Accommodation in the Holmes-Adie Syndrome by G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Medical Diary Official Publication for the Federation of Medical Societies of Hong Kong
VOL.12 NO.9 SEPTEMBER 2007 ॷġ෫ġᚂġଉ THE HONG KONG MEDICAL DIARY OFFICIAL PUBLICATION FOR THE FEDERATION OF MEDICAL SOCIETIES OF HONG KONG www.fmshk.org Editorial Editorial Dr. Timothy YY Lai Medical Bulletin Management of Tearing in Adults Dr. Alan CK Ng Dr. Dylan DN Chan Ocular Allergy in Children Dr. Koon-man Lam Neuro-ophthalmology for General Practitioners: A Revision Dr.CarmenKMChan Normal Tension Glaucoma - a Sick Eye in a Sick Body Dr. Dexter YL Leung Retinal Complications of High Myopia Dr. Timothy YY Lai Amblyopia: An overview Dr. Wilson WK Yip Prof. Dorothy SP Fan Surgical Correction for Near Sightedness Dr. Arthur CK Cheng Traditional Chinese Medicine and Ophthalmology Dr. Jane CC Yeung Special Feature Rosiglitazone and Risk of Myocardial Infarction: Clear Danger or Dr. Norman Chan Media Hype? Clinical Quiz Clinical Quiz Dr. Helen KS Tung Society News Medical Diary of September Calendar of Events ISSN 1812 - 1691 ᚂᖒԙষΙড়ᒑȅᩧҕஶቆᜰЖ VOL.12 NO.9 SEPTEMBER 2007 Contents The Federation of Medical Societies of Hong Kong 4/F Duke of Windsor Social Service Building, Contents 15 Hennessy Road, Wanchai, Hong Kong Tel: 2527 8898 Fax: 2865 0345 Editorial President Dr. FONG To-sang, Dawson 方道生醫生 1st Vice- President Editorial 2 Dr. CHAN Chi-kuen 陳志權醫生 2nd Vice- President Dr. Timothy YY Lai Dr. LO Sze-ching, Susanna 盧時楨醫生 Hon. Secretary Dr. LO See-kit, Raymond 勞思傑醫生 Medical Bulletin Deputy Hon. Secretary Dr. CHAN Sai-kwing 陳世炯醫生 Management of Tearing in Adults 4 Hon. Treasurer Mr. LAM Lop-chi, Nelson 林立志先生 Dr.AlanCKNg Deputy Hon. Treasurer Dr. Dylan DN Chan Mr. -
Pupillary Disorders LAURA J
13 Pupillary Disorders LAURA J. BALCER Pupillary disorders usually fall into one of three major cat- cortex generally do not affect pupillary size or reactivity. egories: (1) abnormally shaped pupils, (2) abnormal pupillary Efferent parasympathetic fibers, arising from the Edinger– reaction to light, or (3) unequally sized pupils (anisocoria). Westphal nucleus, exit the midbrain within the third nerve Occasionally pupillary abnormalities are isolated findings, (efferent arc). Within the subarachnoid portion of the third but in many cases they are manifestations of more serious nerve, pupillary fibers tend to run on the external surface, intracranial pathology. making them more vulnerable to compression or infiltration The pupillary examination is discussed in detail in and less susceptible to vascular insult. Within the anterior Chapter 2. Pupillary neuroanatomy and physiology are cavernous sinus, the third nerve divides into two portions. reviewed here, and then the various pupillary disorders, The pupillary fibers follow the inferior division into the orbit, grouped roughly into one of the three listed categories, are where they then synapse at the ciliary ganglion, which lies discussed. in the posterior part of the orbit between the optic nerve and lateral rectus muscle (Fig. 13.3). The ciliary ganglion issues postganglionic cholinergic short ciliary nerves, which Neuroanatomy and Physiology initially travel to the globe with the nerve to the inferior oblique muscle, then between the sclera and choroid, to The major functions of the pupil are to vary the quantity of innervate the ciliary body and iris sphincter muscle. Fibers light reaching the retina, to minimize the spherical aberra- to the ciliary body outnumber those to the iris sphincter tions of the peripheral cornea and lens, and to increase the muscle by 30 : 1. -
Adie Syndrome: a Case Report
J Am Board Fam Pract: first published as 10.3122/jabfm.10.6.439 on 1 November 1997. Downloaded from Adie Syndrome: A Case Report T. Micheal Sherrill, MD, and DavidJ Lutz In 1932 Adie 1 described a syndrome in which were roughly equal, and the right corneal reflex unilateral accommodation and pupillary contrac was decreased. A rapid plasma reagin was ob tion were abnormal. It typically was observed in tained and found to be negative. The patient was young women with no history or evidence of subsequently referred to an ophthalmologist for syphilis and involved a unilateral dilated pupil confirmation of the diagnosis and to rule out that was unresponsive to light. He noted that other abnormalities. Confirmation was per deep tendon reflexes were absent or markedly di formed using'a dilute solution of pilocarpine. minished in these patients. He concluded that it was "a benign disorder sui generis." We report a Discussion recent case of Adie syndrome. Patients with Adie syndrome have anisocoria characterized by a dilated pupil that is minimally Case Report reactive or unresponsive to light. Deep tendon A 37-year-old woman came to the office with reflexes (knees and ankles) are either diminished right pupil dilatation. It was noticed by a nurse or absent.2 This disorder is most often seen in for the first time earlier that morning and had not young women, who have an average age of onset been present previously according to the patient's in their 30s. It usually occurs in one eye, but oc report. The patient's only visual complaint was curs bilaterally in up to 4 percent of patients.3 mild photophobia in sunlight. -
Università Degli Studi Di Padova Dipartimento Di
UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI FISICA E ASTRONOMIA ˝GALILEO GALILEI˝ CORSO DI LAUREA IN OTTICA E OPTOMETRIA TESI DI LAUREA OPTOMETRIC MANAGEMENT OF VIDEO DISPLAY TERMINAL RELATED VISION PROBLEMS Relatore: Prof. Dominga Ortolan Laureando: Matjaž Turk Matricola: 1124752 Anno Accademico 2018-2019 INDEX 1. INTRODUCTION ............................................................................................. 2 2. NEAR VISION .................................................................................................. 3 2.1 VISUAL SKILLS .......................................................................................... 3 2.2 VERGENCE AND ACCOMMODATIVE DYSFUNCTION ...................... 5 3. COMPUTER VISION SYNDROME .............................................................. 8 3.1 HISTORY OF COMPUTER ......................................................................... 8 3.2 DEFINITION ................................................................................................ 9 3.3 RISK FACTORS FOR CVS ....................................................................... 10 3.4 DIGITAL SCREEN CHARACTERISTICS ............................................... 12 3.5 PATHOPHYSIOLOGY OF CVS ............................................................... 12 4. IMPACT OF DIGITAL DISPLAYS ON VISUAL PERFORMANCE ..... 17 4.1 SYMPTOMS ............................................................................................... 17 4.2 MEASURING COMPUTER VISION SYNDROME ................................ 23 -
Asymmetries of Dark and Bright Negative Afterimages Are Paralleled by Subcortical on and OFF Poststimulus Responses
1984 • The Journal of Neuroscience, February 22, 2017 • 37(8):1984–1996 Systems/Circuits Asymmetries of Dark and Bright Negative Afterimages Are Paralleled by Subcortical ON and OFF Poststimulus Responses X Hui Li,1,2 X Xu Liu,1,2 X Ian M. Andolina,1 Xiaohong Li,1 Yiliang Lu,1 Lothar Spillmann,3 and Wei Wang1 1Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China, 2University of Chinese Academy of Sciences, Shanghai 200031, China, and 3Department of Neurology, University of Freiburg, 79085 Freiburg, Germany Humans are more sensitive to luminance decrements than increments, as evidenced by lower thresholds and shorter latencies for dark stimuli. This asymmetry is consistent with results of neurophysiological recordings in dorsal lateral geniculate nucleus (dLGN) and primary visual cortex (V1) of cat and monkey. Specifically, V1 population responses demonstrate that darks elicit higher levels of activation than brights, and the latency of OFF responses in dLGN and V1 is shorter than that of ON responses. The removal of a dark or bright disc often generates the perception of a negative afterimage, and here we ask whether there also exist asymmetries for negative afterimages elicited by dark and bright discs. If so, do the poststimulus responses of subcortical ON and OFF cells parallel such afterimage asymmetries? To test these hypotheses, we performed psychophysical experiments in humans and single-cell/S-potential recordings in cat dLGN. Psychophysically, we found that bright afterimages elicited by luminance decrements are stronger and last longer than dark afterimages elicited by luminance increments of equal sizes. -
Cone Contributions to Signals for Accommodation and the Relationship to Refractive Error
Vision Research 46 (2006) 3079–3089 www.elsevier.com/locate/visres Cone contributions to signals for accommodation and the relationship to refractive error Frances J. Rucker ¤, Philip B. Kruger Schnurmacher Institute for Vision Research, State University of New York, State College of Optometry, 33 West 42nd Street, New York, NY 10036, USA Received 18 February 2005; received in revised form 7 April 2006 Abstract The accommodation response is sensitive to the chromatic properties of the stimulus, a sensitivity presumed to be related to making use of the longitudinal chromatic aberration of the eye to decode the sign of the defocus. Thus, the relative sensitivity to the long- (L) and middle-wavelength (M) cones may inXuence accommodation and may also be related to an individual’s refractive error. Accommodation was measured continuously while subjects viewed a sine wave grating (2.2 c/d) that had diVerent cone contrast ratios. Seven conditions tested loci that form a circle with equal vector length (0.27) at 0, 22.5, 45, 67.5, 90, 120, 145 deg. An eighth condition produced an empty Weld stimulus (CIE (x,y) co-ordinates (0.4554, 0.3835)). Each of the gratings moved at 0.2 Hz sinusoidally between 1.00 D and 3.00 D for 40 s, while the eVects of longitudinal chromatic aberration were neutralized with an achromatizing lens. Both the mean level of accommo- dation and the gain of the accommodative response, to sinusoidal movements of the stimulus, depended on the relative L and M cone sen- sitivity: Individuals more sensitive to L-cone stimulation showed a higher level of accommodation (p D 0.01; F D 12.05; ANOVA) and dynamic gain was higher for gratings with relatively more L-cone contrast. -
Care of the Patient with Accommodative and Vergence Dysfunction
OPTOMETRIC CLINICAL PRACTICE GUIDELINE Care of the Patient with Accommodative and Vergence Dysfunction OPTOMETRY: THE PRIMARY EYE CARE PROFESSION Doctors of optometry are independent primary health care providers who examine, diagnose, treat, and manage diseases and disorders of the visual system, the eye, and associated structures as well as diagnose related systemic conditions. Optometrists provide more than two-thirds of the primary eye care services in the United States. They are more widely distributed geographically than other eye care providers and are readily accessible for the delivery of eye and vision care services. There are approximately 36,000 full-time-equivalent doctors of optometry currently in practice in the United States. Optometrists practice in more than 6,500 communities across the United States, serving as the sole primary eye care providers in more than 3,500 communities. The mission of the profession of optometry is to fulfill the vision and eye care needs of the public through clinical care, research, and education, all of which enhance the quality of life. OPTOMETRIC CLINICAL PRACTICE GUIDELINE CARE OF THE PATIENT WITH ACCOMMODATIVE AND VERGENCE DYSFUNCTION Reference Guide for Clinicians Prepared by the American Optometric Association Consensus Panel on Care of the Patient with Accommodative and Vergence Dysfunction: Jeffrey S. Cooper, M.S., O.D., Principal Author Carole R. Burns, O.D. Susan A. Cotter, O.D. Kent M. Daum, O.D., Ph.D. John R. Griffin, M.S., O.D. Mitchell M. Scheiman, O.D. Revised by: Jeffrey S. Cooper, M.S., O.D. December 2010 Reviewed by the AOA Clinical Guidelines Coordinating Committee: David A. -
Pupils and Near Vision
PUPILS AND NEAR VISION Akilesh Gokul PhD Research Fellow Department of Ophthalmology Iris Anatomy Two muscles: • Radially oriented dilator (actually a myo-epithelium) - like the spokes of a wagon wheel • Sphincter/constrictor Pupillary Reflex • Size of pupil determined by balance between parasympathetic and sympathetic input • Parasympathetic constricts the pupil via sphincter muscle • Sympathetic dilates the pupil via dilator muscle • Response to light mediated by parasympathetic; • Increased innervation = pupil constriction • Decreased innervation = pupil dilation Parasympathetic Pathway 1. Three major divisions of neurons: • Afferent division 2. • Interneuron division • Efferent division Near response: • Convergence 3. • Accommodation • Pupillary constriction Pupil Light Parasympathetic – Afferent Pathway 1. • Retinal ganglion cells travel via the optic nerve leaving the optic tracts 2. before the LGB, and synapse in the pre-tectal nucleus. 3. Pupil Light Parasympathetic – Efferent Pathway 1. • Pre-tectal nucleus nerve fibres partially decussate to innervate both Edinger- 2. Westphal (EW) nuclei. • E-W nucleus to ipsilateral ciliary ganglion. Fibres travel via inferior division of III cranial nerve to ciliary ganglion via nerve to inferior oblique muscle. 3. • Ciliary ganglion via short ciliary nerves to innervate sphincter pupillae muscle. Near response: 1. Increased accommodation Pupil 2. Convergence 3. Pupillary constriction Sympathetic pathway • From hypothalamus uncrossed fibres 1. down brainstem to terminate in ciliospinal centre -
I. Multiple Mechanisms of Accommodation A. Variable Axial Length B
Mechanics, Aging and Neurological Control of accommodation: I. Multiple Mechanisms of Accommodation A. Variable axial length B. Corneal Power C. Lenticular power D. Pupil size E. Lenticular refractive index gradient (isoindical surfaces) II. Anatomy A. Lens B. Capsule C. Zonules D. Ciliary Body E. Index gradient III. Autonomic innervation IV. Amplitude of accommodation and age A. Functional presbyopia B. Absolute presbyopia C. Treatment Bifocals Monovision Surgically implanted prosthesis Course title - (VS217) Oculomotor functions and neurology Instructor - Clifton Schor GSI: James O’Shea, Michael Oliver & Aleks Polosukhina Schedule of lectures, exams and laboratories : Lecture hours 10-11:30 Tu Th; 5 min break at 11:00 Labs Friday the first 3 weeks Examination Schedule : Quizes: January 29; February 28 Midterm: February 14: Final March 13 Power point lecture slides are available on a CD Resources: text books, reader , website, handouts Class Website: Reader. Website http://schorlab.berkeley.edu Click courses 117 class page name VS117 password Hering,1 First Week: read chapters 16-18 See lecture outline in syllabus Labs begin this Friday, January 25 Course Goals Near Response - Current developments in optometry Myopia control – environmental, surgical, pharmaceutical and genetic Presbyopia treatment – amelioration and prosthetic treatment Developmental disorders (amblyopia and strabismus) Reading disorders Ergonomics- computers and sports vision Virtual reality and personal computer eye-ware Neurology screening- Primary care gate keeper neurology, systemic, endocrines, metabolic, muscular skeletal systems. Mechanics, Aging and Neurological Control of accommodation : I. Five Mechanisms of Accommodation A. Variable axial length B. Corneal Power and astigmatism C. Lenticular power D. Pupil size & Aberrations E. Lenticular refractive index gradient (isoindical surfaces) II. -
List of Symptoms Reported to Be Associated with Lyme Disease
List of Symptoms Reported to be Associated with Lyme Disease Abdominal pseudo-eventration Abdominal wall weakness Acrodermatitis chronica atrophicans (ACA) Acute Acral Ischemia Acute conduction disorders Acute coronary syndrome Acute exogenous psychosis Acute febrile illness Acute hemiparesis Acute ischaemic pontine stroke Acute meningitis Acute myelo-meningo-radiculitis Acute myelitis Acute pediatric monoarticular arthritis Acute peripheral facial palsy Acute perimyocarditis Acute posterior multifocal placoid pigment epitheliopathy (APMPPE) Acute pyogenic arthritis Acute reversible diffuse conduction system disease Acute septic arthritis Acute severe encephalitis Acute transitory auriculoventricular block Acute transverse myelitis Acute urinary retention Acquired Immune Deficiency Syndrome (AIDS) Algodystrophy Allergic conditions Allergic conjunctivitis Alopecia Alzheimer’s Disease Amyotrophic lateral sclerosis (ALS - Lou Gehrig's Disease) Amyotrophy Anamnesis Anetoderma Anorexia nervosa Anterior optic neuropathy Antepartum fever Anxiety Arrhythmia Arthralgia Arthritis Asymmetrical hearing loss Ataxic sensory neuropathy Atraumatic spontaneous hemarthrosis Atrioventricular block Attention Deficit Disorder (ADD) Attention Deficit Hyperactivity Disorder (ADHD) Back pain without radiculitis Bannwarth’s Syndrome Behcet's disease Bell’s Palsy Benign cutaneous lymphocytoma Benign lymphocytic infiltration (Jessner-Kanof) Bilateral acute confluent disseminated choroiditis Bilateral carpal tunnel syndrome Bilateral facial nerve palsy Bilateral -
Miotic Adie's Pupils
Journal of Cll/lical Neuro-ophtllJllmology 9(1): 43-45, 1989. RilVen Press, Ltd., New York Miotic Adie's Pupils Michael L. Rosenberg, M.D. Two young adults, aged 24 and 31, had a long history of Adie's syndrome or, pupillotonia, is typically small, poorly reactive pupilS. There was no history of characterized by either unilaterally or bilaterally large pupils, and a review of old photographs confirmed enlarged pupils that are unresponsive to light (1). 10 and 5 years, respectively, of miosis. Both were found to have bilateral tonic pupils that were supersensitive to The diagnosis is made clinically by watching for a diluted pilocarpine. Although it is possible that they had tonic constriction to near stimulation followed by a an unusually early onset of bilateral Adie's syndrome tonic redilatation. with dilated pupils that was not noticed, it is suggested Two young adults are described who were noted that some patients might have primary miotic Adie's during routine examinations to have bilaterally mi pupils without ever passing through a mydriatic phase. Key Words: Adie's syndrome-Argyll Robertson pu otic pupils that were thought to be fixed to light. pils-Miosis. They were both referred for the evaluation of Ar gyll Robertson pupils. Evaluation revealed bilat eral tonic reactions to near stimulation in both pa tients, typical of Adie's tonic pupilS. The diagnosis of parasympathetic denervation was confirmed in both patients as their pupils constricted with di luted pilocarpine. The cases reinforce the principle that any pupil regardless of size should be evalu ated for the possibility of pupillotonia. -
Ophthalmic Drugs Part 2 — the Pros and Cons of Cycloplegia
CET Continuing education Ophthalmic drugs Part 2 — The pros and cons of cycloplegia n active ciliary body In the second of our series looking at drugs and their use in controls the eye’s accommodation process, optometric practice, Catherine Viner discusses cycloplegics, how allowing near focusing they work, when they should be used and how to undertake to occur. The ciliary body is made up mainly cycloplegic refraction. Module C19478, one general CET point for Aof smooth muscle, known as the ciliary optometrists and dispensing opticians muscle. Accommodation occurs when the muscarinic receptors within the ciliary muscle are stimulated by the parasympathetic neurotransmitter, acetylcholine (see Part 1 Optician Poor acuity and/or stereopsis 29.06.12). The ciliary muscle then In paediatric patients, these can be contracts, pulling the ciliary body indicative of amblyopia, potentially forward. Tension in the suspensory caused by uncorrected hypermetropia, ligaments supporting the crystalline lens astigmatism, anisometropia or is reduced. As a result, the lens becomes strabismus. To fully investigate the more convex, and thereby increases its cause, a cycloplegic refraction is refractive power. Adequate focus for recommended. nearer targets is then achieved.1 To obtain the true distance correction, Family history of squint, it is imperative that refraction takes amblyopia or hypermetropia place when the patient has relaxed A child is predisposed to these his/her accommodation. For most conditions if a positive family history adults and some children, this can be exists. Should this be the case, due to the achieved by directing the patient to potential risk of amblyopia, it would view a non-accommodative distance seem sensible to fully investigate the target.