced 2003
    Product Information Sheet – January 2015 Alpha-GPC Introduced 2003 What Is It? Are There Any Potential Drug Interactions? l-Alpha-glycerophophatidylcholine (GPC-choline, alpha-GPC) is a water- At this time, there are no known adverse reactions when taken in soluble phospholipid and neurotransmitter precursor naturally conjunction with medications. occurring in the body. Unlike most membrane phospholipids, alpha- GPC is water-soluble because it lacks the hydrophobic tail groups. Alpha-GPC Uses For Alpha-GPC each Caplique® Capsule contains v 0 • Memory And Cognitive Health: Alpha-GPC passes through the alpha-GPC (L-alpha-glycerophosphatidylcholine) ........................ 200 mg blood brain barrier providing a source of choline for acetylcholine other ingredients: glycerin, water, vegetarian Caplique® Capsule (cellulose, water) and phosphatidylcholine biosynthesis. By supporting cell membrane fluidity and integrity, phosphatidylcholine enhances Contains soy healthy neurotransmitter function and signal transduction. 6 Caplique® Capsules daily, in divided doses, with or Alpha-GPC may support healthy phospholipid turnover in the between meals. brain, helping to counteract age-related cellular breakdown of membrane phospholipids. Acetylcholine is a key neurotransmitter Caplique® Capsule is a registered trademark used by Pure Encapsulations in the brain supporting memory and learning. Optimal under license. phospholipid and acetylcholine levels support cognitive, mental Each Caplique® Capsule is preserved with a nitrogen bubble, which may give the and cerebrovascular health.* appearance of the capsule not being full. Contents may appear cloudy or thick and • Growth Hormone Support: Alpha-GPC has the ability to may settle or separate. potentiate growth hormone releasing hormone (GHRH), thereby supporting healthy growth hormone (GH) levels. The mechanism of support appears to involve increased cholinergic tone.* What Is The Source? Alpha-GPC is derived from highly purified soy lecithin.
    [Show full text]
  • Imaging Functional Brain Connectivity
    Imaging Functional Brain Connectivity: pharmacological modulation, aging & Alzheimer’s disease Bernadet L. Klaassens 1 Table of contents Chapter 1 3 Introduction and aims Part I: Pharmacological challenge effects on brain connectivity in healthy young adults Chapter 2 10 Single-dose serotonergic stimulation shows widespread effects on functional brain connectivity (NeuroImage 2015 Nov; 122: 440-450) Chapter 3 31 Time related effects on functional brain connectivity after serotonergic and cholinergic neuromodulation (Human Brain Mapping 2017 Jan; 38 (1): 308-325) Part II: Functional brain connectivity and neuromodulation in older age and Alzheimer’s disease Chapter 4 60 Diminished posterior precuneus connectivity with the default mode network differentiates normal aging from Alzheimer’s disease (Frontiers in Aging Neuroscience 2017 Apr; 9: 1-13) Chapter 5 84 Serotonergic and cholinergic modulation of functional brain connectivity: a comparison between young and older adults ( NeuroImage 2018 Apr; 169: 312-322) Chapter 6 108 Imaging cholinergic and serotonergic neurotransmitter networks in Alzheimer’s disease in vivo (Submission at Alzheimer’s and Dementia) Chapter 7 131 Summary and general discussion 2 Chapter 1 Introduction and aims Brain function relies heavily on neural communication and connections. Better understanding of the mechanisms that are related to maintenance or deterioration of brain function requires a technique that takes into account the elaborate nature of the central nervous system (CNS). A useful method for that purpose is to assess the brain’s functional connectivity. Brain regions are functionally connected to each other when they exhibit correlating activation patterns (Friston et al., 1993), illustrating the complex organization of neural networks. Interactions between regions and within networks largely depend on chemical transmission between neurons.
    [Show full text]
  • The Effect of Oxime Reactivators on the Muscarinic Receptors
    Oxime reactivators and their in vivo and in vitro effects on nicotinic receptors Ondrej Soukup1,6, Jan Krusek4, Martina Kaniakova4, Uday Killi. Kumar3, Murat Oz5, Daniel Jun1,2, Josef Fusek1 and Kamil Kuca1,2 and Gunnar Tobin3 1Department of Toxicology and 2Center of Advanced Studies, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic 3Institute of Neuroscience and Physiology, Department of Pharmacology, the Sahlgrenska Academy at University of Gothenburg, Sweden 4Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic 5Department of Pharmacology and Therapeutics, Faculty of Medicine, United Arab Emirates University, Al Ain, United Arab Emirates 6University Hospital Hradec Kralove, Czech Republic Corresponding author: Ondrej Soukup ****************************************** Department of Toxicology Faculty of Military Health Sciences University of Defence Trebesska 1575 50001; Hradec Kralove Czech Republic Tel.: +420 973 255 151 Fax: +420 495 518 094 E-mail: [email protected] Summary: Current treatment of organophosphorus poisoning, resulting in overstimulation and desensitization of muscarinic and nicotinic receptors by acetylcholine (ACh), consists of the administration of atropine and oxime reactivators. However, no versatile oxime reactivator has been developed yet and some mortality still remains after application of standard atropine treatment, probably due to its lack of antinicotinic action. In our study, we focused on the interesting non-acetylcholinesterase property of oximes, i.e. antinicotinic effect of reactivators. Two standard reactivators (HI-6, obidoxime) and two new compounds (K027 and K203) were chosen and in vitro (patch clamp) and in vivo (nerve-evoked muscle contraction) testings were applied. Both examinations showed antinicotinic effects of the reactivators.
    [Show full text]
  • (19) 11 Patent Number: 5668117
    US005668117A United States Patent (19) 11 Patent Number: 5,668,117 Shapiro 45 Date of Patent: Sep. 16, 1997 54 METHODS OF TREATING NEUROLOGICAL 4,673,669 6/1987 Yoshikumi et al. ...................... 514.f42 DSEASES AND ETOLOGICALLY RELATED 4,757,054 7/1988 Yoshikumi et al. ... 514742 SYMPTOMOLOGY USING CARBONYL 4,771,075 9/1988 Cavazza ............... ... 514/556 TRAPPNGAGENTS IN COMBINATION 4,801,581 1/1989 Yoshikumi et al. ...................... 514.f42 WITH PREVIOUSLY KNOWN 4,874,750 10/1989 Yoshikumi et al. ...................... 514/42 MEDICAMENTS 4,956,391 9/1990 Sapse .................. 514,810 4,957,906 9/1990 Yoshikumi et al. ...................... 514/25 tor: H . Shani 4,983,586 1/1991 Bodor....................................... 514/58 76 Inventor ES pr.) Price Ave 5,015,570 5/1991 Scangos et al. ............................ 435/6 5,037,851 8/1991 Cavazza ........... ... 514,912 5,252,489 10/1993 Macri ........................................ 436/87 21 Appl. No.: 62,201 5297,562 3/1994 Potter. ... 128/898 al 5,324,667 6/1994 Macri. ... 436/87 22 Filed: Jun. 29, 1993 5,324,668 6/1994 Macri ....................................... 436/87 Related U.S. Application Data I63 Continuation-in-part of set No. 26.617, Feb. 23, 1993, Primary Eminer ohn Kight abandoned, which is a continuation of Ser. No. 660.561, Assistant Examiner-Louise Leary Feb. 22, 1991, abandoned. Attorney, Agent, or Firm-D. J. Perrella (51) Int. Cl. ................... A01N 43/04; A01N 61/00; 57 ABSTRACT C07H1/00; C08B 37/08 52 U.S. C. ................................ 514/55; 514/54; 514/23; Therapeutic compositions comprising an effective amount 514/1: 514/811; 514/866; 514/878; 514/879; of at least one carbonyl trapping agent alone or in combi 514/903; 514/912; 436/518; 436/74; 536/1.11; nation with a therapeutically effective of a co-agent or 536/20 medicament are disclosed.
    [Show full text]
  • Présentation Powerpoint
    Table S1- List of metabolites analyzed with the AbsoluteIDQ p180 kit Metabolite Short name Biochemical Name Metabolite Short name Biochemical Name Class Class C0 L-Carnitine Ala Alanine C10 Decanoyl-L-carnitine Arg Arginine C10:1 Decenoyl-L-carnitine Asn Asparagine C10:2 Decadienyl-L-carnitine Asp Aspartate C12 Dodecanoyl-L-carnitine Cit Citrulline C12:1 Dodecenoyl-L-carnitine Gln Glutamine C12-DC Dodecanedioyl-L-carnitine Glu Glutamate C14 Tetradecanoyl-L-carnitine Gly Glycine C14:1 Tetradecenoyl-L-carnitine His Histidine C14:1-OH Hydroxytetradecenoyl-L-carnitine acids Ile Isoleucine C14:2 Tetradecadienyl-L-carnitine Leu Leucine C14:2-OH Hydroxytetradecadienyl-L-carnitine Lys Lysine C16 Hexadecanoyl-L-carnitine C16:1 Hexadecenoyl-L-carnitine Met Methionine C16:1-OH Hydroxyhexadecenoyl-L-carnitine Orn Ornithine C16:2 Hexadecadienyl-L-carnitine Amino Phe Phenylalanine C16:2-OH Hydroxyhexadecadienyl-L-carnitine Pro Proline Ser Serine carnitines C16-OH Hydroxyhexadecanoyl-L-carnitine - C18 Octadecanoyl-L-carnitine Thr Threonine L - C18:1 Octadecenoyl-L-carnitine Trp Tryptophan C18:1-OH Hydroxyoctadecenoyl-L-carnitine Tyr Tyrosine C18:2 Octadecadienyl-L-carnitine Val Valine acyl C2 Acetyl-L-carnitine Ac-Orn Acetylornithine C3 Propionyl-L-carnitine ADMA Asymmetric dimethylarginine & C3:1 Propenyl-L-carnitine SDMA Symmetric dimethylarginine C3-DC / C4-OH Malonyl-L-carnitine / Hydroxybutyryl-L- alpha-AAA alpha-Aminoadipic acid carnitine Carnosine Carnosine C3-DC-M / C5-OH Methylmalonyl-L-carnitine / Creatinine Creatinine Hydroxyvaleryl-L-carnitine
    [Show full text]
  • Spray-Dried Bioadhesive Formulations for Pulmonary Delivery
    SPRAY-DRIED BIOADHESIVE FORMULATIONS FOR PULMONARY DELIVERY BY HUNER KAMAL OMER A THESIS SUBMITTED IN PARTIAL FULFILMENT FOR THE REQUIRMENTS OF THE DEGREE OF DOCTOR OF PHILOSOPHY AT THE UNIVERSITY OF CENTRAL LANCASHIRE July/2014 ABSTRACT This study describes developments and in vitro characterisation of lipid microparticles prepared using spray-drying for drug delivery to the lung via dry powder inhalers. Bioadhesive formulations such as prochitosome or chitosome powders have been introduced to overcome the drawbacks of liposome instability and potentially provide significant increase in the residence time of drug in the lung. Mannitol or lactose monohydrate (LMH) aqueous solutions were spray dried at inlet temperatures of 90, 130, 170 or 210ºC. Soy phosphatidylcholine and cholestrol (1:1 mole ratio) were used in all formulations. Cholesterol was added to increase vesicle membrane rigidity. Proliposomes containing salbutamol sulphate (SS) were prepared by incorporating various lipid:carrier (mannitol or LMH; 1:2, 1:4, 1:6, 1:8 and 1:10 w/w). Prochitosomes including SS or beclomethason dipropionate (BDP) were prepared by adding various chitosan glutamate:lipid ratios of 1:10, 2:10, 3:10 and 5:10 w/w. Chitosomes, including various cryoprotectants (mannitol, LMH, trehalose or sucrose), were prepared by including chitosan glutamate to liposomes generated from ethanol-based proliposomes in the ratio of 3:10 w/w chitosan to lipid. The spray-drying parameters for generation of dry powders were optimised by using an inlet temperature of 120ºC, outlet temperature of 73 ± 3°C, aspirator rate of 100%, suspension feed rate of 11%, and spray flow rate of 600 L/h using B-290 Buchi mini spray-dryer.
    [Show full text]