Structural Dynamics of Acetylcholinesterase and Its Implications in Reactivators Design Gianluca Santoni

Total Page:16

File Type:pdf, Size:1020Kb

Structural Dynamics of Acetylcholinesterase and Its Implications in Reactivators Design Gianluca Santoni Structural dynamics of acetylcholinesterase and its implications in reactivators design Gianluca Santoni To cite this version: Gianluca Santoni. Structural dynamics of acetylcholinesterase and its implications in reactivators design. Biomolecules [q-bio.BM]. Université Grenoble Alpes, 2015. English. NNT : 2015GREAY019. tel-01212481 HAL Id: tel-01212481 https://tel.archives-ouvertes.fr/tel-01212481 Submitted on 6 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Physique pour les sciences du vivant Arrêté ministériel : 7 Aout 2006 Présentée par Gianluca SANTONI Thèse dirigée par Martin WEIK et codirigée par Florian NACHON préparée au sein de l’Institut de Biologie Structurale de Grenoble et de l’école doctorale de physique Structural dynamics of acetyl- cholinesterase and its implications in reactivator design Thèse soutenue publiquement le 30/01/2015, devant le jury composé de : Dr. Yves Bourne Directeur de recherche CNRS, AFMB Marseille, Rapporteur Dr. Etienne Derat Maitre de conference, Université Pierre et Marie Curie, Paris, Rapporteur Prof. Pierre-Yves Renard Professeur, Université de Normandie, Rouen, Examinateur Prof. Israel Silman Professeur, Weizmann Institute of Science,Rehovot, Examinateur Dr. Yvain Nicolet Chargé de recherche CNRS, IBS, Grenoble, Examinateur Dr. Jacques-Philippe Colletier Chargé de recherche CNRS, IBS, Grenoble, Examinateur Dr. Martin Weik Directeur de recherche CEA, IBS, Grenoble, Directeur de thèse Dr. Florian Nachon IDEF, IRBA, Bretigny sur Orge, Co-Directeur de thèse THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Physique pour les sciences du vivant Arrêté ministériel : 7 Aout 2006 Présentée par Gianluca SANTONI Thèse dirigée par Martin WEIK et codirigée par Florian NACHON préparée au sein institut de biologie structurale de Grenoble et de l’école doctorale de physique Dynamique structurale de l’acetylcholinesterase et ses im- plications dans la conception de reactivateurs. Thèse soutenue publiquement le 30/01/2015, devant le jury composé de : Dr. Yves Bourne Directeur de recherche CNRS, AFMB Marseille, Rapporteur Dr. Etienne Derat Maitre de conference, Université Pierre et Marie Curie, Paris, Rapporteur Prof. Pierre-Yves Renard Professeur, Université de Normandie, Rouen, Examinateur Prof. Israel Silman Professeur, Weizmann institute,Rehovot, Examinateur Dr. Yvain Nicolet Chargé de recherche CNRS, IBS, Grenoble, Examinateur Dr. Jacques-Philippe Colletier Chargé de recherche CNRS, IBS, Grenoble, Examinateur Dr. Martin Weik Directeur de recherche CEA, IBS, Grenoble, Directeur de thèse Dr. Florian Nachon IDEF, IRBA, Bretigny sur Orge, Co-Directeur de thèse Contents Preface 1 1 Acetylcholinesterase 3 1.1 Biological function . 3 1.2 Structure and dynamics of AChE . 4 1.2.1 Three dimensional structure of AChE . 4 1.2.2 Structural dynamics involved in substrate traffic and ligand binding .............................. 7 1.2.3 Human AChE crystals . 8 1.3 Organophosphates and their inhibition of AChE . 9 1.3.1 Inhibition mechanism . 10 1.3.2 Three dimensional structures of OP-inhibited AChE . 11 1.3.3 Treatment of OP intoxication . 12 2 Drug design and protein flexibility 17 2.1 Structure based drug design (SBDD) . 18 2.1.1 Definition of structure based drug design . 18 2.1.2 The search for new ligands . 18 2.2 Protein structural dynamics . 19 2.2.1 The conformational landscape of proteins . 19 2.2.2 Techniques to characterize protein structural dynamics . 21 2.3 Including dynamical information in SBDD . 22 3 Methods 25 3.1 X-ray protein crystallography . 25 3.1.1 Crystal symmetry . 26 3.1.2 Diffraction of X-rays by a crystal . 26 3.1.3 Protein crystals . 30 3.1.4 Crystallographic data collection at synchrotron radiation sources 31 i ii CONTENTS 3.1.5 Data processing . 33 3.1.6 The phase problem . 34 3.1.7 Structure refinement and validation . 36 3.2 Molecular dynamics simulations . 36 3.2.1 The equation of motion (EOM) of atoms in a protein . 37 3.2.2 Force field parameters to integrate the EOM . 38 3.2.3 Solvent models . 39 3.3 Molecular docking . 40 3.3.1 Principles . 40 3.3.2 Docking algorithms . 40 3.3.3 Scoring function . 41 3.3.4 Flexible docking . 42 4 Optimization of KM297, a neutral AChE reactivator 43 4.1 Design, synthesis and in vitro evaluation of the reactivator KM297 . 44 4.2 Flexible docking of KM297 into hAChE-VX . 46 4.2.1 Material and methods . 46 4.2.2 Ligand scoring and conformational analysis . 47 4.3 Simulation of hAChE-VX-KM297 . 49 4.3.1 Calculation of force field parameters for OP-inhibited AChE . 49 4.3.2 Optimization of the ligand linker length . 51 4.4 X-ray crystallography . 54 4.4.1 Material and methods . 55 4.4.2 Crystallographic structure determination of the non-aged Tc AChE- tabun conjugate. 59 4.4.3 Crystallographic structure determination of the Tc AChE-KM297 complex . 64 4.4.4 Crystallographic structure determination of non-aged Tc AChE- NEDPA-KM297 complex . 69 4.5 Lead optimization: the JDS family . 74 4.5.1 Docking of chlorinated derivatives of KM297 . 75 4.5.2 Docking of JDS207 . 76 4.5.3 Crystallographic structure determination of TcAChE-JDS207 complex . 77 4.6 Structure determination of native hAChE . 80 4.6.1 Enzyme production . 81 4.6.2 Crystallogenesis . 81 4.6.3 Data collection and processing . 82 4.6.4 Structure refinement . 83 4.6.5 Structural analysis . 83 4.7 Conclusions . 85 CONTENTS iii 5 Building a flexible docking receptor library 89 5.1 Simulations of native AChE . 90 5.1.1 Material and methods . 90 5.1.2 Sampling of side chain conformations in one long versus mul- tiple short simulations . 91 5.1.3 Convergence of the multiple short simulations method . 95 5.1.4 Comparison of human and Torpedo californica AChE dynamics 99 5.2 Generation of receptors library . 102 5.2.1 Extraction of the most probable side chain conformations from MD simulation trajectories . 102 5.2.2 Modification of Tc AChE structure to generate receptors . 104 5.3 Validation of the method: docking routines . 105 5.4 Validation of the method: analysis of the results . 106 5.4.1 Quantitative analysis of docking solutions . 107 5.4.2 Structural analysis of docking solutions . 108 5.4.3 The role of water molecules . 112 5.5 Conclusions . 112 6 General conclusions and perspectives 117 6.1 Design and optimization of KM297 . 117 6.2 Side chains dynamics and flexible docking . 119 6.3 Perspectives . 120 7 Resumé de la thèse en français 123 7.1 Introduction . 123 7.1.1 L’acetylcholinesterase . 123 7.1.2 Conception de médicaments et dynamique des proteines . 124 7.2 Resultats . 125 7.2.1 Conception et optimisation d’un oxime bifonctionel . 125 7.2.2 Developement d’un outil pour le docking flexible . 126 7.3 Conclusions generales . 127 Bibliography 127 A Docking code 149 B Published manuscripts 159 iv CONTENTS List of Figures 1.1 Schematic representation of a neuromuscular junction. AChE is found in the synaptic cleft and restores transmission by hydrolyzing neuro- transmitter acetylcholine (ACh). 4 1.2 The 3-dimensional structure of Tc AChE (Sussman et al., 1991). The catalytic triad is shown in red sticks at the core of the enzyme. In this orientation, the entrance of the active site gorge, whose surface is shown in green, is at the top of the figure. The red squares show the details of the interaction between the substrate analogue OTMA (carbons shown in cyan) and the residues in the gorge of Tc AChE (Colletier et al., 2006a). A) The peripheral aromatic site residues, shown in green at the top of the figure, with a substrate molecule bound in front of Trp279. B) The catalytic site. Bound to the triad, shown in red, we observe a second substrate analogue molecule, cova- lently bound to Ser200. The choline moiety is in cation- π interaction with Trp84 (blue). The oxygen of OTMA is stabilized in the oxyan- ion hole (orange), and the methyl of the acetyl group is nested in the acyl-binding pocket (purple). 6 1.3 Neurotransmitter acetylcholine (a) and its non-hydrolyzable analogue (b) 4-oxo-N,N,N-trimethylpentanaminium (OTMA) . 7 1.4 General structure of an organophosphate nerve agent. 9 1.5 The main organophosphate agents. Molecules of the G-series: tabun (GA), sarin (GB), soman (GD), cyclosarin (GF); and lead molecule of the V-series: VX. 10 1.6 The inhibition mechanism of AChE by organophosphate nerve agents. 11 v vi LIST OF FIGURES 1.7 Crystallographic snapshots of aging of tabun-inhibited mAChE (pdb acces code 3dl4 and 3dl7). We can observe that His447 moves from an alternative conformation forced by the ethoxy substituent of tabun back to its native one, forming a salt bridge with the oxyanion of the phosphoramidyl group corresponding to aged tabun (Millard et al., 1999a; Carletti et al., 2008). 12 1.8 Structures of the most common oximes. 13 1.9 Reactivation mechanism of OP-inhibited AChE by a nucleophile Nu. 13 1.10 General structure of a bifunctional reactivator. It is formed by a group bearing an oxime function and a peripheral site ligand (PSL), connected by a flexible linker.
Recommended publications
  • Protein Complex Formation by Acetylcholinesterase and the Neurotoxin Fasciculin-2 Appears to Involve an Induced-Fit Mechanism
    Protein complex formation by acetylcholinesterase and the neurotoxin fasciculin-2 appears to involve an induced-fit mechanism Jennifer M. Bui†‡ and J. Andrew McCammon†§ †Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, and §Department of Pharmacology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0365 Edited by Jose N. Onuchic, University of California at San Diego, La Jolla, CA, and approved August 22, 2006 (received for review June 27, 2006) Specific, rapid association of protein complexes is essential for all forms of cellular existence. The initial association of two molecules in diffusion-controlled reactions is often influenced by the elec- trostatic potential. Yet, the detailed binding mechanisms of pro- teins highly depend on the particular system. A complete protein complex formation pathway has been delineated by using struc- tural information sampled over the course of the transformation reaction. The pathway begins at an encounter complex that is formed by one of the apo forms of neurotoxin fasciculin-2 (FAS2) and its high-affinity binding protein, acetylcholinesterase (AChE), followed by rapid conformational rearrangements into an inter- mediate complex that subsequently converts to the final complex as observed in crystal structures. Formation of the intermediate complex has also been independently captured in a separate 20-ns Fig. 1. Thermodynamic cycle for AB* complex formation reactions. A and B BIOPHYSICS molecular dynamics simulation of the encounter complex. Confor- molecules can be considered as any pair of interacting molecules. mational transitions between the apo and liganded states of FAS2 in the presence and absence of AChE are described in terms of their relative free energy profiles that link these two states.
    [Show full text]
  • Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: a Crystallographic, Kinetic and Calorimetric Study
    Article Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study Terrone L. Rosenberry 1, Xavier Brazzolotto 2, Ian R. Macdonald 3, Marielle Wandhammer 2, Marie Trovaslet-Leroy 2,†, Sultan Darvesh 4,5,6 and Florian Nachon 2,* 1 Departments of Neuroscience and Pharmacology, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA; [email protected] 2 Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; [email protected] (X.B.); [email protected] (M.W.); [email protected] (M.T.-L.) 3 Department of Diagnostic Radiology, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] 4 Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] 5 Department of Chemistry, Mount Saint Vincent University, Halifax, NS B3M 2J6, Canada 6 Department of Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax, NS B3H 4R2, Canada * Correspondence: [email protected]; Tel.: +33-178-65-1877 † Deceased October 2016. Received: 26 October 2017; Accepted: 27 November 2017; Published: 29 November 2017 Abstract: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) hydrolyze the neurotransmitter acetylcholine and, thereby, function as coregulators of cholinergic neurotransmission. Although closely related, these enzymes display very different substrate specificities that only partially overlap. This disparity is largely due to differences in the number of aromatic residues lining the active site gorge, which leads to large differences in the shape of the gorge and potentially to distinct interactions with an individual ligand. Considerable structural information is available for the binding of a wide diversity of ligands to AChE.
    [Show full text]
  • X-Ray Structures of Torpedo Californica Acetylcholinesterase Complexed
    X-ray Structures of Torpedo californica Acetylcholinesterase Complexed with (+)-Huperzine A and (-)-Huperzine B: Structural Evidence for an Active Site Rearrangement†,‡ H. Dvir,§,| H. L. Jiang,§,⊥ D. M. Wong,§,| M. Harel,§ M. Chetrit,§ X. C. He,⊥ G. Y. Jin,⊥ G. L. Yu,⊥ X. C. Tang,⊥ I. Silman,| D. L. Bai,*,⊥ and J. L. Sussman*,§ Departments of Structural Biology and Neurobiology, Weizmann Institute of Science, RehoVot 76100, Israel, and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, Peoples Republic of China ReceiVed February 20, 2002; ReVised Manuscript ReceiVed June 26, 2002 ABSTRACT: Kinetic and structural data are presented on the interaction with Torpedo californica acetylcholinesterase (TcAChE) of (+)-huperzine A, a synthetic enantiomer of the anti-Alzheimer drug, (-)-huperzine A, and of its natural homologue (-)-huperzine B. (+)-Huperzine A and (-)-huperzine B bind to the enzyme with dissociation constants of 4.30 and 0.33 µM, respectively, compared to 0.18 µM for (-)-huperzine A. The X-ray structures of the complexes of (+)-huperzine A and (-)-huperzine B with TcAChE were determined to 2.1 and 2.35 Å resolution, respectively, and compared to the previously determined structure of the (-)-huperzine A complex. All three interact with the “anionic” subsite of the active site, primarily through π-π stacking and through van der Waals or C-H‚‚‚π interactions with Trp84 and Phe330. Since their R-pyridone moieties are responsible for their key interactions with the active site via hydrogen bonding, and possibly via C-H‚‚‚π interactions, all three maintain similar positions and orientations with respect to it.
    [Show full text]
  • 1. Magnetic Nanoparticles: from Diagnosis to Therapy
    Research Signpost Trivandrum Kerala, India Recent Advances in Pharmaceutical Sciences VIII, 2018: 1-18 ISBN: 978-81-308-0579-5 Editors: Diego Muñoz-Torrero, Yolanda Cajal and Joan Maria Llobet 1. Magnetic nanoparticles: From diagnosis to therapy M. Antònia Busquets and Joan Estelrich Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry Institute of Nanoscience and Nanotechnology, IN2UB Faculty of Pharmacy and Food Sciences, University of Barcelona Avda Joan XXIII, 27-31, 08028 Barcelona Abstract. Magnetic nanoparticles have proven to be promising theranostic agents, namely tools for therapy and diagnosis. Among them, superparamagnetic iron oxide nanoparticles (SPIONs) highlight for their biocompatibility and reduced toxicity. Here, we describe the synthesis and characterization of SPIONs by co-precipitation of ferric and ferrous salts under mild conditions. These particles were able to accumulate in inflamed areas fact that was increased upon the application of an external magnetic field. Resonance magnetic imaging studies have shown their suitability as negative contrast agents for diagnosis. In addition, hybrid nanoparticles were obtained by incorporating the above described SPIONs into liposomes or nanoemulsions. The findings have confirmed the high potential of these systems for biomedical applications. Introduction The impact of nanotechnology is strongly associated to the development of nanomaterials and nanoparticles (NPs) [1,2]. In particular, magnetic nanoparticles (MNs) present a number of advantages if compared to other Correspondence/Reprint request: Dr. M. Antònia Busquets, Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda Joan XXIII, 27-31, 08028 Barcelona. E-mail: [email protected] 2 M. Antònia Busquets & Joan Estelrich nanosystems.
    [Show full text]
  • Anti-Cholinergic Alkaloids As Potential Therapeutic Agents for Alzheimer's Disease
    Indian Journal of Biochemistry & Biophysics Vol. 50, April 2013, pp. 120-125 Anti-cholinergic alkaloids as potential therapeutic agents for Alzheimer’s disease: An in silico approach Huma Naaz, Swati Singh, Veda P Pandey, Priyanka Singh and Upendra N Dwivedi* Bioinformatics Infrastructure Facility, Center of Excellence in Bioinformatics, Department of Biochemistry, University of Lucknow, Lucknow 226 007, India Received 10 September 2012; revised 25 January 2013 Alzheimer’s disease (AD), a progressive neurodegenerative disorder with many cognitive and neuropsychiatric symptoms is biochemically characterized by a significant decrease in the brain neurotransmitter acetylcholine (ACh). Plant-derived metabolites, including alkaloids have been reported to possess neuroprotective properties and are considered to be safe, thus have potential for developing effective therapeutic molecules for neurological disorders, such as AD. Therefore, in the present study, thirteen plant-derived alkaloids, namely pleiocarpine, kopsinine, pleiocarpamine (from Pleiocarpa mutica, family: Annonaceae), oliveroline, noroliveroline, liridonine, isooncodine, polyfothine, darienine (from Polyalthia longifolia, family: Apocynaceae) and eburnamine, eburnamonine, eburnamenine and geissoschizol (from Hunteria zeylanica, family: Apocynaceae) were analyzed for their anti-cholinergic action through docking with acetylcholinesterase (AChE) as target. Among the alkaloids, pleiocarpine showed promising anti-cholinergic potential, while its amino derivative showed about six-fold
    [Show full text]
  • Oximes: Inhibitors of Human Recombinant Acetylcholinesterase
    Int. J. Mol. Sci. 2013, 14, 16882-16900; doi:10.3390/ijms140816882 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Oximes: Inhibitors of Human Recombinant Acetylcholinesterase. A Structure-Activity Relationship (SAR) Study Vendula Sepsova 1,†, Jana Zdarova Karasova 2,3, Jan Korabecny 1,3,†, Rafael Dolezal 3,†, Filip Zemek 1, Brian J. Bennion 4,† and Kamil Kuca 3,5,* 1 Department of Toxicology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; E-Mails: [email protected] (V.S.); [email protected] (J.K.); [email protected] (F.Z.) 2 Department of Public Health, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; E-Mail: [email protected] 3 University Hospital, Biomedicinal Research Centre, Sokolska 581, 50005 Hradec Kralove, Czech Republic; E-Mail: [email protected] 4 Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA; E-Mail: [email protected] 5 Center of Advances Studies, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +420-495-832-923; Fax: +420-495-518-094. Received: 8 May 2013; in revised form: 1 August 2013 / Accepted: 2 August 2013 / Published: 16 August 2013 Abstract: Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate intoxication. Standard care involves the use of anticonvulsants (e.g., diazepam), parasympatolytics (e.g., atropine) and oximes that restore AChE activity.
    [Show full text]
  • Viewed Journals
    Quinone Methide Precursors as Realkylators of Acetylcholinesterase for Post-aging Treatment of Organophosphorus Poisoning DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Qinggeng Zhuang Graduate Program in Chemistry The Ohio State University 2017 Dissertation Committee: Professor Christopher M. Hadad, Advisor Professor Thomas J. Magliery Professor Kotaro Nakanishi Copyrighted by Qinggeng Zhuang 2017 Abstract Acetylcholinesterase (AChE) is a serine hydrolase found in brain synapses, neuromuscular junctions (NMJs) and erythrocytes. Its role is to silence nerve impulses by selectively hydrolyzing acetylcholine, a neurotransmitter. Inhibition of AChE can lead to accumulation of acetylcholine at synapses and NMJs; if left untreated, the symptoms can lead to death. Organophosphorus (OP) chemical nerve agents are a type of suicide inhibitors for AChE, leading to phosphylation of the catalytic serine; such phosphylation blocks the critical nucleophilic serine residue in the active site. OPs have been used as pesticides and chemical warfare agents, and exposure to these compounds results in the death of thousands of people every year. Clinically, OP poisoning can be treated by a combination of anti-cholinergic drugs and oximes. However, a dealkylation process referred to as aging can follow inhibition. To date, the aged form of AChE has been recalcitrant to reactivation by any oxime. A straightforward post-aging treatment is to reverse aging by realkylation of the oxyanion on the phosphylated adduct. Quinone methides (QMs) and quinone methide precursor (QMP) have been reported as alkylators of proteins and phosphates. These previous reports imply the possibility to realkylate aged AChE using a QM or QMP.
    [Show full text]
  • Hyperactivity and Seizure Induced by Tricresyl Phosphate Are Isomer
    TOXICOLOGICAL SCIENCES, 2021, 1–15 doi: 10.1093/toxsci/kfab006 Research Article Downloaded from https://academic.oup.com/toxsci/advance-article/doi/10.1093/toxsci/kfab006/6112059 by guest on 12 February 2021 Hyperactivity and Seizure Induced by Tricresyl Phosphate Are Isomer Specific and Not Linked to Phenyl Valerate-Neuropathy Target Esterase Activity Inhibition in Zebrafish Anja Knoll-Gellida, Leslie E. Dubrana, Laure M. Bourcier, Theo Merce, Gaelle€ Gruel, Magalie Soares, and Patrick J. Babin 1 Department of Life and Health Sciences, INSERM, Maladies Rares: Gen etique et Metabolisme (MRGM), U1211, Universite de Bordeaux, F-33615 Pessac, France Anja Knoll-Gellida and Leslie E. Dubrana contributed equally to this study. 1To whom correspondence should be addressed at: Laboratoire Maladies Rares: Gen etique et Metabolisme (MRGM), Universite de Bordeaux, Allee Geoffroy St-Hilaire, Bat. B2, 2e`meetage, CS 50023, 33615 Pessac Cedex, France. E-mail: [email protected] ABSTRACT Environmental exposure to tricresyl phosphate (TCP) may lead to severe neurotoxic effects, including organophosphate (OP)-induced delayed neuropathy. TCP has three symmetric isomers, distinguished by the methyl group position on the aromatic ring system. One of these isomers, tri-ortho-cresyl phosphate (ToCP), has been reported for years as a neuropathic OP, targeting neuropathic target esterase (NTE/PNPLA6), but its mode of toxic action had not been fully elucidated. Zebrafish eleuthero-embryo and larva were used to characterize the differential action of the TCP isomers. The symmetric isomers inhibited phenyl valerate (PV)-NTE enzymatic activity in vivo with different IC50, while no effect was observed on acetylcholinesterase activity. Moreover, the locomotor behavior was also affected by tri-para-cresyl phosphate and tri- meta-cresyl phosphate, only ToCP exposure led to locomotor hyperactivity lasting several hours, associated with defects in the postural control system and an impaired phototactic response, as revealed by the visual motor response test.
    [Show full text]
  • Alphabetical Index of Substances and Articles
    ALPHABETICAL INDEX OF SUBSTANCES AND ARTICLES - 355 - NOTES TO THE INDEX 1. This index is an alphabetical list of the substances and articles which are listed in numerical order in the Dangerous Goods List in Chapter 3.2. 2. For the purpose of determining the alphabetical order the following information has been ignored even when it forms part of the proper shipping name: numbers; Greek letters; the abbreviations “sec” and “tert”; and the letters “N” (nitrogen), “n” (normal), “o” (ortho) “m” (meta), “p” (para) and “N.O.S.” (not otherwise specified). 3. The name of a substance or article in block capital letters indicates a proper shipping name. 4. The name of a substance or article in block capital letters followed by the word “see” indicates an alternative proper shipping name or part of a proper shipping name (except for PCBs). 5. An entry in lower case letters followed by the word “see” indicates that the entry is not a proper shipping name; it is a synonym. 6. Where an entry is partly in block capital letters and partly in lower case letters, the latter part is considered not to be part of the proper shipping name. 7. A proper shipping name may be used in the singular or plural, as appropriate, for the purposes of documentation and package marking. - 356 - INDEX Name and description Class UN No. Name and description Class UN No. Accumulators, electric, see 4.3 3292 Acid mixture, nitrating acid, see 8 1796 8 2794 8 2795 Acid mixture, spent, nitrating acid, see 8 1826 8 2800 8 3028 Acraldehyde, inhibited, see 6.1 1092 ACETAL 3 1088
    [Show full text]
  • Report from the 26Th Meeting on Toxinology,“Bioengineering Of
    toxins Meeting Report Report from the 26th Meeting on Toxinology, “Bioengineering of Toxins”, Organized by the French Society of Toxinology (SFET) and Held in Paris, France, 4–5 December 2019 Pascale Marchot 1,* , Sylvie Diochot 2, Michel R. Popoff 3 and Evelyne Benoit 4 1 Laboratoire ‘Architecture et Fonction des Macromolécules Biologiques’, CNRS/Aix-Marseille Université, Faculté des Sciences-Campus Luminy, 13288 Marseille CEDEX 09, France 2 Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS, Sophia Antipolis, 06550 Valbonne, France; [email protected] 3 Bacterial Toxins, Institut Pasteur, 75015 Paris, France; michel-robert.popoff@pasteur.fr 4 Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; [email protected] * Correspondence: [email protected]; Tel.: +33-4-9182-5579 Received: 18 December 2019; Accepted: 27 December 2019; Published: 3 January 2020 1. Preface This 26th edition of the annual Meeting on Toxinology (RT26) of the SFET (http://sfet.asso.fr/ international) was held at the Institut Pasteur of Paris on 4–5 December 2019. The central theme selected for this meeting, “Bioengineering of Toxins”, gave rise to two thematic sessions: one on animal and plant toxins (one of our “core” themes), and a second one on bacterial toxins in honour of Dr. Michel R. Popoff (Institut Pasteur, Paris, France), both sessions being aimed at emphasizing the latest findings on their respective topics. Nine speakers from eight countries (Belgium, Denmark, France, Germany, Russia, Singapore, the United Kingdom, and the United States of America) were invited as international experts to present their work, and other researchers and students presented theirs through 23 shorter lectures and 27 posters.
    [Show full text]
  • Druglike Leads for Steric Discrimination Between Substrate
    Chem Biol Drug Des 2011; 78: 495–504 ª 2011 John Wiley & Sons A/S doi: 10.1111/j.1747-0285.2011.01157.x Research Article Drug-like Leads for Steric Discrimination between Substrate and Inhibitors of Human Acetylcholinesterase Scott A. Wildman1,†, Xiange Zheng1,†, One focus of AChE research lies in the development of new drugs David Sept2, Jeffrey T. Auletta3, Terrone L. that could prevent and ⁄ or treat poisoning from organophosphates Rosenberry3 and Garland R. Marshall1,* (OPs), toxic agents commonly used in insecticides as well as in chemical warfare agents (2). OP poisoning causes the inactivation 1Department of Biochemistry and Molecular Biophysics, Washington of AChE that prevents synaptic transmission, leading to muscle University, St. Louis, MO 63110, USA paralysis, hypertension, and malfunction of various organ systems, 2Department of Biomedical Engineering, University of Michigan, Ann ultimately leading to death. Arbor, MI 48109, USA 3Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, Two ligand-binding sites in AChE have been identified, the acylation USA site (A-site) at the base of a deep active-site gorge and the periph- *Corresponding author: Garland R. Marshall, eral site (P-site) near the gorge entrance through which ligands must [email protected] pass on their way to the A-site (3–5). Figure 1 shows the binding Authors contributed equally to this work. gorge of human AChE with acetylcholine modeled into both the A- site (green) and P-site (pink) as described in Methods. OPs are toxic Protection of the enzyme acetylcholinesterase because they covalently react with S203 in the A-site. Wilson and (AChE) from the toxic effects of organophosphate Ginsburg (6,7) conceived complementary oxime compounds that insecticides and chemical warfare agents (OPs) may be provided by inhibitors that bind at the could re-activate OP-poisoned AChE.
    [Show full text]
  • Chemical Compatibility of the Tubing Materials
    Chemical Compatibility of the Tubing Materials 1: excellent; 2: good; 3: fair; 4: not recommended Tygon Tygon ST PharMed Tygon HC Tygon Tygon SI Silicone Norprene Flurane LFL R-3603 F-4040-A MH Silicone Peroxide A-60-G F-5500-A Name 2075 Platinum (Viton) Acetaldehyde 4 4 4 4 3 3 3 4 4 Acetamide, 67% in w 4 4 2 4 1 1 1 2 4 Acetate Solvents 4 4 2 4 4 4 4 2 4 Acetic Acid, 10% in w 1 1 1 1 1 1 1 1 4 Acetic Acid, 50-60% in w 1 1 2 1 1 1 1 2 4 Acetic Acid, Glacial, 100% 4 4 2 4 1 4 4 2 4 Acetic Anhydride 4 4 1 4 1 1 1 1 4 Acetone 4 4 4 4 2 3 3 4 4 Acetonitrile 4 4 4 4 4 4 4 4 2 Acetyl Bromide 4 4 3 4 4 4 4 3 4 Acetyl Chloride 4 4 3 4 4 4 4 3 4 Acetylene Gas 1 1 1 1 1 1 1 1 1 Acrylonitrile 4 4 4 4 4 4 4 4 2 Adipic Acid, 100% in alc 4 4 2 3 4 4 4 2 4 Air 1 1 1 1 1 1 1 1 1 Alcohols General 4 4 1 2 1 2 2 1 4 Aliphatic Hydrocarbons 4 4 4 2 4 4 4 4 2 Allyl Alcohol 4 4 3 1 1 4 4 3 1 Alum, 5% in w 1 1 1 1 1 1 1 1 1 Aluminum Chloride, 53% in w 1 1 1 1 1 1 1 1 1 Aluminum Hydroxide, 2% in w 1 1 1 1 1 1 1 1 1 Aluminum Salts 1 1 1 1 1 1 1 1 1 Aluminum Sulfate, 50% in w 1 1 1 1 1 1 1 1 1 Amines 443444434 Ammonia Gas 1 1 1 1 1 4 4 1 4 Ammonia, Anhydrous Liquid 2 2 1 2 2 4 4 2 4 Ammonium Acetate, 45% in w 1 1 1 1 1 1 1 1 4 Ammonium Carbonate, 20% in w 1 1 1 1 1 1 1 1 1 Ammonium Hydroxide, 30% in w 1 1 1 3 1 4 4 1 4 Ammonium Hydroxide, 5-10% in w 1 1 1 2 1 4 4 1 4 Ammonium Persulfate, 30% in w 1 1 1 1 1 1 1 1 1 Ammonium Salts 1 1 1 1 1 1 1 1 1 Ammonium Sulfate, 30% in w 1 1 1 1 1 1 1 1 1 Amyl Acetate 4 4 2 4 4 4 4 2 4 Amyl Alcohol 4 4 4 1 1 4 4 4 1 Amyl Chloride
    [Show full text]