The Guinea Pig Model for Organophosphate Toxicology and Therapeutic Development

Total Page:16

File Type:pdf, Size:1020Kb

The Guinea Pig Model for Organophosphate Toxicology and Therapeutic Development THE GUINEA PIG MODEL FOR ORGANOPHOSPHATE TOXICOLOGY AND THERAPEUTIC DEVELOPMENT A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Christopher Ruark B.S., Miami University, 2007 M.S., Wright State University, 2010 ______________________________________ 2015 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL May 2, 2015 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Christopher Ruark ENTITLED The Guinea Pig Model for Organophosphate Toxicology and Therapeutic Development BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy. __________________________ Jeffery M. Gearhart, Ph.D. Dissertation Director ___________________________ Mill W. Miller Ph.D. Director, Biomedical Sciences Ph.D. Program ___________________________ Robert E. W. Fyffe, Ph.D. Committee on Vice President for Research and Final Examination Dean of the Graduate School ___________________________ Jeffery M. Gearhart, Ph.D. ___________________________ Adrian M. Corbett, Ph.D. ___________________________ James B. Lucot, Ph.D. ___________________________ Mateen M. Rizki, Ph.D. ___________________________ Gerald M. Alter, Ph.D. ABSTRACT Ruark, Christopher Ph.D., Biomedical Sciences Ph.D. program, Wright State University, 2015. The Guinea Pig Model for Organophosphate Toxicology and Therapeutic Development. Organophosphates (OPs) are highly toxic insecticides and nerve agents that have been designed to inhibit the hydrolysis of acetylcholine by binding to the serine active site of acetylcholinesterase (AChE). They are one of the most common causes of human poisoning worldwide and are frequently intentionally used in suicides in agricultural areas. For this reason, there is a need for therapeutics to rescue those from intoxication. Obvious ethical concerns prevent humans from being subjected to OP exposure for therapeutic efficacy and safety testing. Therefore, animal surrogates for humans must be appropriately selected. A new paradigm, described herein, incorporating both in silico and in vitro techniques may be able to reduce the use of animals in biomedical research. Historically, the guinea pig (Cavia porcellus) has been believed to be the best non-primate model for OP toxicology and therapeutic development because, similarly to humans, guinea pigs have low amounts of OP metabolizing carboxylesterase (CaE) in blood and tissues. To explore the hypothesis that guinea pigs are the most appropriate human substitute for studying OP toxicology iii and therapeutic development, I cloned, purified and enzymatically compared a recombinant guinea pig acetylcholinesterase (gpAChE) with the human and mouse enzyme variants. The guinea pig, mouse and human apparent inhibition constants for diisopropyl fluorophosphate were found to be 8.4±0.6 µM, 4.9±0.6 µM and 0.42±0.01 µM, respectively, indicating that species differences exist for OP inhibition. Furthermore, I developed a mechanistic quantitative structure-property relationship (QSPR) to predict OP and therapeutic tissue: plasma partition coefficient (Kt:pl) parameters for each species. Differences in tissue lipid, water and protein content contributed to species specific Kt:pl. For example, guinea pig and human lung Kt:pl predictions for paraoxon were found to be 0.3 and 0.17, respectively. Biological and chemical specific parameters were then incorporated into a SimBiology guinea pig and human physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) OP- therapeutic interaction model. A 7 regional compartment model was needed to adequately simulate the pharmacodynamics of VX in the brain. The OP PBPK/PD model was validated against the small amount of available data published in the literature and was used to predict and compare guinea pig and human species differences in response to exposure and therapeutic efficacy. It was found that the human is 3.45 times more sensitive than guinea pigs to VX as shown by the area under the curve in the brain, 1.14 times more sensitive than guinea pigs as shown by the area under the curve in the diaphragm and 1.11 times more sensitive as shown by the time to minimum iv concentration in the diaphragm. The OP PBPK/PD model structure, along with chemical parameters, can be altered to make predictions for other OP chemicals of concern. It was also shown that a constant intravenous infusion of a novel allosteric modulator that increases AChE’s velocity may be an effective means of treating dermal exposure in both guinea pigs and humans. In conclusion, this dissertation carefully evaluated physiological and enzymatic differences between these two species and greatly assisted in evaluating the suitability of the guinea pig as a model for human OP toxicity testing and therapeutic development. It is recommended that the guinea pig continue to be used as an animal model for OP toxicity testing and therapeutic development as long as the in silico and in vitro techniques, developed herein, are properly utilized to extrapolate to human populations. v TABLE OF CONTENTS Page I. INTRODUCTION…………………………………………………..……………………………………….1 1.1 Acetylcholinesterase Background..……………………………………………………..….1 1.2 Organophosphate Background…………………………………………………….…………3 1.3 Therapeutic Background……………………………………………………………………..…5 1.4 The Guinea Pig as an Organophosphate Animal Model………………………….6 1.5 Recombinant Acetylcholinesterase…………………………………………………………8 1.6 Physiologically Based Pharmacokinetic and Pharmacodynamic Modeling…………………………………………………………10 1.7 Tissue: Plasma Partition Coefficients..………………………………………………….11 1.8 Mechanistic Tissue Composition Partition Coefficient Models……………..12 1.9 Research Summary………………………………………………………………………………14 II. METHODS…………………………………………………………..…………………………….…….….16 2.1 Guinea Pig AChE Cloning and Enzymology………..……………………………….….16 2.1.1 Guinea Pig AChE Cloning into Gateway Entry Vector….…………………16 2.1.2 Guinea Pig AChE Cloning into Gateway Mammalian Destination Vector and Protein Expression……………………………………………17 2.1.3 Generation of a Stable Cell Line………….……………………………………..…19 2.1.4 Guinea Pig AChE Purification….…………..………………………………………..19 2.1.5 Enzyme Kinetics………….…………………………………………………………..……20 2.1.6 Homology Modeling….………………………………………………………………….23 2.2 Partition Coefficients……………….……………………………………………………………24 2.2.1 Partition Coefficient Model Development….…………………………………24 2.2.2 Unbound Chemical Fraction……….…………………………………………………26 2.2.3 Tissue: Plasma Partition Coefficient……………….………………..…………..26 2.2.4 Fraction Unbound……………….……………………………………………………....27 2.2.5 Influence of pH Gradients………………….……………………………………..….30 2.2.6 Tissue Composition Partition Coefficients……….…………………………...31 2.2.7 Conversion of Kt:pl to Kt:bl………………….………………………………………..…32 2.2.8. Tissue Composition Data Collection and Preprocessing………….……32 2.2.9 Monte Carlo Analysis………….……………………………………………………..…33 2.3 PBPK/PD Modeling………….…………………………………………………………………….34 2.3.1 SimBiology Model Development…………….…………………………………….34 2.3.2 VX PBPK/PD Model Development…………….…………………………………..35 2.3.2.1 Model Dosing Routes…….……………………………………………..……..36 2.3.2.2 Allometric Scaling…….………………………………………………………....37 vi 2.3.2.3 VX Model Parameterization and Validation….……………….…….38 2.3.3 Allosteric PBPK/PD Model…………………………………………………………….39 2.3.3.1 Evidence Supporting Acetylcholinesterase Allostery…….…..…39 2.3.3.2 PBPK/PD Model of Positive Drug Allostery……….…..……………..41 III. RESULTS…………………………………………………………..…………………………………………45 3.1 Guinea Pig AChE Cloning and Enzymology………………………………………….…45 3.1.1 Guinea Pig AChE Cloning……….……………………………………………………..45 3.1.2 Guinea Pig AChE Transfection and Purification…………………………….46 3.1.3 Organophosphate Dose Response………………………………………………..49 3.1.4 Inhibitor Ki Determinations………..……………….…………………………….….52 3.1.5 Zero-Time Plot Kinetics…………...……………………………………………………54 3.1.6 Homology Modeling……………………………………………………………………..56 3.2 Partition Coefficient Model Derivation………………….………………………………58 3.2.1 Tissue Composition Data Collection and Processing………….………….58 3.2.2 Monte Carlo Analysis: Passive Partitioning…….…………………..………..60 3.3 VX and Allosteric Modulator PBPK/PD Modeling……….………………………….65 3.3.1 VX PBPK/PD Modeling………………………………………………………………….65 3.3.2 Human PBPK/PD Model Extrapolation…………………….……………………79 3.3.3 Allosteric Modulator PBPK/PD Modeling………………………………………81 IV. DISCUSSION………………………………………………………………………………………………..83 4.1 Organophosphate Inhibition…………….……………………………………………………83 4.2 Partition Coefficients…………….………………………………………………………………87 4.3 VX and Allosteric Modulator PBPK/PD Modeling……….………………………….90 4.4 Summary…….………………..………………………………………………………..….…………96 V. REFERENCES….………………………………………………..………………………………………….98 VI. APPENDIX..………………………………………………………………………………….……………129 vii LIST OF FIGURES Figure Page 1. AChE’s mechanism for hydrolysis of acetylcholine………………………………………………2 2. AChE 3’ Splice Variants.………………………………………………………………………………………3 3. General Organophosphate Structure………………………………………………………………….4 4. Mechanism of organophosphate inhibition, reactivation, spontaneous hydrolysis and aging………………………………………………………………………5 5. Research Summary……………………………………………………………………………………………15 6. SignalP 4.1 Signal Peptide Cleavage Prediction…………………………………………………17 7. Gateway pENTR/D-TOPO and pT-Rex-DEST30 Plasmid Maps……………………………18 8. Ellman’s Method………………………………………………………………………………………………19 9. SimBiology Model Used to Predict Ellman’s Assay..…………………..……………………..23 10. Kt:pl Model Schematic…………………………………………..……………………………………………25 11. VX PBPK Model Schematics………………………………….…………………………………………..36 12. Allosteric
Recommended publications
  • Role of Citicoline in the Management of Traumatic Brain Injury
    pharmaceuticals Review Role of Citicoline in the Management of Traumatic Brain Injury Julio J. Secades Medical Department, Ferrer, 08029 Barcelona, Spain; [email protected] Abstract: Head injury is among the most devastating types of injury, specifically called Traumatic Brain Injury (TBI). There is a need to diminish the morbidity related with TBI and to improve the outcome of patients suffering TBI. Among the improvements in the treatment of TBI, neuroprotection is one of the upcoming improvements. Citicoline has been used in the management of brain ischemia related disorders, such as TBI. Citicoline has biochemical, pharmacological, and pharmacokinetic characteristics that make it a potentially useful neuroprotective drug for the management of TBI. A short review of these characteristics is included in this paper. Moreover, a narrative review of almost all the published or communicated studies performed with this drug in the management of patients with head injury is included. Based on the results obtained in these clinical studies, it is possible to conclude that citicoline is able to accelerate the recovery of consciousness and to improve the outcome of this kind of patient, with an excellent safety profile. Thus, citicoline could have a potential role in the management of TBI. Keywords: CDP-choline; citicoline; pharmacological neuroprotection; brain ischemia; traumatic brain injury; head injury Citation: Secades, J.J. Role of 1. Introduction Citicoline in the Management of Traumatic brain injury (TBI) is among the most devastating types of injury and can Traumatic Brain Injury. result in a different profile of neurological and cognitive deficits, and even death in the most Pharmaceuticals 2021, 14, 410.
    [Show full text]
  • Protein Complex Formation by Acetylcholinesterase and the Neurotoxin Fasciculin-2 Appears to Involve an Induced-Fit Mechanism
    Protein complex formation by acetylcholinesterase and the neurotoxin fasciculin-2 appears to involve an induced-fit mechanism Jennifer M. Bui†‡ and J. Andrew McCammon†§ †Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, and §Department of Pharmacology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0365 Edited by Jose N. Onuchic, University of California at San Diego, La Jolla, CA, and approved August 22, 2006 (received for review June 27, 2006) Specific, rapid association of protein complexes is essential for all forms of cellular existence. The initial association of two molecules in diffusion-controlled reactions is often influenced by the elec- trostatic potential. Yet, the detailed binding mechanisms of pro- teins highly depend on the particular system. A complete protein complex formation pathway has been delineated by using struc- tural information sampled over the course of the transformation reaction. The pathway begins at an encounter complex that is formed by one of the apo forms of neurotoxin fasciculin-2 (FAS2) and its high-affinity binding protein, acetylcholinesterase (AChE), followed by rapid conformational rearrangements into an inter- mediate complex that subsequently converts to the final complex as observed in crystal structures. Formation of the intermediate complex has also been independently captured in a separate 20-ns Fig. 1. Thermodynamic cycle for AB* complex formation reactions. A and B BIOPHYSICS molecular dynamics simulation of the encounter complex. Confor- molecules can be considered as any pair of interacting molecules. mational transitions between the apo and liganded states of FAS2 in the presence and absence of AChE are described in terms of their relative free energy profiles that link these two states.
    [Show full text]
  • Quantitative Analysis of Phosphatidylethanolamine and Phosphatidylcholine from Rice Oil Lecithin and Sunflower Oil Lecithin by A
    Applikationsbericht Quantitative Analysis of Phosphatidylethanolamine and Phosphatidylcholine from Rice Oil Lecithin and Sunflower Oil Lecithin by ACQUITY UPLC H-Class Plus System with PDA Detection Dilshad Pullancheri, Dr. Gurubasavaraj HM, Bheeshmacharyulu. S, Dr. Padmakar Wagh, Shaju V A, Ramesh Chandran K, Rajeesh K R, Abhilash Puthiyedath Waters Corporation, Kancor Ingredients Ltd. Abstract In this application note, we have developed a 15 minutes method for quantitative analysis of PE and PC on the ACQUITY UPLC H-Class Plus System with a PDA Detector. Benefits Quantification of PE and PC in rice and sunflower oil lecithin within 15 minutes run time on the ACQUITY UPLC H-Class Plus System with a PDA Detector. Introduction Phospholipids are major constituents of cell membrane and are found in all tissues and subcellular compartments as mixtures of various molecular species such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), sphingomyelin (SM), and lysophosphatidylcholine (LPC) depending on the type of polar head groups and the degree of unsaturation of the acyl chains. Among these phospholipids, PC and PE represents a major constituent of cell membranes. The demand for lecithin with high PC and PE content from vegetable or cereal source is increasing these days, particularly in pharmaceutical, cosmetic, food, and other applications due to their emulsifying properties and nonantigenic nature. The application of lecithins in pharmaceutical and cosmetics domain depends mainly on the PC and PE with its saturated or unsaturated fatty acid content. Figure 1. Classification of phospholipids. The present method of UltraPerformance Liquid Chromatography (UPLC) with UV detection offers advantages of high speed, resolution and simplicity for the separation and detection of phospholipids including phosphatidylcholine and phosphatidylethanolamine from rice and sunflower oil lecithin.
    [Show full text]
  • Nebulised Antibiotherapy: Conventional Versus Nanotechnology- Based Approaches, Is Targeting at a Nano Scale a Difficult Subject?
    448 Review Article Page 1 of 16 Nebulised antibiotherapy: conventional versus nanotechnology- based approaches, is targeting at a nano scale a difficult subject? Esther de Pablo1, Raquel Fernández-García1, María Paloma Ballesteros1,2, Juan José Torrado1,2, Dolores R. Serrano1,2 1Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/ n, Madrid, Spain; 2Instituto Universitario de Farmacia Industrial (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, Avenida Complutense, Madrid, Spain Contributions: (I) Conception and design: E de Pablo; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: None; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Dolores R. Serrano. Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Madrid 28040, Spain. Email: [email protected]. Abstract: Nebulised antibiotics offer great advantages over intravenously administered antibiotics and other conventional antibiotic formulations. However, their use is not widely standardized in the current clinical practice. This is the consequence of large variability in the performance of nebulisers, patient compliance and a deficiency of robust preclinical and clinical data. Nebulised antibiotherapy may play a significant role in future pulmonary drug delivery treatments as it offers the potential to achieve both a high local drug concentration and a lower systemic toxicity. In this review, the physicochemical parameters required for optimal deposition to the lung in addition to the main characteristics of currently available formulations and nebuliser types are discussed.
    [Show full text]
  • Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: a Crystallographic, Kinetic and Calorimetric Study
    Article Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study Terrone L. Rosenberry 1, Xavier Brazzolotto 2, Ian R. Macdonald 3, Marielle Wandhammer 2, Marie Trovaslet-Leroy 2,†, Sultan Darvesh 4,5,6 and Florian Nachon 2,* 1 Departments of Neuroscience and Pharmacology, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA; [email protected] 2 Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; [email protected] (X.B.); [email protected] (M.W.); [email protected] (M.T.-L.) 3 Department of Diagnostic Radiology, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] 4 Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] 5 Department of Chemistry, Mount Saint Vincent University, Halifax, NS B3M 2J6, Canada 6 Department of Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax, NS B3H 4R2, Canada * Correspondence: [email protected]; Tel.: +33-178-65-1877 † Deceased October 2016. Received: 26 October 2017; Accepted: 27 November 2017; Published: 29 November 2017 Abstract: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) hydrolyze the neurotransmitter acetylcholine and, thereby, function as coregulators of cholinergic neurotransmission. Although closely related, these enzymes display very different substrate specificities that only partially overlap. This disparity is largely due to differences in the number of aromatic residues lining the active site gorge, which leads to large differences in the shape of the gorge and potentially to distinct interactions with an individual ligand. Considerable structural information is available for the binding of a wide diversity of ligands to AChE.
    [Show full text]
  • Effects of Phosphatidylethanolamine and Phosphatidylcholine in Membrane Phospholipid on Binding of Phorbol Ester in Rat Mammary Carcinoma Cells1
    [CANCER RESEARCH 48, 1528-1532, March 15, 1988J Effects of Phosphatidylethanolamine and Phosphatidylcholine in Membrane Phospholipid on Binding of Phorbol Ester in Rat Mammary Carcinoma Cells1 Tamiko Kano-Sueoka2 and David M. King Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado S0309 ABSTRACT sphingomyelin are however not altered (5, 6). Etn-responsive cells are not able to synthesize, without an exogenous supply Mammalian cells in culture can be classified as either ethanolamine of Etn, a sufficient amount of PE to maintain growth (6). (Etn)-responsive or Etn-nonresponsive with regard to their growth. Epi Growth and phospholipid compositions of fibroblasts, neuro- thelial cells and some of their transformed derivatives are the Etn- cells, and certain neoplastic cells of epithelial origin, on the responsive type. When these cells are grown without Etn, the content of other hand, are not influenced by Etn in culture medium (2, 5). membrane phospholipid becomes significantly altered. Namely, the con tent of phosphatidylethanolamine is reduced and that of phosphatidyl- When Etn-responsive cells are grown without Etn, as the choline is increased. In addition, the growth rate of these cells is reduced. content of membrane PE is reduced, the growth slows down. Therefore, it is likely that the phosphatidylethanolamine deficiency or The reason as to why PE deficiency leads to the cessation of phosphatidylcholine excess is unsuitable for some membrane-associated cell proliferation could be that the PE synthesis is somehow functions resulting in the cessation of growth. In order to test the above tied to cell growth or the PE deficiency creates unfavorable hypothesis, we examined the binding of a tumor-promoting phorbol ester, conditions for the membrane-associated function, resulting in |'H|phorbol 12,13-dibutyrate (PDB), to an Etn-responsive rat mammary the cessation of growth.
    [Show full text]
  • Nicotine and Methylphenidate Chornic Exposure on Adult Cannabinoid Receptor Agonist (Cp 55,940) Place Conditioning in Male Rats
    California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of aduateGr Studies 6-2016 NICOTINE AND METHYLPHENIDATE CHORNIC EXPOSURE ON ADULT CANNABINOID RECEPTOR AGONIST (CP 55,940) PLACE CONDITIONING IN MALE RATS Christopher P. Plant California State University - San Bernardino Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd Part of the Biological Psychology Commons, and the Clinical Psychology Commons Recommended Citation Plant, Christopher P., "NICOTINE AND METHYLPHENIDATE CHORNIC EXPOSURE ON ADULT CANNABINOID RECEPTOR AGONIST (CP 55,940) PLACE CONDITIONING IN MALE RATS" (2016). Electronic Theses, Projects, and Dissertations. 339. https://scholarworks.lib.csusb.edu/etd/339 This Thesis is brought to you for free and open access by the Office of aduateGr Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. NICOTINE AND METHYLPHENIDATE CHRONIC EXPOSURE ON ADULT CANNABINOID RECEPTOR AGONIST (CP 55,940) PLACE CONDITIONING IN MALE RATS A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in General-Experimental Psychology by Christopher Philip Plant June 2016 NICOTINE AND METHYLPHENIDATE CHRONIC EXPOSURE ON ADULT CANNABINOID RECEPTOR AGONIST (CP 55,940) PLACE CONDITIONING IN MALE
    [Show full text]
  • Anti-Cholinergic Alkaloids As Potential Therapeutic Agents for Alzheimer's Disease
    Indian Journal of Biochemistry & Biophysics Vol. 50, April 2013, pp. 120-125 Anti-cholinergic alkaloids as potential therapeutic agents for Alzheimer’s disease: An in silico approach Huma Naaz, Swati Singh, Veda P Pandey, Priyanka Singh and Upendra N Dwivedi* Bioinformatics Infrastructure Facility, Center of Excellence in Bioinformatics, Department of Biochemistry, University of Lucknow, Lucknow 226 007, India Received 10 September 2012; revised 25 January 2013 Alzheimer’s disease (AD), a progressive neurodegenerative disorder with many cognitive and neuropsychiatric symptoms is biochemically characterized by a significant decrease in the brain neurotransmitter acetylcholine (ACh). Plant-derived metabolites, including alkaloids have been reported to possess neuroprotective properties and are considered to be safe, thus have potential for developing effective therapeutic molecules for neurological disorders, such as AD. Therefore, in the present study, thirteen plant-derived alkaloids, namely pleiocarpine, kopsinine, pleiocarpamine (from Pleiocarpa mutica, family: Annonaceae), oliveroline, noroliveroline, liridonine, isooncodine, polyfothine, darienine (from Polyalthia longifolia, family: Apocynaceae) and eburnamine, eburnamonine, eburnamenine and geissoschizol (from Hunteria zeylanica, family: Apocynaceae) were analyzed for their anti-cholinergic action through docking with acetylcholinesterase (AChE) as target. Among the alkaloids, pleiocarpine showed promising anti-cholinergic potential, while its amino derivative showed about six-fold
    [Show full text]
  • Acetylcholine Signaling System in Progression of Lung Cancers
    Pharmacology & Therapeutics 194 (2019) 222–254 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Acetylcholine signaling system in progression of lung cancers Jamie R. Friedman a,1, Stephen D. Richbart a,1,JustinC.Merritta,KathleenC.Browna, Nicholas A. Nolan a, Austin T. Akers a, Jamie K. Lau b, Zachary R. Robateau a, Sarah L. Miles a,PiyaliDasguptaa,⁎ a Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755 b Biology Department, Center for the Sciences, Box 6931, Radford University, Radford, Virginia 24142 article info abstract Available online 3 October 2018 The neurotransmitter acetylcholine (ACh) acts as an autocrine growth factor for human lung cancer. Several lines of evidence show that lung cancer cells express all of the proteins required for the uptake of choline (choline Keywords: transporter 1, choline transporter-like proteins) synthesis of ACh (choline acetyltransferase, carnitine acetyl- Lung cancer transferase), transport of ACh (vesicular acetylcholine transport, OCTs, OCTNs) and degradation of ACh (acetyl- Acetylcholine cholinesterase, butyrylcholinesterase). The released ACh binds back to nicotinic (nAChRs) and muscarinic Cholinergic receptors on lung cancer cells to accelerate their proliferation, migration and invasion. Out of all components Proliferation of the cholinergic pathway, the nAChR-signaling has been studied the most intensely. The reason for this trend Invasion Anti-cancer drugs is due to genome-wide data studies showing that nicotinic receptor subtypes are involved in lung cancer risk, the relationship between cigarette smoke and lung cancer risk as well as the rising popularity of electronic ciga- rettes considered by many as a “safe” alternative to smoking.
    [Show full text]
  • Oximes: Inhibitors of Human Recombinant Acetylcholinesterase
    Int. J. Mol. Sci. 2013, 14, 16882-16900; doi:10.3390/ijms140816882 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Oximes: Inhibitors of Human Recombinant Acetylcholinesterase. A Structure-Activity Relationship (SAR) Study Vendula Sepsova 1,†, Jana Zdarova Karasova 2,3, Jan Korabecny 1,3,†, Rafael Dolezal 3,†, Filip Zemek 1, Brian J. Bennion 4,† and Kamil Kuca 3,5,* 1 Department of Toxicology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; E-Mails: [email protected] (V.S.); [email protected] (J.K.); [email protected] (F.Z.) 2 Department of Public Health, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; E-Mail: [email protected] 3 University Hospital, Biomedicinal Research Centre, Sokolska 581, 50005 Hradec Kralove, Czech Republic; E-Mail: [email protected] 4 Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA; E-Mail: [email protected] 5 Center of Advances Studies, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +420-495-832-923; Fax: +420-495-518-094. Received: 8 May 2013; in revised form: 1 August 2013 / Accepted: 2 August 2013 / Published: 16 August 2013 Abstract: Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate intoxication. Standard care involves the use of anticonvulsants (e.g., diazepam), parasympatolytics (e.g., atropine) and oximes that restore AChE activity.
    [Show full text]
  • Viewed Journals
    Quinone Methide Precursors as Realkylators of Acetylcholinesterase for Post-aging Treatment of Organophosphorus Poisoning DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Qinggeng Zhuang Graduate Program in Chemistry The Ohio State University 2017 Dissertation Committee: Professor Christopher M. Hadad, Advisor Professor Thomas J. Magliery Professor Kotaro Nakanishi Copyrighted by Qinggeng Zhuang 2017 Abstract Acetylcholinesterase (AChE) is a serine hydrolase found in brain synapses, neuromuscular junctions (NMJs) and erythrocytes. Its role is to silence nerve impulses by selectively hydrolyzing acetylcholine, a neurotransmitter. Inhibition of AChE can lead to accumulation of acetylcholine at synapses and NMJs; if left untreated, the symptoms can lead to death. Organophosphorus (OP) chemical nerve agents are a type of suicide inhibitors for AChE, leading to phosphylation of the catalytic serine; such phosphylation blocks the critical nucleophilic serine residue in the active site. OPs have been used as pesticides and chemical warfare agents, and exposure to these compounds results in the death of thousands of people every year. Clinically, OP poisoning can be treated by a combination of anti-cholinergic drugs and oximes. However, a dealkylation process referred to as aging can follow inhibition. To date, the aged form of AChE has been recalcitrant to reactivation by any oxime. A straightforward post-aging treatment is to reverse aging by realkylation of the oxyanion on the phosphylated adduct. Quinone methides (QMs) and quinone methide precursor (QMP) have been reported as alkylators of proteins and phosphates. These previous reports imply the possibility to realkylate aged AChE using a QM or QMP.
    [Show full text]
  • Alpha-GPC Introduced 2003
    Product Information Sheet – January 2015 Alpha-GPC Introduced 2003 What Is It? Are There Any Potential Drug Interactions? l-Alpha-glycerophophatidylcholine (GPC-choline, alpha-GPC) is a water- At this time, there are no known adverse reactions when taken in soluble phospholipid and neurotransmitter precursor naturally conjunction with medications. occurring in the body. Unlike most membrane phospholipids, alpha- GPC is water-soluble because it lacks the hydrophobic tail groups. Alpha-GPC Uses For Alpha-GPC each Caplique® Capsule contains v 0 • Memory And Cognitive Health: Alpha-GPC passes through the alpha-GPC (L-alpha-glycerophosphatidylcholine) ........................ 200 mg blood brain barrier providing a source of choline for acetylcholine other ingredients: glycerin, water, vegetarian Caplique® Capsule (cellulose, water) and phosphatidylcholine biosynthesis. By supporting cell membrane fluidity and integrity, phosphatidylcholine enhances Contains soy healthy neurotransmitter function and signal transduction. 6 Caplique® Capsules daily, in divided doses, with or Alpha-GPC may support healthy phospholipid turnover in the between meals. brain, helping to counteract age-related cellular breakdown of membrane phospholipids. Acetylcholine is a key neurotransmitter Caplique® Capsule is a registered trademark used by Pure Encapsulations in the brain supporting memory and learning. Optimal under license. phospholipid and acetylcholine levels support cognitive, mental Each Caplique® Capsule is preserved with a nitrogen bubble, which may give the and cerebrovascular health.* appearance of the capsule not being full. Contents may appear cloudy or thick and • Growth Hormone Support: Alpha-GPC has the ability to may settle or separate. potentiate growth hormone releasing hormone (GHRH), thereby supporting healthy growth hormone (GH) levels. The mechanism of support appears to involve increased cholinergic tone.* What Is The Source? Alpha-GPC is derived from highly purified soy lecithin.
    [Show full text]