Muscarine Hyperpolarizes a Subpopulation of Neurons by Activating an M, Muscarinic Receptor in Rat Nucleus Raphe Magnus in Vitro

Total Page:16

File Type:pdf, Size:1020Kb

Muscarine Hyperpolarizes a Subpopulation of Neurons by Activating an M, Muscarinic Receptor in Rat Nucleus Raphe Magnus in Vitro The Journal of Neuroscience, March 1994, 74(3): 1332-l 338 Muscarine Hyperpolarizes a Subpopulation of Neurons by Activating an M, Muscarinic Receptor in Rat Nucleus Raphe Magnus in vitro 2. Z. Pan and J. T. Williams Vellum Institute, Oregon Health Sciences University, Portland, Oregon 97201 It has been shown previously that the muscarinic cholinergic ical studies (Bowker et al., 1983; Jones et al., 1986; Sherriff et system in the nucleus raphe magnus (NRM) is involved in al., 1991). The NRM receives cholinergic afferents originating the modulation of nociception. In this study, we examined from the cells in the pedunculopontine tegmental nucleus (Rye the direct actions of muscarine on the NRM neurons in a et al., 1988). Behavioral studies have shown that local appli- slice preparation. Muscarine (I-30 PM) produced a dose- cations of both muscarinic receptor agonists and antagonists dependent hyperpolarization in a subpopulation of the NRM into the NRM causeantinociception (Brodie and Proudfit, 1986; cells that contain 5-hydroxytryptamine (5-HT). In voltage Iwamoto, 1991). In previous in vivo studies, iontophoretic ap- clamp, the muscarine-induced outward current reversed po- plication of ACh has been reported to induce an inhibition or larity at the potassium equilibrium potential and was char- excitation in the spontaneousactivity of different groups of the acterized by strong inward rectification. The reversal poten- NRM cells (Behbehani, 1982; Wessendorfand Anderson, 1983; tial was dependent on external potassium concentration, Willcockson et al., 1983; Hentall et al., 1993). Neither the cel- suggesting that the hyperpolarization induced by muscarine lular mechanismunderlying the actionsof thesecholinergic agents was mediated through an increase in an inwardly rectifying on NRM neurons nor the muscarinic receptor subtypes that potassium conductance. 5-HT also hyperpolarized these cells mediate the cholinergic actions is known. by increasing the same inwardly rectifying potassium con- The actions of ACh acting at muscarinic receptors in the CNS ductance. The concentration-response curve for muscarine include a depolarization resulting from a reduction in a potas- (EC,, = 2.7 @I) was shifted in a parallel manner to the right sium conductance (Brown and Adams, 1980; Madison et al., by increasing concentrations of pirenzepine (300 nM to 3 FM) 1987; Uchimura and North, 1990) and a hyperpolarization as and methoctramine (50-200 nM). Schild analysis revealed a result of an increase in a potassium conductance (Egan and that the equilibrium dissociation constant (KJ was 230 nM North, 1986; McCormick and Prince, 1987; McCormick and for pirenzepine and was estimated to be less than 30 nM for Pape, 1988; Gerber et al., 1991). Muscarinic cholinergic recep- methoctramine. These results indicate that the muscarinic tors consist of a heterogeneousfamily of five different subtypes receptor mediating the muscarine activation of the potas- (ml-m5) that have been cloned from rats (Kubo et al., 1986; sium conductance in these cells is of the M, subtype. The Bonner et al., 1987, 1988). The ml-m3 receptors correspond present results suggest an inhibitory cholinergic postsyn- most closely to the pharmacologically defined M,-M, receptors aptic modulation on the activity of a subpopulation of sero- (Kubo et al., 1986; Brann et al., 1988; Maeda et al., 1988; tonergic neurons that are involved in antinociceptive function Buckley et al., 1989). The ml, m3, and m5 receptors are func- in the NRM. tionally coupled primarily to the stimulation of inositol phos- [Key words: muscarine, M, moscarinic receptor, inwardly phate metabolism through a pertussistoxin-insensitive G-pro- rectifying potassium conductance, pirenzepine, methoctra- tein, while the m2 and m4 receptors are associatedmainly with mine, nucleus raphe magnus] an inhibition of CAMP production through a pertussistoxin- sensitive G-protein (Bonner et al., 1988; Fukuda et al., 1988; Neurons in the nucleus raphe magnus (NRM) are involved in Peralta et al., 1988; Wess et al., 1990; Lai et al., 1991). In rat the descendingmodulation of nociceptive processingfrom su- brainstem, the presenceof all five receptor subtypes or their praspinal levels (Basbaumand Fields, 1984).Functionally, there mRNAs has been reported (Buckley et al., 1988; Ehlert and are different groups of putative pain-modulating neurons in the Trait, 1990; Levey et al., 1991; Li et al., 199 1; Zubieta and Frey, NRM and modulation ofthe activity in theseneurons by opioids 1993). and other neurotransmitters results in a significant change in In this study, we examined the direct actions of muscarine pain threshold (Fields et al., 1983, 1991). Among those neu- on the neurons in the NRM in a slice preparation and then rotransmitters is ACh. Cholinergic (AChE- or ChAT-positive) identified the ionic mechanism and the receptor subtype in- cells have been identified within the NRM in previous anatom- volved in the muscarine-inducedhyperpolarization observed in a subpopulation of neurons in the NRM. Preliminary results of this study have been presented as an Received Mar. 31, 1993; revised Aug. 4, 1993; accepted Aug. 19, 1993. abstract (Pan and Williams, 1991). We thank Drs. D. Cameron and M. Kelly for comments on the manuscript. This work was suooorted bv NIH Grants DA04523 and DA00 14 I. Materials and Methods Correspondence should be addressed to J. T. Williams, Vollum Institute, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR Intracellularrecordings were made from NRM cellsin brain slicesfrom 97201. adult Wistar rats. The methodsemployed were similar to thosepub- Copyright 0 1994 Society for Neuroscience 0270-6474/94/141332-07$05.00/O lishedpreviously (Pan et al., 1990).Briefly, brain slices(300 pm thick) The Journal of Neuroscience, March 1994, 74(3) 1333 A Muscarine 1 uM Figure 1. Hyperpolarization induced 3NJ by muscarinic receptor agonists in neu- rons in the NRM. A, Membrane poten- tial recordings of an NRM cell that was 10 KM hyperpolarized by increasing concen- trations of muscarine. B, Dose-re- sponse curves for the hyperpolarization induced by muscarine (EC,, = 2.7 PM, n = 8) and by carbachol (EC,, = 3.8 30 pM PM, n = 7). Data points are expressed ----------- as a percentage of the maximum hy- -6 -5 -4 -3 perpolarization by 30 WM muscarine (9.8 - 15 mV Log [muscarine] (M) + 1.1 mV) and by 30 PM carbachol(9.4 + I. 1 mV), respectively. Error bars are 2 min SE of the mean. were cut in a vibratome in cold (4°C) physiological saline. Two or three and a maximum hyperpolarization of 9.8 +- 1.1 mV (n = 8) at coronal slices were taken from the level of the facial nerve in each brain. 30 FM. The EC,, was 2.7 FM (Fig. 1B). Carbachol, a muscarinic A single slice was submerged in a tissue bath through which flowed physiological saline (1.5 ml/min) at 37°C. The content of physiological receptor agonist, also hyperpolarized these cells in a dose-de- saline solution was (in mM) NaCl, 126; KCl, 2.5; NaH,PO,, 1.2; MgCl,, pendent manner over a similar concentration range (l-30 PM; 1.2; CaCl, 2.4; glucose, 11; NaHCO,, 25; gassed with 95% O,, 5% CO, Fig. lB), inducing a maximum hyperpolarization of 9.4 + 1.1 at 37°C. mV (n = 7) at 30 FM and having an EC,, of 3.8 WM. The NRM was recognized in the slice as a triangular area in the In 2 1 of 148 cells (14%), muscarine (10 FM) induced a de- midline just above the pyramidal tracts. Neurons were penetrated with polarization of 4.8 * 0.6 mV (n = 21) which often resulted in glass microelectrodes filled with potassium chloride (2 M) having resis- tances of 40-70 MQ. Membrane currents were recorded with a single- the firing of repetitive action potentials. The muscarine-induced electrode voltage-clamp amplifier (Axoclamp 2A) using switching fre- depolarization was observed almost exclusively in secondary quencies between 3 and 6 kHz. The settling time of the clamp following cells. a 10 mV step was typically 3-5 msec. Steady state current-voltage (I- v) plots were constructed directly on an x,y-plotter using a slow de- polarizing ramp potential. The speed of the ramp (1 mV/sec) was suf- Muscarine activated an inwardly rectifying potassium ficiently slow to give the same current as that measured at the termi- conductance nation of a 2 set voltage step. In voltage clamp, muscarine produced an outward current at Drugs were applied by superfusion. The following drugs and salts were used: muscarine (Sigma), carbachol (Sigma), pirenzepine (PZP; the resting membrane potential associatedwith an increasein Research Biochemical Inc.), methoctramine (Research Biochemicals membrane conductance (n = 24; Fig. 2A). At more negative Inc.), 5-hydroxytryptamine (5-HT; Sigma), 5-carboxamidotryptamine potentials than the resting potential, the muscarine-inducedcur- (5-CT; Glaxo), BaClz (Sigma), tetrodotoxin (TTX; Sigma). Dose-re- rent declined in amplitude and reversed polarity. The averaged sponse data were fitted by logistic equation and the EC,, was then reversal potential of the muscarine-inducedcurrent was - 103 determined. Schild analysis was carried out by determining the dose ratios at the EC,, values in the absence and presence of the antagonist * 2 mV (n = 17) in normal concentration of external potassium (Schild, 1949). Numerical data are presented as means ? SE of the (2.5 mM). When the potassium concentration in the perfusing means and compared using an unpaired, two-tailed Student’s t test. solution was increased to 6.5 mM and 10.5 mM, the reversal potential was shifted to -78 f 2 mV (n = 11) and -66 f 2 Results mV (n = 7) respectively (Fig. 2B), giving a Nernst slope of In a previous study, two groups of cells in the NRM have been -59.5 (Fig. 2C). This suggesteda primary involvement of a described: primary and secondary (Pan et al., 1990). Primary potassium conductance.
Recommended publications
  • Submaxillary Gland and the A2a- and A2b-Adrenoceptor Subtypes 1Anton D
    Br. J. Pharmacol. (1989), 98, 890-897 Differences between the cx2-adrenoceptor in rat submaxillary gland and the a2A- and a2B-adrenoceptor subtypes 1Anton D. Michel, Dana N. Lodry & Roger L. Whiting Institute of Pharmacology, Syntex Research, 3401 Hillview Avenue, Palo Alto, CA, 94303, U.S.A. 1 The a2-adrenoceptors of rat submaxillary gland, labelled with [3H]-rauwolscine, were character- ized by use of a range of subtype selective ligands and were compared to rabbit spleen a2A-adrenoceptors and rat kidney a2B-adrenoceptors. 2 In rat submaxillary gland, [3H]-rauwolscine labelled an apparently homogeneous population of binding sites with relatively low affinity (Kd= 11.65 nM) compared to the affinity in rat kidney (Kd = 2.18 nM) and rabbit spleen (Kd = 4.64 nM). 3 In competition studies using 16 ligands the a2-adrenoceptors in rat submaxillary gland appeared to differ from both the x2A-adrenoceptor of rabbit spleen (r = 0.62) and also the a2B-adrenoceptor of rat kidney (r = 0.28). 4 The affinity data obtained with benoxathian, imiloxan and WB 4101 indicated the presence of an a2B-adrenoceptor in rat submaxillary gland. However, data for chlorpromazine, oxymetazoline, spiroxatrine and xylometazoline indicated that submaxillary gland a2-adrenoceptors were of the a2A subtype. The affinity estimate for prazosin in rat submaxillary gland was intermediate between its affinity at the ae2A- and a2B-adrenoceptors while affinity estimates for idazoxan and phentolamine in rat submaxillary gland were greater than those obtained at either the c2A- or x2B-adrenoceptor. 5 These data indicate that rat submaxillary gland a2-adrenoceptors differ from the CX2A- and a2B-adrenoceptors found in rabbit spleen and rat kidney, respectively.
    [Show full text]
  • The Role of Acetylcholine in Cocaine Addiction
    Neuropsychopharmacology (2008) 33, 1779–1797 & 2008 Nature Publishing Group All rights reserved 0893-133X/08 $30.00 www.neuropsychopharmacology.org Perspective The Role of Acetylcholine in Cocaine Addiction ,1 1,2 Mark J Williams* and Bryon Adinoff 1Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; 2Mental Health Service, VA North Texas Health Care System, Dallas, TX, USA Central nervous system cholinergic neurons arise from several discrete sources, project to multiple brain regions, and exert specific effects on reward, learning, and memory. These processes are critical for the development and persistence of addictive disorders. Although other neurotransmitters, including dopamine, glutamate, and serotonin, have been the primary focus of drug research to date, a growing preclinical literature reveals a critical role of acetylcholine (ACh) in the experience and progression of drug use. This review will present and integrate the findings regarding the role of ACh in drug dependence, with a primary focus on cocaine and the muscarinic ACh system. Mesostriatal ACh appears to mediate reinforcement through its effect on reward, satiation, and aversion, and chronic cocaine administration produces neuroadaptive changes in the striatum. ACh is further involved in the acquisition of conditional associations that underlie cocaine self-administration and context-dependent sensitization, the acquisition of associations in conditioned learning, and drug procurement through its effects on arousal and attention. Long-term cocaine use may induce neuronal alterations in the brain that affect the ACh system and impair executive function, possibly contributing to the disruptions in decision making that characterize this population. These primarily preclinical studies suggest that ACh exerts a myriad of effects on the addictive process and that persistent changes to the ACh system following chronic drug use may exacerbate the risk of relapse during recovery.
    [Show full text]
  • Muscarinic Acetylcholine Receptor
    mAChR Muscarinic acetylcholine receptor mAChRs (muscarinic acetylcholine receptors) are acetylcholine receptors that form G protein-receptor complexes in the cell membranes of certainneurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibersin the parasympathetic nervous system. mAChRs are named as such because they are more sensitive to muscarine than to nicotine. Their counterparts are nicotinic acetylcholine receptors (nAChRs), receptor ion channels that are also important in the autonomic nervous system. Many drugs and other substances (for example pilocarpineand scopolamine) manipulate these two distinct receptors by acting as selective agonists or antagonists. Acetylcholine (ACh) is a neurotransmitter found extensively in the brain and the autonomic ganglia. www.MedChemExpress.com 1 mAChR Inhibitors & Modulators (+)-Cevimeline hydrochloride hemihydrate (-)-Cevimeline hydrochloride hemihydrate Cat. No.: HY-76772A Cat. No.: HY-76772B Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic receptor agonist, is a candidate therapeutic drug for receptor agonist, is a candidate therapeutic drug for xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR The general pharmacol. properties of this drug on the The general pharmacol. properties of this drug on the gastrointestinal, urinary, and reproductive systems and other… gastrointestinal, urinary, and reproductive systems and other… Purity: >98% Purity: >98% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10mM x 1mL in DMSO, Size: 10mM x 1mL in DMSO, 1 mg, 5 mg 1 mg, 5 mg AC260584 Aclidinium Bromide Cat. No.: HY-100336 (LAS 34273; LAS-W 330) Cat.
    [Show full text]
  • Viewed the Existence of Multiple Muscarinic CNS Penetration May Occur When the Blood-Brain Barrier Receptors in the Mammalian Myocardium and Have Is Compromised
    BMC Pharmacology BioMed Central Research article Open Access In vivo antimuscarinic actions of the third generation antihistaminergic agent, desloratadine G Howell III†1, L West†1, C Jenkins2, B Lineberry1, D Yokum1 and R Rockhold*1 Address: 1Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA and 2Tougaloo College, Tougaloo, MS, USA Email: G Howell - [email protected]; L West - [email protected]; C Jenkins - [email protected]; B Lineberry - [email protected]; D Yokum - [email protected]; R Rockhold* - [email protected] * Corresponding author †Equal contributors Published: 18 August 2005 Received: 06 October 2004 Accepted: 18 August 2005 BMC Pharmacology 2005, 5:13 doi:10.1186/1471-2210-5-13 This article is available from: http://www.biomedcentral.com/1471-2210/5/13 © 2005 Howell et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Muscarinic receptor mediated adverse effects, such as sedation and xerostomia, significantly hinder the therapeutic usefulness of first generation antihistamines. Therefore, second and third generation antihistamines which effectively antagonize the H1 receptor without significant affinity for muscarinic receptors have been developed. However, both in vitro and in vivo experimentation indicates that the third generation antihistamine, desloratadine, antagonizes muscarinic receptors. To fully examine the in vivo antimuscarinic efficacy of desloratadine, two murine and two rat models were utilized. The murine models sought to determine the efficacy of desloratadine to antagonize muscarinic agonist induced salivation, lacrimation, and tremor.
    [Show full text]
  • Acetylcholine Signaling System in Progression of Lung Cancers
    Pharmacology & Therapeutics 194 (2019) 222–254 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Acetylcholine signaling system in progression of lung cancers Jamie R. Friedman a,1, Stephen D. Richbart a,1,JustinC.Merritta,KathleenC.Browna, Nicholas A. Nolan a, Austin T. Akers a, Jamie K. Lau b, Zachary R. Robateau a, Sarah L. Miles a,PiyaliDasguptaa,⁎ a Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755 b Biology Department, Center for the Sciences, Box 6931, Radford University, Radford, Virginia 24142 article info abstract Available online 3 October 2018 The neurotransmitter acetylcholine (ACh) acts as an autocrine growth factor for human lung cancer. Several lines of evidence show that lung cancer cells express all of the proteins required for the uptake of choline (choline Keywords: transporter 1, choline transporter-like proteins) synthesis of ACh (choline acetyltransferase, carnitine acetyl- Lung cancer transferase), transport of ACh (vesicular acetylcholine transport, OCTs, OCTNs) and degradation of ACh (acetyl- Acetylcholine cholinesterase, butyrylcholinesterase). The released ACh binds back to nicotinic (nAChRs) and muscarinic Cholinergic receptors on lung cancer cells to accelerate their proliferation, migration and invasion. Out of all components Proliferation of the cholinergic pathway, the nAChR-signaling has been studied the most intensely. The reason for this trend Invasion Anti-cancer drugs is due to genome-wide data studies showing that nicotinic receptor subtypes are involved in lung cancer risk, the relationship between cigarette smoke and lung cancer risk as well as the rising popularity of electronic ciga- rettes considered by many as a “safe” alternative to smoking.
    [Show full text]
  • Amanita Muscaria (Fly Agaric)
    J R Coll Physicians Edinb 2018; 48: 85–91 | doi: 10.4997/JRCPE.2018.119 PAPER Amanita muscaria (fly agaric): from a shamanistic hallucinogen to the search for acetylcholine HistoryMR Lee1, E Dukan2, I Milne3 & Humanities The mushroom Amanita muscaria (fly agaric) is widely distributed Correspondence to: throughout continental Europe and the UK. Its common name suggests MR Lee Abstract that it had been used to kill flies, until superseded by arsenic. The bioactive 112 Polwarth Terrace compounds occurring in the mushroom remained a mystery for long Merchiston periods of time, but eventually four hallucinogens were isolated from the Edinburgh EH11 1NN fungus: muscarine, muscimol, muscazone and ibotenic acid. UK The shamans of Eastern Siberia used the mushroom as an inebriant and a hallucinogen. In 1912, Henry Dale suggested that muscarine (or a closely related substance) was the transmitter at the parasympathetic nerve endings, where it would produce lacrimation, salivation, sweating, bronchoconstriction and increased intestinal motility. He and Otto Loewi eventually isolated the transmitter and showed that it was not muscarine but acetylcholine. The receptor is now known variously as cholinergic or muscarinic. From this basic knowledge, drugs such as pilocarpine (cholinergic) and ipratropium (anticholinergic) have been shown to be of value in glaucoma and diseases of the lungs, respectively. Keywords acetylcholine, atropine, choline, Dale, hyoscine, ipratropium, Loewi, muscarine, pilocarpine, physostigmine Declaration of interests No conflicts of interest declared Introduction recorded by the Swedish-American ethnologist Waldemar Jochelson, who lived with the tribes in the early part of the Amanita muscaria is probably the most easily recognised 20th century. His version of the tale reads as follows: mushroom in the British Isles with its scarlet cap spotted 1 with conical white fl eecy scales.
    [Show full text]
  • Actions of Methoctramine, a Muscarinic M2 Receptor Antagonist, on Muscarinic and Nicotinic Cholinoceptors in Guinea-Pig Airways in Vivo and in Vitro N
    Br. J. Pharmacol. (1992), 105, 107-112 k..; Macmillan Press Ltd, 1992 Actions of methoctramine, a muscarinic M2 receptor antagonist, on muscarinic and nicotinic cholinoceptors in guinea-pig airways in vivo and in vitro N. Watson, *P.J. Barnes & 'J. Maclagan Department of Academic Pharmacology, Royal Free Hospital School of Medicine, Rowland Hill Street, London, NW3, and *Department of Thoracic Medicine, National Heart and Lung Institute, Dovehouse Street, London, SW3 1 The effects of the muscarinic M2 receptor antagonist methoctramine, on contractions of airway smooth muscle induced by cholinergic nerve stimulation and by exogenously applied acetylcholine (ACh), have been investigated in vivo and in vitro in guinea-pigs. 2 Stimulation of the preganglionic cervical vagus nerve in anaesthetized guinea-pigs, caused broncho- constriction and bradycardia which were mimicked by an intravenous dose of ACh. The muscarinic M2 antagonist, methoctramine (7-240nmolkg-1), inhibited the bradycardia induced by both vagal stimu- lation and ACh (ED50: 38 + 5 and 38 + 9nmolkg-', respectively). In this dose-range, methoctramine facilitated vagally-induced bronchoconstriction (ED50: 58 + 5nmolkg-l), despite some inhibition of ACh-induced bronchoconstriction (ED50: 81 + llnmolkg-1). The inhibition of ACh-induced broncho- constriction and hypotension was dose-dependent, but was not statistically significant until doses of 120 nmol kg'- and 240 nmol kg1- respectively. 3 In the guinea-pig isolated, innervated tracheal tube preparation, methoctramine (0.01-1 uM) caused facilitation of contractions induced by both pre- and postganglionic nerve stimulation, whereas contrac- tions induced by exogenously applied ACh were unaffected. Higher concentrations of methoctramine (> 10 M), reduced responses to both nerve stimulation and exogenous ACh, indicating blockade of post- junctional muscarinic M3 receptors.
    [Show full text]
  • "GVS Assessment of Indacaterol/Glycopyrronium
    > Return address PO Box 320, 1110 AH Diemen National Health Care Institute Care II To the Minister of Medical Care and Sports Cardiovascular & Pulmonary PO Box 20350 Willem Dudokhof 1 2500 EJ Den Haag 1112 ZA Diemen PO Box 320 1110 AH Diemen www.zorginstituutnederland.nl [email protected] 2020037637 T +31 (0)20 797 85 55 Contact Dr T.H.L. Tran T +31 (0)6-12001412 Date 24 September 2020 Subject Enerzair® Breezhaler® (indacaterol/glycopyrronium/mometasone) Our reference 2020037637 Dear Ms van Ark, In your letter of 7 September 2020 (CIBG-20-0910), you asked Zorginstituut Nederland to assess whether the product indacaterol acetate/glycopyrronium/mometasone furoate (Enerzair® Breezhaler®) can be included in the Medicine Reimbursement System (GVS). Enerzair® Breezhaler® is a combination preparation with three active ingredients: indacaterol as acetate, a long-acting beta2-adrenergic agonist; glycopyrronium bromide, a long-acting muscarine receptor agonist; and mometasone furoate, a synthetic corticosteroid. Enerzair® Breezhaler® is registered for as a maintenance treatment of asthma in adult patients not adequately controlledwith a maintenance combination of a long- acting beta2-agonist and a high dose of an inhaled corticosteroid who experienced one or more asthma exacerbations in the previous year. The dosage of Enerzair® Breezhaler® is one inhalation capsule to be inhaled once daily. The dosage in the capsules contains 150 micrograms of indacaterol (as acetate), combined with 63 micrograms of glycopyrronium bromide, which corresponds to 50 micrograms of glycopyrronium and 160 micrograms of mometasone furoate. Each dose delivered contains 114 micrograms of indacaterol, 58 micrograms of glycopyrronium bromide, which corresponds to 46 micrograms of glycopyrronium and 136 micrograms of mometasone furoate.
    [Show full text]
  • DE H 3670 001 PAR.Pdf
    Decentralised Procedure Public Assessment Report IPRABRONCH 250 Mikrogramm/ml Lösung für einen Vernebler Ipratropium bromide DE/H/3670/001/DC (former UK/H/3401/001/DC) Applicant: Institut Dr. Zoeller This module reflects the scientific discussion for the approval of IPRABRONCH 250 Mikrogramm/ml Lösung für einen Vernebler. The procedure was finalised at 10.03.2011. TABLE OF CONTENTS I. INTRODUCTION ......................................................................................................... 4 II. SCIENTIFIC OVERVIEW AND DISCUSSION ........................................................... 4 II.1 Quality aspects .............................................................................................................. 4 II.2 Non-clinical aspects ....................................................................................................... 5 II.3 Clinical aspects .............................................................................................................. 6 III. OVERALL CONCLUSION AND BENEFIT/RISK ASSESSMENT ............................. 6 ADMINISTRATIVE INFORMATION Proposed name of the medicinal IPRABRONCH 250 Mikrogramm/ml Lösung für einen product in the RMS Vernebler Name of the drug substance (INN Ipratropium bromide name): Pharmaco-therapeutic group R03BB01 (ATC Code): Pharmaceutical form(s) and Nebuliser Solution; 250 Micrograms per ml strength(s): Reference Number(s) for the DE/H/3670/001/DC (former UK/H/3401/001/DC) Decentralised Procedure Reference Member State: DE (former UK) Concerned
    [Show full text]
  • Drug and Medication Classification Schedule
    KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine
    [Show full text]
  • Allosteric Modulators of G Protein-Coupled Dopamine and Serotonin Receptors: a New Class of Atypical Antipsychotics
    pharmaceuticals Review Allosteric Modulators of G Protein-Coupled Dopamine and Serotonin Receptors: A New Class of Atypical Antipsychotics Irene Fasciani 1, Francesco Petragnano 1, Gabriella Aloisi 1, Francesco Marampon 2, Marco Carli 3 , Marco Scarselli 3, Roberto Maggio 1,* and Mario Rossi 4 1 Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; [email protected] (I.F.); [email protected] (F.P.); [email protected] (G.A.) 2 Department of Radiotherapy, “Sapienza” University of Rome, Policlinico Umberto I, 00161 Rome, Italy; [email protected] 3 Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (M.C.); [email protected] (M.S.) 4 Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK; [email protected] * Correspondence: [email protected] Received: 26 September 2020; Accepted: 11 November 2020; Published: 14 November 2020 Abstract: Schizophrenia was first described by Emil Krapelin in the 19th century as one of the major mental illnesses causing disability worldwide. Since the introduction of chlorpromazine in 1952, strategies aimed at modifying the activity of dopamine receptors have played a major role for the treatment of schizophrenia. The introduction of atypical antipsychotics with clozapine broadened the range of potential targets for the treatment of this psychiatric disease, as they also modify the activity of the serotoninergic receptors. Interestingly, all marketed drugs for schizophrenia bind to the orthosteric binding pocket of the receptor as competitive antagonists or partial agonists.
    [Show full text]
  • Psychopharmacology Handout
    5/17/2017 Psychopharmacology Robert M. Millay RN, MSN Ed Psychiatric Technician Programs Napa Valley College Important Neurotransmitters • Acetylcholine • Dopamine • GABA (gamma-aminobutyric acid) • Glutamate • Norepinephrine • Serotonin Acetylcholine Receptors: • Nicotine • Muscarine – Memory – Anticholinergic side effects 1 5/17/2017 Dopamine Receptors: • Nigrostriatal: Movement • Mesolimbic: Pleasure, delusions/hallucinations • Mesocortical: Mediates positive and negative symptoms, cognitive side effects • Tuberoinfundibular: Prolactin release Glutamate –v‐GABA • Excitatory neurotransmitter Serotonin & Norepinephrine • Inhibitory catecholamine • Mediates: – Cognitive effects – Emotions, including panic – Memory and anxiety – Violence and aggression – Sexual function – Sleep‐wake cycles 2 5/17/2017 Drug‐Related Variables • Mode/mechanism of action • Dosage form • Bioavailability • Onset, peak, duration of action • Serum, half‐life • Elimination method • Side effects/toxicities • Cost Client‐Related Variables • Diagnosis • Other disease states • Age • Weight • Anticholinergic susceptibility • History of side effects • Previous response • Compliance • Financial/insurance • Support system Antipsychotics Typical • Block D2 receptors • Differ in potency and side effects Atypical • Differ in mode of action, side effect, potency • Fewer… • Greater efficacy with negative symptoms… • Lower potential to increase… 3 5/17/2017 Symptom Dimensions of Psychosis Positive symptoms related to overactive dopamine neurons in mesolimbic pathway • Examples:
    [Show full text]