Muscarinic Receptor Functioning and Distribution in The

Total Page:16

File Type:pdf, Size:1020Kb

Muscarinic Receptor Functioning and Distribution in The Muscarinic receptor GREGOR W. NIETGEN, JOERG SCHMIDT, LUTZ HESSE, CHRISTIAN W. HONEMANN, functioning and MARCEL E. DURIEUX distribution in the eye: molecular basis and implications for clinical diagnosis and therapy The role of neurotransmitters has generated number of receptors (cholinergic, adrenergic considerable interest over the last decade. and others) have been found in all types of Dale's first description in 1914 of the muscarinic ocular tissue: the functional consequence of and nicotinic components of the cholinergic their activation remains elusive but is currently systeml provided an explanation for the effects being investigated with great zeal. Glaucoma of various cholinergic active drugs on the eye. patients are still being treated with pilocarpine G.w. Nietgen J. Schmidt Parasympathetic cholinergic input to the human almost 40 years5 after its introduction to western L. Hesse iris sphincter muscle comes from neurons medicine in 1875.6 The development of specific Zentrum fOr whose axons make up the ciliary nerve, a muscarinic agonists (acetyl-j3-methylcholine) Augenheilkunde branch of the third cranial nerve. Acetylcholine and antagonists (scopolamine) followed. Philipps-Universitat Marburg is released by these neurons onto their target Cholinesterase was discovered in 19267 and Marburg, Germany 8 cells, the smooth muscle surrounding the pupil. named in 1932. At the same time carbachol was C.W. Honemann Muscarinic acetylcholine receptors on the synthesised,9 a drug resistant to cholinesterases M.E. Durieux surface of the muscle cells transduce the with a suitable specificity for glaucoma Departments of chemical signal into a muscle contraction which treatment.IO,ll Over the years various Pharmacology, Anaesthesiology and constricts the pupil. It has also been shown that compounds have been investigated regarding Neurosurgery muscarinic cholinergic receptors exist in the their potential to lower intraocular pressure University of Virginia Health mammalian iris dilator muscle, once thought to (lOP), the most prominent pathophysiological Sciences Center receive only noradrenergic input from the feature of glaucoma. The majority of these Charlottesvile sympathetic system? This double reciprocal substances do not affect the muscarinic system Virginia, USA innervation of the iris sphincter follows the of the eye and intervene at different receptor Gregor W Nietgen, MD � general pattern of innervation: stimulation of sites. Zentrum fOr the parasympathetic nervous system The ciliary muscle, focus of intense Augenheilkunde (cholinergic muscarinic), which functions investigation, contracts through activation of Philipps-Universitat Marburg Robert-Koch-Strasse 4 through the polyphosphoinositide signalling muscarinic receptors. Due to its insertion into 35033 Marburg pathway, leads to contraction. Relaxation is a the trabecular meshwork it increases aqueous Germany outflow facility, thereby reducing IOpy,13 A result of the activation of the sympathetic Tel: +49 6421 282600 nervous system (beta-adrenergic), which variety of drugs can also reduce lOP, yet by Fax: +49 6421 285678 functions through the cAMP system. very different mechanisms of action. This e-mail: The active secretion of aqueous humour is indicates the pathogenetic complexity of [email protected] carried out by the ciliary epithelium and is glaucoma, with its multiple possible causes; Supported in part by therefore a key target for regulation by however, lOP regulation through the National Institutes of Health grant GMS 52387/02 to endogenous regulators and anti-glaucoma muscarinic signalling system appears to be an M.E.D. G.WN. was drugs. Histological evidence indicates that the important component. The ocular muscarinic supported by a grant from ciliary processes receive innervation by both receptor system is not dedicated solely to the the Deutsche sympathetic and parasympathetic nerves. maintenance of pressure homeostasis though. A Forschungsgemeinschaft Further on, ciliary epithelial cells have been wide distribution of these receptors in the (DFG, Ni 482/1-1). C.WH. is supported by a grant from demonstrated to contain both adrenergic and human eye has been found. Muscarinic the Innovative Medizinische cholinergiC receptors? Interactions between the signalling is involved in Signal transduction Forschung, MOnster, two second messenger systems are important in functions of the retina,14 possibly in reparative Germany (lMF Ho-1-6-11/98-8) regulation of smooth muscle tone and are an functions in the corneal and lenticular Received: 14 September important focal point for pharmacological tissue,15,16 and appears to play a major role in 1998 manipulation.4 Besides these well-established the embryonic and postnatal development of Accepted in revised form: functions of the ocular receptor interplay a vast the eye.17 The main distinction between 22 January 1999 Eye (1999) 13, 285-300 © 1999 Royal College of Ophthalmologists 285 muscarinic and nicotinic receptors, though noted very thousand receptor types have now been shown to belong early, hardly explained their distinct roles in cholinergic to the G protein-coupled receptor (GCR) superfamily, of signalling. The past decade, however, has seen the which the muscarinic receptors form a small but molecular cloning of both nicotinic18 and muscarinic19 distinguished cluster. acetylcholine receptors in Numa's laboratory,20 leading GCRs all show the same molecular signature in their to greatly expanded understanding of these systems. In amino acid sequence: most are around SOD amino acids in addition, new research techniques such as patch length and include seven stretches of approximately 20 clamping21 and single channel recording22 have hydrophobic amino acids each. These domains are provided additional insights into the functioning of the thought to form a-helices traversing the membrane, cholinergic signalling system. leading to the designation of these proteins as seven­ We now know that, although acetylcholine is the transmembrane, or, more fancifully, serpentine or physiological agonist on both nicotinic and muscarinic heptahelical receptors (Fig. I). receptors, they are completely different entities: the first The G proteins stimulated by receptor activation a multi-subunit, ligand-gated ion channel (i.e. an control a number of intercellular systems. Best described ionotropic receptor), the second a single-subunit, G are G proteins stimulating (Gs) and inhibiting (Gi) protein-coupled receptor (i.e. a metabotropic receptor). It adenyl ate cyclase, with corresponding changes in cAMP appears likely that all muscarinic receptor subtypes have levels. Phospholipase C, activated by Gq or Go, generates now been cloned, allowing development of specific inositol trisphosphate (IP , which releases Ca2+ from 3 antibodies,23 detailed mapping of tissue distribution, and intracellular stores) and diacylglycerol (which activates synthesis of subtype-specific agonists and antagonists protein kinase C). In addition, G proteins can activate ion (Table la)?4-26 It has become clear that muscarinic channels, as in the case of Gk (a Gi subtype), which closes signalling plays an important role in multiple locations of a neuronal potassium channel in response to muscarinic the eye, and that ocular cholinergic drugs interfere stimulation. significantly with this system. This article will focus on the molecular basis of these findings. It will show that the complex distribution of muscarinic receptors in the eye is Five muscarinic receptor subtypes have been cloned only a part of many interacting signalling systems, all resulting in the development and maintenance of vision. Once the DNA sequence of one muscarinic receptor was Following a brief summary of the molecular biology of known19 other subtypes were isolated in rapid muscarinic receptors, their distribution and function in succession. Thus far, five muscarinic receptor have been the human eye will be described. A description of the cloned,28 designated ml, m2, m3, m4 and mS. The clinical implications of these signalling pathways and existence of this many subtypes was surprising, as their interactions in pathological processes will be pharmacological studies suggested initially only two (MI outlined. and M2). Glandular M2 receptors were designated M3. (Names with a capital 'M' indicate pharmacologically defined subtypes, whereas those with a small 'm' Molecular biology of muscarinic signalling indicate clones.) Four pharmacological subtypes have The first muscarinic receptor was cloned in 1986.19 In the now been defined (MI, M2, M3, M4)?9,30 This apparent 13 years that have passed, a remarkable amount of excess of subtypes is typical for GCRs, and presumably information has been gathered about the molecular allows finer regulation of receptor expression. The five biology of muscarinic signalling. Not only have subtypes fall into two groups - the 'odd' (ml, m3, mS) (presumably) all subtypes of muscarinic receptors been and the 'even' (m2, m4) - based on sequence homology cloned, but detailed information on their structure­ and second messenger signalling. The odd group signals activity relationship is available, which will prove useful primarily through intracellular Ca2+ ; the even group in the development of new, highly selective agonist and through decreases in cAMP production. In the brain or antagonist drugs. retina, where signalling systems eventually have to transduce their actions through changes in membrane potential, ml and m3 inhibit a G protein-coupled
Recommended publications
  • AD Singh1, PA Rundle1, a Berry-Brincat1, MA Parsons2 and and Accommodation Were Considered Normal
    Tadpole pupil KL Koay et al 93 5 Currie ZI, Rennie IG, Talbot JF. Retinal vascular changes associated with transpupillary thermotherapy for choroidal melanomas. Retina 2000; 20: 620–626. 6 Shields CL, Cater J, Shields JA, Singh AD, Santos MCM, Carvalho C. Combination of clinical factors predictive of growth of small choroidal melanocytic tumors. Arch Ophthalmol 2000; 118: 360–364. 7 Journee-de Korver JG, Oosterhuis JA, de Wolff-Rouendaal D, Kemme H. Histopathological findings in human choroidal melanomas after transpupillary thermotherapy. Br J Ophthalmol 1997; 81: 234–239. 8 Anonymous. Histopathologic characteristics of uveal melanomas in eyes enucleated from the Collaborative Ocular Melanoma Study. COMS report no. 6. Am J Figure 1 Ophthalmol 1998; 125: 745–766. Tadpole-shaped pupil. 9 Diaz CE, Capone Jr A, Grossniklaus HE. Clinicopathologic findings in recurrent choroidal melanoma after transpupillary thermotherapy. Ophthalmology 1998; 105: 1419–1424. periocular sensation. The symptom occurred 10 Singh AD, Eagle Jr RC, Shields CL, Shields JA. Enucleation sporadically, sometimes with several weeks in between following transpupillary thermotherapy of choroidal episodes, but occasionally happening several times on melanoma :clinicopathologic correlations. Arch Ophthalmol the same day. There were no other visual symptoms and (in press). 11 Seregard S, Landau I. Transpupillary thermotherapy as an no significant past ocular history. General health was adjunct to ruthenium plaque radiotherapy for choroidal good and no regular medications were taken. melanoma. Acta Ophthalmologica Scand 2001; 79: 19–22. On examination, visual acuity was normal bilaterally. 12 Keunen JE, Journee-de Korver JG, Oosterhuis JA. There was a 1 mm right ptosis with mild anisocoria, the Transpupillary thermotherapy of choroidal melanoma with right pupil being 1 mm smaller in normal room or without brachytherapy: a dilemma.
    [Show full text]
  • Cell Line Descriptions Geneblazer® M1-NFAT
    Version No.: GeneBLAzer ® Validation Packet Page 1 of 5 01Sep08 Optimization of the GeneBLazer ® M1-NFAT-bla Jurkat Cell Line GeneBLAzer ® M1 NFAT-bla Jurkat Cells Catalog Numbers – K1710 Cell Line Descriptions GeneBLAzer ® M1-NFAT-bla Jurkat cells contain the human Acetylcholine (muscarinic) subtype 1 receptor (M1), (Accession # NM_000738 ) stably integrated into the CellSensor ® NFAT-bla Jurkat cell line. CellSensor ® NFAT-bla Jurkat cells (Cat. no. K1671) contain a beta-lactamase (bla ) reporter gene under control of the Nuclear Factor of Activated T-cells (NFAT) response element. M1-NFAT-bla Jurkat cells are functionally validated for Z’-factor and EC 50 concentrations of carbachol (Figure 1). In addition, GeneBLAzer ® M1-NFAT-bla CHO-K1 cells have been tested for assay performance under variable conditions. Target Description Muscarinic acetylcholine receptors are members of the G protein-coupled receptor (GPCR) superfamily. Muscarinic receptors are widely distributed and mediate the actions of acetylcholine in both the CNS and peripheral tissues. Five muscarinic receptor subtypes have been identified and are referred to as M 1-M5 (1-5). The five genes that encode the muscarinic receptors all belong to the rhodopsin-line family (Family A) and share strong sequence homology but have unique regions located at the amino terminus (extracellular) and in the third intracellular loop. The M 1, M3, and M 5 receptor subtypes couple through the G q/11 class of G-proteins and activate the phopholipase C pathway. Activation of this pathway in turn leads to increases in free intracellular calcium levels as inositol triphosphate mediates release of calcium from the endoplasmic reticulum.
    [Show full text]
  • Severe Organophosphate Poisoning with Delayed Cholinergic Crisis, Intermediate Syndrome and Organophosphate Induced Delayed Polyneuropathy on Succession
    Organophosphate Poisoning… Aklilu A 203 CASE REPORT SEVERE ORGANOPHOSPHATE POISONING WITH DELAYED CHOLINERGIC CRISIS, INTERMEDIATE SYNDROME AND ORGANOPHOSPHATE INDUCED DELAYED POLYNEUROPATHY ON SUCCESSION Aklilu Azazh ABSTRACT Organophosphate compounds are the organic derivatives of Phosphorous containing acids and their effect on neuromuscular junction and Autonomic Synapses is clinically important. After exposure these agents cause acute and sub acute manifestations depending on the type and severity of the agents like Acute Cholinergic Manifestations, Intermediate Syndrome with Nicotinic features and Delayed Central Nervous System Complications. The patient reported here had severe Organophosphate Poisoning with various rare complications on a succession. This is the first report of Organophosphates Poisoning complicated by Intermediate Syndrome and Organophosphate Induced Delayed Polyneuropathy in Ethiopia and it is reported to increase awareness of health care workers on these rare complications of a common problem. INTRODUCTION phosphorylated by the Phosphate end of Organophosphates; then the net result is Organophosphate compounds are the organic accumulation of excessive Acetyl Chlorine with derivatives of Phosphorous containing acids and resultant effect on Muscarinic, Nicotinic and their effect on Neuromuscular Junction and central nervous system (Figure 2). Autonomic synapses is clinically important. In the Neuromuscular Junction Acetylcholine is released Following classical OP poisoning, three well when a nerve impulse reaches
    [Show full text]
  • Pupillary Disorders LAURA J
    13 Pupillary Disorders LAURA J. BALCER Pupillary disorders usually fall into one of three major cat- cortex generally do not affect pupillary size or reactivity. egories: (1) abnormally shaped pupils, (2) abnormal pupillary Efferent parasympathetic fibers, arising from the Edinger– reaction to light, or (3) unequally sized pupils (anisocoria). Westphal nucleus, exit the midbrain within the third nerve Occasionally pupillary abnormalities are isolated findings, (efferent arc). Within the subarachnoid portion of the third but in many cases they are manifestations of more serious nerve, pupillary fibers tend to run on the external surface, intracranial pathology. making them more vulnerable to compression or infiltration The pupillary examination is discussed in detail in and less susceptible to vascular insult. Within the anterior Chapter 2. Pupillary neuroanatomy and physiology are cavernous sinus, the third nerve divides into two portions. reviewed here, and then the various pupillary disorders, The pupillary fibers follow the inferior division into the orbit, grouped roughly into one of the three listed categories, are where they then synapse at the ciliary ganglion, which lies discussed. in the posterior part of the orbit between the optic nerve and lateral rectus muscle (Fig. 13.3). The ciliary ganglion issues postganglionic cholinergic short ciliary nerves, which Neuroanatomy and Physiology initially travel to the globe with the nerve to the inferior oblique muscle, then between the sclera and choroid, to The major functions of the pupil are to vary the quantity of innervate the ciliary body and iris sphincter muscle. Fibers light reaching the retina, to minimize the spherical aberra- to the ciliary body outnumber those to the iris sphincter tions of the peripheral cornea and lens, and to increase the muscle by 30 : 1.
    [Show full text]
  • Accommodation in the Holmes-Adie Syndrome by G
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.21.4.290 on 1 November 1958. Downloaded from J. Neurol. Neurosurg. Psychiat., 1958, 21, 290. ACCOMMODATION IN THE HOLMES-ADIE SYNDROME BY G. F. M. RUSSELL From the Neurological Research Unit, the National Hospital, Queen Square, London In 1936, Bramwell suggested that the title response to near and far vision respectively. But it "Holmes-Adie syndrome" be given to the clinical has also been noted that the reaction to convergence complex of a slowly reacting pupil and absent tendon may be remarkably wide in its range, considering reflexes in recognition of the descriptions by Holmes that it often follows a stage of complete paralysis (1931) and Adie (1932). Both authors had empha- (Strasburger, 1902). Not only is the reaction to sized the chief clinical features-dilatation of the convergence well preserved when compared to the pupil, apparent loss of the reaction to light, slow reaction to light, but it may in fact be excessive constriction and relaxation in response to near and (Alajouanine and Morax, 1938; Heersema and distant vision, and partial loss of the tendon reflexes. Moersch, 1939). In assessing the degree of tonicity Although the syndrome had been recognized wholly there are, therefore, two criteria: slowness ofguest. Protected by copyright. or in part many years previously (Strasburger, 1902; pupillary movement and preservation of the range Saenger, 1902; Nonne, 1902; Markus, 1906; Weill of movement. and Reys, 1926), credit must go to Adie for stressing Adler and Scheie (1940) showed that the tonic the benign nature of the disorder and distinguishing pupil constricts after the conjunctival instillation it clearly from neurosyphilis.
    [Show full text]
  • The Distribution of Immune Cells in the Uveal Tract of the Normal Eye
    THE DISTRIBUTION OF IMMUNE CELLS IN THE UVEAL TRACT OF THE NORMAL EYE PAUL G. McMENAMIN Perth, Western Australia SUMMARY function of these cells in the normal iris, ciliary body Inflammatory and immune-mediated diseases of the and choroid. The role of such cell types in ocular eye are not purely the consequence of infiltrating inflammation, which will be discussed by other inflammatory cells but may be initiated or propagated authors in this issue, is not the major focus of this by immune cells which are resident or trafficking review; however, a few issues will be briefly through the normal eye. The uveal tract in particular considered where appropriate. is the major site of many such cells, including resident tissue macro phages, dendritic cells and mast cells. This MACRO PHAGES review considers the distribution and location of these and other cells in the iris, ciliary body and choroid in Mononuclear phagocytes arise from bone marrow the normal eye. The uveal tract contains rich networks precursors and after a brief journey in the blood as of both resident macrophages and MHe class 11+ monocytes immigrate into tissues to become macro­ dendritic cells. The latter appear strategically located to phages. In their mature form they are widely act as sentinels for capturing and sampling blood-borne distributed throughout the body. Macrophages are and intraocular antigens. Large numbers of mast cells professional phagocytes and play a pivotal role as are present in the choroid of most species but are effector cells in cell-mediated immunity and inflam­ virtually absent from the anterior uvea in many mation.1 In addition, due to their active secretion of a laboratory animals; however, the human iris does range of important biologically active molecules such contain mast cells.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110449 A1 Lorber Et Al
    US 200601 10449A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110449 A1 LOrber et al. (43) Pub. Date: May 25, 2006 (54) PHARMACEUTICAL COMPOSITION Publication Classification (76) Inventors: Richard R. Lorber, Scotch Plains, NJ (US); Heribert W. Staudinger, Union, (51) Int. Cl. NJ (US); Robert E. Ward, Summit, NJ A6II 3/473 (2006.01) (US) A6II 3L/24 (2006.01) Correspondence Address: A6IR 9/20 (2006.01) SCHERING-PLOUGH CORPORATION (52) U.S. Cl. ........................... 424/464; 514/290: 514/540 PATENT DEPARTMENT (K-6-1, 1990) 2000 GALLOPNG HILL ROAD KENILWORTH, NJ 07033-0530 (US) (57) ABSTRACT (21) Appl. No.: 11/257,348 (22) Filed: Oct. 24, 2005 The present invention relates to formulations useful for Related U.S. Application Data treating respiratory disorders associated with the production of mucus glycoprotein, skin disorders, and allergic conjunc (60) Provisional application No. 60/622,507, filed on Oct. tivitis while substantially reducing adverse effects associ 27, 2004. Provisional application No. 60/621,783, ated with the administration of non-selective anti-cholin filed on Oct. 25, 2004. ergic agents and methods of use thereof. US 2006/01 10449 A1 May 25, 2006 PHARMACEUTICAL COMPOSITION example, Weinstein and Weinstein (U.S. Pat. No. 6,086,914) describe methods of treating allergic rhinitis using an anti CROSS REFERENCE TO RELATED cholinergic agent with a limited capacity to pass across lipid APPLICATION membranes, such as the blood-brain barrier, in combination with an antihistamine that is limited in both sedating and 0001. This application claims benefit of priority to U.S.
    [Show full text]
  • Ciliary Zonule Sclera (Suspensory Choroid Ligament)
    ACTIVITIES Complete Diagrams PNS 18 and 19 Complete PNS 23 Worksheet 3 #1 only Complete PNS 24 Practice Quiz THE SPECIAL SENSES Introduction Vision RECEPTORS Structures designed to respond to stimuli Variable complexity GENERAL PROPERTIES OF RECEPTORS Transducers Receptor potential Generator potential GENERAL PROPERTIES OF RECEPTORS Stimulus causing receptor potentials Generator potential in afferent neuron Nerve impulse SENSATION AND PERCEPTION Stimulatory input Conscious level = perception Awareness = sensation GENERAL PROPERTIES OF RECEPTORS Information conveyed by receptors . Modality . Location . Intensity . Duration ADAPTATION Reduction in rate of impulse transmission when stimulus is prolonged CLASSIFICATION OF RECEPTORS Stimulus Modality . Chemoreceptors . Thermoreceptors . Nociceptors . Mechanoreceptors . Photoreceptors CLASSIFICATION OF RECEPTORS Origin of stimuli . Exteroceptors . Interoceptors . Proprioceptors SPECIAL SENSES Vision Hearing Olfaction Gustation VISION INTRODUCTION 70% of all sensory receptors are in the eye Nearly half of the cerebral cortex is involved in processing visual information Optic nerve is one of body’s largest nerve tracts VISION INTRODUCTION The eye is a photoreceptor organ Refraction Conversion (transduction) of light into AP’s Information is interpreted in cerebral cortex Eyebrow Eyelid Eyelashes Site where conjunctiva merges with cornea Palpebral fissure Lateral commissure Eyelid Medial commissure (a) Surface anatomy of the right eye Figure 15.1a Orbicularis oculi muscle
    [Show full text]
  • Microscopic Anatomy of the Eye Dog Cat Horse Rabbit Monkey Richard R Dubielzig Mammalian Globes Mammalian Phylogeny General Anatomy Dog
    Microscopic Anatomy of the eye Dog Cat Horse Rabbit Monkey Richard R Dubielzig Mammalian globes Mammalian Phylogeny General Anatomy Dog Arterial Blood Vessels of the Orbit General Anatomy Dog * Horizontal section Long Posterior Ciliary a. Blood enters the globe Short Post. Ciliary a Long Post. Ciliary a. Anterior Ciliary a. Blood Supply General Anatomy Dog Major arterial circle of the iris Orbital Anatomy Dog Brain Levator Dorsal rectus Ventral rectus Zygomatic Lymph node Orbital Anatomy Dog Orbital Anatomy Dog Cartilaginous trochlea and the tendon of the dorsal oblique m. Orbital Anatomy Dog Rabbit Orbital Anatomy Dog Zygomatic salivary gland mucinous gland Orbital Anatomy Dog Gland of the Third Eyelid Eye lids (dog) Eye lids (dog) Meibomian glands at the lid margin Holocrine secretion Eye lids (primate) Upper tarsal plate Lower tarsal plate Eye lids (rabbit) The Globe The Globe Dog Cat Orangutan Diurnal Horse Diurnal Cornea Epithelium Stromal lamellae Bowman’s layer Dolphin Descemet’s m Endothelium TEM of surface epithelium Cornea Doubling of Descemet’s Vimentin + endothelium Iris Walls: The vertebrate eye Iris Sphincter m. Dilator m Blue-eye, GFAP stain Iris Collagen Iris Cat Sphinctor m. Dilator m. Iris Cat Phyomelanocytes Iris Equine Corpora nigra (Granula iridica) seen in ungulates living without shade Ciliary body Pars plicata Ciliary muscle Pars plana Ciliary body Zonular ligaments Ciliary body Primarily made of fibrillin A major component of elastin Ciliary body Alcian Blue staining acid mucopolysaccharides: Hyaluronic acid Ciliary
    [Show full text]
  • Protocol for a Randomised Controlled Trial: Efficacy of Donepezil Against
    BMJ Open: first published as 10.1136/bmjopen-2013-003533 on 25 September 2013. Downloaded from Open Access Protocol Protocol for a randomised controlled trial: efficacy of donepezil against psychosis in Parkinson’s disease (EDAP) Hideyuki Sawada, Tomoko Oeda To cite: Sawada H, Oeda T. ABSTRACT ARTICLE SUMMARY Protocol for a randomised Introduction: Psychosis, including hallucinations and controlled trial: efficacy of delusions, is one of the important non-motor problems donepezil against psychosis Strengths and limitations of this study in patients with Parkinson’s disease (PD) and is in Parkinson’s disease ▪ In previous randomised controlled trials for (EDAP). BMJ Open 2013;3: possibly associated with cholinergic neuronal psychosis the efficacy was investigated in patients e003533. doi:10.1136/ degeneration. The EDAP (Efficacy of Donepezil against who presented with psychosis and the primary bmjopen-2013-003533 Psychosis in PD) study will evaluate the efficacy of endpoint was improvement of psychotic symp- donepezil, a brain acetylcholine esterase inhibitor, for toms. By comparison, this study is designed to prevention of psychosis in PD. ▸ Prepublication history for evaluate the prophylactic effect in patients this paper is available online. Methods and analysis: Psychosis is assessed every without current psychosis. Because psychosis To view these files please 4 weeks using the Parkinson Psychosis Questionnaire may be overlooked and underestimated it is visit the journal online (PPQ) and patients with PD whose PPQ-B score assessed using a questionnaire, Parkinson (http://dx.doi.org/10.1136/ (hallucinations) and PPQ-C score (delusions) have Psychosis Questionnaire (PPQ) every 4 weeks. bmjopen-2013-003533). been zero for 8 weeks before enrolment are ▪ The strength of this study is its prospective randomised to two arms: patients receiving donepezil design using the preset definition of psychosis Received 3 July 2013 hydrochloride or patients receiving placebo.
    [Show full text]
  • Affections of Uvea Affections of Uvea
    AFFECTIONS OF UVEA AFFECTIONS OF UVEA Anatomy and physiology: • Uvea is the vascular coat of the eye lying beneath the sclera. • It consists of the uvea and uveal tract. • It consists of 3 parts: Iris, the anterior portion; Ciliary body, the middle part; Choroid, the third and the posterior most part. • All the parts of uvea are intimately associated. Iris • It is spongy having the connective tissue stroma, muscular fibers and abundance of vessels and nerves. • It is lined anteriorly by endothelium and posteriorly by a pigmented epithelium. • Its color is because of amount of melanin pigment. Mostly it is brown or golden yellow. • Iris has two muscles; the sphincter which encircles the pupil and has parasympathetic innervation; the dilator which extends from near the sphincter and has sympathetic innervation. • Iris regulates the amount of light admitted to the interior through pupil. • The iris separates the anterior chamber from the posterior chamber of the eye. Ciliary Body: • It extends backward from the base of the iris to the anterior part of the choroid. • It has ciliary muscle and the ciliary processes (70 to 80 in number) which are covered by ciliary epithelium. Choroid: • It is located between the sclera and the retina. • It extends from the ciliaris retinae to the opening of the optic nerve. • It is composed mainly of blood vessels and the pigmented tissue., The pupil • It is circular and regular opening formed by the iris and is larger in dogs in comparison to man. • It contracts or dilates depending upon the light source, due the sphincter and dilator muscles of the iris, respectively.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]