DE H 3670 001 PAR.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

DE H 3670 001 PAR.Pdf Decentralised Procedure Public Assessment Report IPRABRONCH 250 Mikrogramm/ml Lösung für einen Vernebler Ipratropium bromide DE/H/3670/001/DC (former UK/H/3401/001/DC) Applicant: Institut Dr. Zoeller This module reflects the scientific discussion for the approval of IPRABRONCH 250 Mikrogramm/ml Lösung für einen Vernebler. The procedure was finalised at 10.03.2011. TABLE OF CONTENTS I. INTRODUCTION ......................................................................................................... 4 II. SCIENTIFIC OVERVIEW AND DISCUSSION ........................................................... 4 II.1 Quality aspects .............................................................................................................. 4 II.2 Non-clinical aspects ....................................................................................................... 5 II.3 Clinical aspects .............................................................................................................. 6 III. OVERALL CONCLUSION AND BENEFIT/RISK ASSESSMENT ............................. 6 ADMINISTRATIVE INFORMATION Proposed name of the medicinal IPRABRONCH 250 Mikrogramm/ml Lösung für einen product in the RMS Vernebler Name of the drug substance (INN Ipratropium bromide name): Pharmaco-therapeutic group R03BB01 (ATC Code): Pharmaceutical form(s) and Nebuliser Solution; 250 Micrograms per ml strength(s): Reference Number(s) for the DE/H/3670/001/DC (former UK/H/3401/001/DC) Decentralised Procedure Reference Member State: DE (former UK) Concerned Member States: AT Applicant (name and address) Institut Dr. Zoeller Kriemhildstr. 17 69469 Weinheim Germany IPRABRONCH 250 Mikrogramm/ml Lösung für einen Vernebler, DE/H/3670/001/DC Public AR 3/7 I. INTRODUCTION Based on the review of the data on quality, safety and efficacy, the application for IPRABRONCH 250 Mikrogramm/ml Lösung für einen Vernebler, indicated in Bronchospasm associated with chronic obstructive pulmonary disease (COPD) Airways obstruction in patients with acute and chronic asthma, when used concomitantly with inhaled β 2 agonists, is approved. After changing the RMS, Germany is the new RMS. The former procedure number was UK/H/3401/001/DC. This application was submitted using Decentralised procedure, with UK as Reference Member State (RMS) and Austria (AT) and Germany (DE) as Concerned Stated (CMS). The application was submitted under Article 10.3 of Directive 2001/83/EC, as amended, as a hybrid application. The reference medicinal product for this application is Atrovent 250 UDVs. 1 ml and Atrovent UDVs, 2 ml (Boehringer Ingelheim Limited, UK) which was first authorised in the UK on 27 August 1986. Ipratropium bromide is a non-selective antagonist of the muscarine receptors M1, M2, M3, M4 and M5. Although ipratropium bromide blocks all five muscarinic receptor subtypes with similar affinity, it is likely that M3-receptor antagonism alone for the bronchodilating effect. However, the blockade of the M2-receptor subtype allows further release of presynaptic acetylcholine and may antagonise the bronchodilatory effect of blocking the M3-receptor. No new non-clinical or clinical data have been submitted, which is acceptable given that this is a hybrid application based on an originator product that has been on clinical use for over 10 years. The RMS has been assured that acceptable standards of Good Manufacturing Practice (GMP) are in place at all sites responsible for the manufacturer, assembly and batch release of this product. For manufacturing sites within the community, the RMS has accepted copies of current manufacturer authorisations issued by inspection services of the competent authorities as certificate that acceptable standards of GMP are in place at those sites. The RMS and CMS considered that the application could be approved at the end of procedure (Day 210) on 08 March 2011. After a subsequent national phase, a licence was granted in the UK on 26 October 2011. II. SCIENTIFIC OVERVIEW AND DISCUSSION II.1 Quality aspects Drug substance Ipratropium bromide is the subject of a European Pharmacopoeia monograph. All aspects of the manufacturer and control of the active substance ipratropium bromide monohydrate are covered by a European Directorate for the Quality of Medicine (EDQM) Certificates of Suitability. Drug product Other ingredients consist of the pharmaceutical excipients sodium chloride, water for injections and concentrated hydrochloric acid (for pH adjustment). Appropriate justification for the inclusion of each excipient has been provided. All excipients comply with their respective European Pharmacopoeia monographs. Suitable batch analysis data have been provided for each excipient, showing compliance with their respective monograph. None of the excipients are sourced from animal or human origin. No genetically modified organisms (GMO) have been used in the preparation of these excipients. IPRABRONCH 250 Mikrogramm/ml Lösung für einen Vernebler, DE/H/3670/001/DC Public AR 4/7 Pharmaceutical Development The objective of the pharmaceutical development programme was to produce a safe, efficacious, product that was comparable in performance to the originator product, Atrovent 25 UDVs 250 micrograms/ml Nebulizer Solution (Boehringer Ingelheim Limited, UK). The physico-chemical properties of the drug product and the reference product, Atrovent 250 UDVs, 1 ml and Atrovent UDVs, 2 ml (Boehringer Ingelheim Limited, UK) have been found to be comparable. Suitable pharmaceutical development data have been provided for this application. Comparative in-vitro data have been provided for this product and the reference product. Manufacturing process A satisfactory batch formula has been provided for the manufacture of the product, along with an appropriate account of the manufacturing process. The manufacturing process has been validated with production-scale batches and has shown satisfactory results. Control of Finished Product The finished product specification is satisfactory. Test methods have been described and adequately validated, as appropriate. Batch data have been provided and comply with the release specification. Certificates of Analysis have been provided for any working standards used. Container Closure System The finished product is supplied in sterile unit dose polyethylene ampoules containing either 1 or 2 ml of solution. The product is packaged with the Product Information Leaflet (PIL) into cardboard outer cartons in pack sizes of 10x1 ml, 10x2 ml, 20x1 ml, 20x2 ml, 50x1 ml, 50x2 ml, 60x1 ml and 60x2 ml ampoules. Not all pack sizes may be marketed. Satisfactory specifications and Certificates of Analysis have been provided for all packaging. All primary packaging complies with the European pharmacopoeia and relevant regulations regarding use of materials in contact with food. Stability of the product Finished product stability studies were performed in accordance with current guidelines on batches of finished product in the packaging proposed for marketing. Based on the results, a shelf-life of 3 years has been proposed for the unopened ampoule, with the storage condition “Do not store above 25°C. Store in the original package.” It has been stipulated that the medicine should be used immediately after opening the ampoule; unused contents should be discarded. The quality overall summary has been written by an appropriately qualified person and is a suitable summary of the pharmaceutical dossier. Bioequivalence As the product provides local therapeutic activity (that is, not systemic), investigation of bioequivalence is not appropriate for this product. MAA form The MAA form is satisfactory. Expert report The quality overall summary has been written by an appropriately qualified person and is a suitable summary of the pharmaceutical dossier. II.2 Non-clinical aspects Pharmacology, Pharmacokinetics, Toxicology As the pharmacodynamics, pharmacokinetic and toxicological properties of ipratropium bromide are well-known, no new non-clinical data have been submitted and none are required. The applicant’s non-clinical expert report has been written by an appropriately qualified person and is satisfactory, providing an appropriate review of the relevant non-clinical pharmacology, pharmacokinetics and toxicology. IPRABRONCH 250 Mikrogramm/ml Lösung für einen Vernebler, DE/H/3670/001/DC Public AR 5/7 Environmental Risk Assessment (ERA) Suitable justification has been provided for non-submission of an Environmental Risk Assessment. As this product is intended for generic substitution with a product that is already marketed, no increase in environmental burden is anticipated- Thus, the justification for non-submission of an Environmental Risk Assessment is accepted. II.3 Clinical aspects Pharmacokinetics The clinical pharmacology of ipratropium bromide is well known. No clinical studies have been conducted to support the application and none are required for an application of this type. Essential similarity with the originator product is based on the comparative quality attributes of the product. This application is being made under Article 10.3 (hybrid) of Directive 2001/83/EC, which states that bioequivalence cannot be demonstrated through bioavailability studies for products for local use intended to act without systemic absorption – in this case – after inhalant administration. Efficacy The efficacy profile of ipratropium bromide is well-known. The safety profile of ipratropium bromide is reviewed in the clinical overview. No new safety data has been submitted
Recommended publications
  • Muscarinic Acetylcholine Receptor
    mAChR Muscarinic acetylcholine receptor mAChRs (muscarinic acetylcholine receptors) are acetylcholine receptors that form G protein-receptor complexes in the cell membranes of certainneurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibersin the parasympathetic nervous system. mAChRs are named as such because they are more sensitive to muscarine than to nicotine. Their counterparts are nicotinic acetylcholine receptors (nAChRs), receptor ion channels that are also important in the autonomic nervous system. Many drugs and other substances (for example pilocarpineand scopolamine) manipulate these two distinct receptors by acting as selective agonists or antagonists. Acetylcholine (ACh) is a neurotransmitter found extensively in the brain and the autonomic ganglia. www.MedChemExpress.com 1 mAChR Inhibitors & Modulators (+)-Cevimeline hydrochloride hemihydrate (-)-Cevimeline hydrochloride hemihydrate Cat. No.: HY-76772A Cat. No.: HY-76772B Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic receptor agonist, is a candidate therapeutic drug for receptor agonist, is a candidate therapeutic drug for xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR The general pharmacol. properties of this drug on the The general pharmacol. properties of this drug on the gastrointestinal, urinary, and reproductive systems and other… gastrointestinal, urinary, and reproductive systems and other… Purity: >98% Purity: >98% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10mM x 1mL in DMSO, Size: 10mM x 1mL in DMSO, 1 mg, 5 mg 1 mg, 5 mg AC260584 Aclidinium Bromide Cat. No.: HY-100336 (LAS 34273; LAS-W 330) Cat.
    [Show full text]
  • Amanita Muscaria (Fly Agaric)
    J R Coll Physicians Edinb 2018; 48: 85–91 | doi: 10.4997/JRCPE.2018.119 PAPER Amanita muscaria (fly agaric): from a shamanistic hallucinogen to the search for acetylcholine HistoryMR Lee1, E Dukan2, I Milne3 & Humanities The mushroom Amanita muscaria (fly agaric) is widely distributed Correspondence to: throughout continental Europe and the UK. Its common name suggests MR Lee Abstract that it had been used to kill flies, until superseded by arsenic. The bioactive 112 Polwarth Terrace compounds occurring in the mushroom remained a mystery for long Merchiston periods of time, but eventually four hallucinogens were isolated from the Edinburgh EH11 1NN fungus: muscarine, muscimol, muscazone and ibotenic acid. UK The shamans of Eastern Siberia used the mushroom as an inebriant and a hallucinogen. In 1912, Henry Dale suggested that muscarine (or a closely related substance) was the transmitter at the parasympathetic nerve endings, where it would produce lacrimation, salivation, sweating, bronchoconstriction and increased intestinal motility. He and Otto Loewi eventually isolated the transmitter and showed that it was not muscarine but acetylcholine. The receptor is now known variously as cholinergic or muscarinic. From this basic knowledge, drugs such as pilocarpine (cholinergic) and ipratropium (anticholinergic) have been shown to be of value in glaucoma and diseases of the lungs, respectively. Keywords acetylcholine, atropine, choline, Dale, hyoscine, ipratropium, Loewi, muscarine, pilocarpine, physostigmine Declaration of interests No conflicts of interest declared Introduction recorded by the Swedish-American ethnologist Waldemar Jochelson, who lived with the tribes in the early part of the Amanita muscaria is probably the most easily recognised 20th century. His version of the tale reads as follows: mushroom in the British Isles with its scarlet cap spotted 1 with conical white fl eecy scales.
    [Show full text]
  • "GVS Assessment of Indacaterol/Glycopyrronium
    > Return address PO Box 320, 1110 AH Diemen National Health Care Institute Care II To the Minister of Medical Care and Sports Cardiovascular & Pulmonary PO Box 20350 Willem Dudokhof 1 2500 EJ Den Haag 1112 ZA Diemen PO Box 320 1110 AH Diemen www.zorginstituutnederland.nl [email protected] 2020037637 T +31 (0)20 797 85 55 Contact Dr T.H.L. Tran T +31 (0)6-12001412 Date 24 September 2020 Subject Enerzair® Breezhaler® (indacaterol/glycopyrronium/mometasone) Our reference 2020037637 Dear Ms van Ark, In your letter of 7 September 2020 (CIBG-20-0910), you asked Zorginstituut Nederland to assess whether the product indacaterol acetate/glycopyrronium/mometasone furoate (Enerzair® Breezhaler®) can be included in the Medicine Reimbursement System (GVS). Enerzair® Breezhaler® is a combination preparation with three active ingredients: indacaterol as acetate, a long-acting beta2-adrenergic agonist; glycopyrronium bromide, a long-acting muscarine receptor agonist; and mometasone furoate, a synthetic corticosteroid. Enerzair® Breezhaler® is registered for as a maintenance treatment of asthma in adult patients not adequately controlledwith a maintenance combination of a long- acting beta2-agonist and a high dose of an inhaled corticosteroid who experienced one or more asthma exacerbations in the previous year. The dosage of Enerzair® Breezhaler® is one inhalation capsule to be inhaled once daily. The dosage in the capsules contains 150 micrograms of indacaterol (as acetate), combined with 63 micrograms of glycopyrronium bromide, which corresponds to 50 micrograms of glycopyrronium and 160 micrograms of mometasone furoate. Each dose delivered contains 114 micrograms of indacaterol, 58 micrograms of glycopyrronium bromide, which corresponds to 46 micrograms of glycopyrronium and 136 micrograms of mometasone furoate.
    [Show full text]
  • Drug and Medication Classification Schedule
    KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine
    [Show full text]
  • Muscarine Hyperpolarizes a Subpopulation of Neurons by Activating an M, Muscarinic Receptor in Rat Nucleus Raphe Magnus in Vitro
    The Journal of Neuroscience, March 1994, 74(3): 1332-l 338 Muscarine Hyperpolarizes a Subpopulation of Neurons by Activating an M, Muscarinic Receptor in Rat Nucleus Raphe Magnus in vitro 2. Z. Pan and J. T. Williams Vellum Institute, Oregon Health Sciences University, Portland, Oregon 97201 It has been shown previously that the muscarinic cholinergic ical studies (Bowker et al., 1983; Jones et al., 1986; Sherriff et system in the nucleus raphe magnus (NRM) is involved in al., 1991). The NRM receives cholinergic afferents originating the modulation of nociception. In this study, we examined from the cells in the pedunculopontine tegmental nucleus (Rye the direct actions of muscarine on the NRM neurons in a et al., 1988). Behavioral studies have shown that local appli- slice preparation. Muscarine (I-30 PM) produced a dose- cations of both muscarinic receptor agonists and antagonists dependent hyperpolarization in a subpopulation of the NRM into the NRM causeantinociception (Brodie and Proudfit, 1986; cells that contain 5-hydroxytryptamine (5-HT). In voltage Iwamoto, 1991). In previous in vivo studies, iontophoretic ap- clamp, the muscarine-induced outward current reversed po- plication of ACh has been reported to induce an inhibition or larity at the potassium equilibrium potential and was char- excitation in the spontaneousactivity of different groups of the acterized by strong inward rectification. The reversal poten- NRM cells (Behbehani, 1982; Wessendorfand Anderson, 1983; tial was dependent on external potassium concentration, Willcockson et al., 1983; Hentall et al., 1993). Neither the cel- suggesting that the hyperpolarization induced by muscarine lular mechanismunderlying the actionsof thesecholinergic agents was mediated through an increase in an inwardly rectifying on NRM neurons nor the muscarinic receptor subtypes that potassium conductance.
    [Show full text]
  • Psychopharmacology Handout
    5/17/2017 Psychopharmacology Robert M. Millay RN, MSN Ed Psychiatric Technician Programs Napa Valley College Important Neurotransmitters • Acetylcholine • Dopamine • GABA (gamma-aminobutyric acid) • Glutamate • Norepinephrine • Serotonin Acetylcholine Receptors: • Nicotine • Muscarine – Memory – Anticholinergic side effects 1 5/17/2017 Dopamine Receptors: • Nigrostriatal: Movement • Mesolimbic: Pleasure, delusions/hallucinations • Mesocortical: Mediates positive and negative symptoms, cognitive side effects • Tuberoinfundibular: Prolactin release Glutamate –v‐GABA • Excitatory neurotransmitter Serotonin & Norepinephrine • Inhibitory catecholamine • Mediates: – Cognitive effects – Emotions, including panic – Memory and anxiety – Violence and aggression – Sexual function – Sleep‐wake cycles 2 5/17/2017 Drug‐Related Variables • Mode/mechanism of action • Dosage form • Bioavailability • Onset, peak, duration of action • Serum, half‐life • Elimination method • Side effects/toxicities • Cost Client‐Related Variables • Diagnosis • Other disease states • Age • Weight • Anticholinergic susceptibility • History of side effects • Previous response • Compliance • Financial/insurance • Support system Antipsychotics Typical • Block D2 receptors • Differ in potency and side effects Atypical • Differ in mode of action, side effect, potency • Fewer… • Greater efficacy with negative symptoms… • Lower potential to increase… 3 5/17/2017 Symptom Dimensions of Psychosis Positive symptoms related to overactive dopamine neurons in mesolimbic pathway • Examples:
    [Show full text]
  • The Anti-Addiction Drug Ibogaine and the Heart: a Delicate Relation
    Molecules 2015, 20, 2208-2228; doi:10.3390/molecules20022208 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation Xaver Koenig * and Karlheinz Hilber * Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna 1090, Austria * Authors to whom correspondence should be addressed; E-Mails: [email protected] (X.K.); [email protected] (K.H.); Tel.: +43-1-40160-31232 (X.K.); +43-1-40160-31230 (K.H.); Fax: +43-1-40160-931300 (X.K. & K.H.). Academic Editor: Patricia Valentao Received: 24 October 2014 / Accepted: 26 November 2014 / Published: 29 January 2015 Abstract: The plant indole alkaloid ibogaine has shown promising anti-addictive properties in animal studies. Ibogaine is also anti-addictive in humans as the drug alleviates drug craving and impedes relapse of drug use. Although not licensed as therapeutic drug and despite safety concerns, ibogaine is currently used as an anti-addiction medication in alternative medicine in dozens of clinics worldwide. In recent years, alarming reports of life-threatening complications and sudden death cases, temporally associated with the administration of ibogaine, have been accumulating. These adverse reactions were hypothesised to be associated with ibogaine’s propensity to induce cardiac arrhythmias. The aim of this review is to recapitulate the current knowledge about ibogaine’s effects on the heart and the cardiovascular system, and to assess the cardiac risks associated with the use of this drug in anti- addiction therapy. The actions of 18-methoxycoronaridine (18-MC), a less toxic ibogaine congener with anti-addictive properties, are also considered.
    [Show full text]
  • Inflammation Inhibits Muscarinic Signaling in in Vivo Canine Colonic
    0031-3998/02/5205-0756 PEDIATRIC RESEARCH Vol. 52, No. 5, 2002 Copyright © 2002 International Pediatric Research Foundation, Inc. Printed in U.S.A. Inflammation Inhibits Muscarinic Signaling in In Vivo Canine Colonic Circular Smooth Muscle Cells SUDARSHAN RAO JADCHERLA Sections of Neonatology, Pediatric Gastroenterology and Nutrition, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A. ABSTRACT We investigated the effects of experimental colitis on the seen in normal and inflamed states, suggesting the importance of muscarinic signaling properties and contractile behavior of ca- M2 receptor. These findings suggest that changes in muscarinic nine colonic circular smooth muscle. The hypotheses that inflam- response during colitis may contribute to the abnormal motility mation 1) inhibits in vivo muscarinic receptor mediated contrac- seen with inflammatory bowel disease. (Pediatr Res 52: 756– tions, and 2) alters receptor density or receptor-binding affinities 762, 2002) were tested. Muscarine was infused close-intra-arterially in seven conscious dogs during normal and experimental colitis states. Abbreviations Colonic circular muscle contractions were recorded via surgi- Ach, acetylcholine cally attached strain gauge transducers. Muscarine stimulated AUC, area under contractions phasic contractions in a dose-dependent manner, whereas colitis 4-DAMP, 4-diphenyl acetoxy-N-methyl-piperidine methiodide was inhibited. The inhibitory concentration 50% dose of M3 Methoctramine, N, N',-bis[6[[(2-methoxyphenyl) receptor inhibitor was several times lower than that of M1,M2, methyl]amino]hexyl]-1,8-octanediamine tetrahydrochloride and M4 inhibitors during normal and colitis. However, inflam- TTX, tetrodotoxin mation induced a significant leftward shift in the circular muscle IP3, inositol (1, 4, 5,)-triphosphate inhibitory dose-response curve of M2 inhibitor.
    [Show full text]
  • When Good Times Go Bad: Managing 'Legal High' Complications in The
    Journal name: Open Access Emergency Medicine Article Designation: REVIEW Year: 2018 Volume: 10 Open Access Emergency Medicine Dovepress Running head verso: Caffrey and Lank Running head recto: Legal highs open access to scientific and medical research DOI: http://dx.doi.org/10.2147/OAEM.S120120 Open Access Full Text Article REVIEW When good times go bad: managing ‘legal high’ complications in the emergency department Charles R Caffrey Abstract: Patients can use numerous drugs that exist outside of existing regulatory statutes in Patrick M Lank order to get “legal highs.” Legal psychoactive substances represent a challenge to the emergency medicine physician due to the sheer number of available agents, their multiple toxidromes and Department of Emergency Medicine, Feinberg School of Medicine, presentations, their escaping traditional methods of analysis, and the reluctance of patients to Northwestern University, Chicago, divulge their use of these agents. This paper endeavors to cover a wide variety of “legal highs,” IL, USA or uncontrolled psychoactive substances that may have abuse potential and may result in seri- ous toxicity. These agents include not only some novel psychoactive substances aka “designer drugs,” but also a wide variety of over-the-counter medications, herbal supplements, and even a household culinary spice. The care of patients in the emergency department who have used “legal high” substances is challenging. Patients may misunderstand the substance they have been exposed to, there are rarely any readily available laboratory confirmatory tests for these substances, and the exact substances being abused may change on a near-daily basis. This review will attempt to group legal agents into expected toxidromes and discuss associated common clinical manifestations and management.
    [Show full text]
  • Muscarine-Sensitive Acetylcholine Receptors in Guinea-Pig Atrial Pacemaker Cells at 290C and in Ileum at 290C and 370C R.B
    Br. J. Pharmac. (1976), 58, 613-620 A COMPARISON OF AFFINITY CONSTANTS FOR MUSCARINE-SENSITIVE ACETYLCHOLINE RECEPTORS IN GUINEA-PIG ATRIAL PACEMAKER CELLS AT 290C AND IN ILEUM AT 290C AND 370C R.B. BARLOW, K.J. BERRY, P.A.M. GLENTON, N.M. NIKOLAOU & K.S. SOH Departments of Pharmacology, Universities of Edinburgh and Bristol 1 The affinity of 17 compounds for muscarine-sensitive acetylcholine receptors in atrial pacemaker cells and ileum of the guinea-pig has been measured at 290C in Ringer-Locke solution. Measurements were also made at 370C with 7 of them. 2 Some of the compounds had much higher affinity for the receptors in the ileum than for those in the atria. For the most selective compound, 4-diphenylacetoxy-N-methylpiperidine methiodide, the difference was approximately 20-fold. The receptors in the atria are therefore different in structure from those in the ileum. 3 The effects of temperature on affinity are not the same for all the compounds tested, indicating different enthalpies and entropies of adsorption and accounting for some of the difficulty experienced in predicting the affinity ofnew compounds. Introduction From measurements of the affinity constants of a were three reasons for choosing this preparation. First, number of compounds for muscarine-sensitive because the agonist causes hyperpolarization in this acetylcholine receptors in the ileum, bronchial muscle tissue, compared with depolarization in the other pre- and iris of the guinea-pig, Barlow, Franks & Pearson parations. Second, because of the discovery that there (1972) concluded that the receptors were in- are differences among types of histamine receptor and distinguishable.
    [Show full text]
  • Stereotypies in the Autism Spectrum Disorder: Can We Rely on an Ethological Model?
    brain sciences Review Stereotypies in the Autism Spectrum Disorder: Can We Rely on an Ethological Model? Roberto Keller 1 , Tatiana Costa 1, Daniele Imperiale 2, Annamaria Bianco 3 , Elisa Rondini 3, Angela Hassiotis 4 and Marco O. Bertelli 3,* 1 Adult Autism Centre, Mental Health Department, ASL Città di Torino, 10138 Turin, Italy; [email protected] (R.K.); [email protected] (T.C.) 2 Neurology Unit, Maria Vittoria Hospital, ASL Città di Torino, 10144 Turin, Italy; [email protected] 3 CREA (Research and Clinical Centre), San Sebastiano Foundation, Misericordia di Firenze, 50142 Florence, Italy; [email protected] (A.B.); [email protected] (E.R.) 4 Division of Psychiatry, University College London, London W1T 7NF, UK; [email protected] * Correspondence: [email protected]; Tel.: +39-055-708880 Abstract: Background: Stereotypic behaviour can be defined as a clear behavioural pattern where a specific function or target cannot be identified, although it delays on time. Nonetheless, repetitive and stereotypical behaviours play a key role in both animal and human behaviour. Similar behaviours are observed across species, in typical human developmental phases, and in some neuropsychiatric conditions, such as Autism Spectrum Disorder (ASD) and Intellectual Disability. This evidence led to the spread of animal models of repetitive behaviours to better understand the neurobiological mechanisms underlying these dysfunctional behaviours and to gain better insight into their role and Citation: Keller, R.; Costa, T.; origin within ASD and other disorders. This, in turn, could lead to new treatments of those disorders Imperiale, D.; Bianco, A.; Rondini, E.; in humans. Method: This paper maps the literature on repetitive behaviours in animal models of ASD, Hassiotis, A.; Bertelli, M.O.
    [Show full text]
  • 2021 Equine Prohibited Substances List
    2021 Equine Prohibited Substances List . Prohibited Substances include any other substance with a similar chemical structure or similar biological effect(s). Prohibited Substances that are identified as Specified Substances in the List below should not in any way be considered less important or less dangerous than other Prohibited Substances. Rather, they are simply substances which are more likely to have been ingested by Horses for a purpose other than the enhancement of sport performance, for example, through a contaminated food substance. LISTED AS SUBSTANCE ACTIVITY BANNED 1-androsterone Anabolic BANNED 3β-Hydroxy-5α-androstan-17-one Anabolic BANNED 4-chlorometatandienone Anabolic BANNED 5α-Androst-2-ene-17one Anabolic BANNED 5α-Androstane-3α, 17α-diol Anabolic BANNED 5α-Androstane-3α, 17β-diol Anabolic BANNED 5α-Androstane-3β, 17α-diol Anabolic BANNED 5α-Androstane-3β, 17β-diol Anabolic BANNED 5β-Androstane-3α, 17β-diol Anabolic BANNED 7α-Hydroxy-DHEA Anabolic BANNED 7β-Hydroxy-DHEA Anabolic BANNED 7-Keto-DHEA Anabolic CONTROLLED 17-Alpha-Hydroxy Progesterone Hormone FEMALES BANNED 17-Alpha-Hydroxy Progesterone Anabolic MALES BANNED 19-Norandrosterone Anabolic BANNED 19-Noretiocholanolone Anabolic BANNED 20-Hydroxyecdysone Anabolic BANNED Δ1-Testosterone Anabolic BANNED Acebutolol Beta blocker BANNED Acefylline Bronchodilator BANNED Acemetacin Non-steroidal anti-inflammatory drug BANNED Acenocoumarol Anticoagulant CONTROLLED Acepromazine Sedative BANNED Acetanilid Analgesic/antipyretic CONTROLLED Acetazolamide Carbonic Anhydrase Inhibitor BANNED Acetohexamide Pancreatic stimulant CONTROLLED Acetominophen (Paracetamol) Analgesic BANNED Acetophenazine Antipsychotic BANNED Acetophenetidin (Phenacetin) Analgesic BANNED Acetylmorphine Narcotic BANNED Adinazolam Anxiolytic BANNED Adiphenine Antispasmodic BANNED Adrafinil Stimulant 1 December 2020, Lausanne, Switzerland 2021 Equine Prohibited Substances List . Prohibited Substances include any other substance with a similar chemical structure or similar biological effect(s).
    [Show full text]