The Role of Vitamin D in Inflammatory Bowel Disease Pathogenesis and Severity

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Vitamin D in Inflammatory Bowel Disease Pathogenesis and Severity THE ROLE OF VITAMIN D IN INFLAMMATORY BOWEL DISEASE PATHOGENESIS AND SEVERITY by Berkeley Limketkai A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March, 2017 ABSTRACT Vitamin D has traditionally been known for its role in bone metabolism, but more recently been implicated in immune function. Emerging evidence has further suggested that vitamin D may be involved in inflammatory bowel disease (IBD) pathogenesis and activity. Studies found lower vitamin D levels among IBD patients, particularly in the setting of increased disease activity, implying that vitamin D influenced IBD. However, interpretation of these findings is challenged by the concept of reverse causation, where intestinal inflammation is already known to reduce vitamin D levels. These studies have therefore not established vitamin D deficiency as a cause or effect of IBD in humans. The principal objective of this thesis was to clarify the causal role of vitamin D in IBD pathogenesis and severity, while employing diverse methodologic approaches to overcome the issue of reverse causation. The first study was a case-control comparison of vitamin D levels from sera that were prospectively collected before and around the time of diagnosis of Crohn’s disease (CD). This longitudinal analysis permitted the evaluation of vitamin D levels as precursors to CD pathogenesis, while reducing interference by reverse causation. Vitamin D levels were similar between cases and controls prior to diagnosis, but significantly lower among cases around the time of diagnosis. The second study was an ecologic study that evaluated the association of ultraviolet (UV) exposure – a surrogate marker of vitamin D that was not influenced by IBD – and IBD hospitalization severity. Low UV exposures were associated with increased rates of hospitalization, prolonged hospitalization, and need for bowel surgeries. The third study was a systematic review of randomized trials that evaluated the effect of vitamin D supplementation on IBD activity. ii Randomization in these trials would have theoretically permitted assessment of the effect of vitamin D on IBD independent of disease activity. The meta-analysis of 4 studies with 12-month follow-up showed a trend toward fewer clinical relapses, but this was not statistically significant. Nonetheless, most studies had small sample sizes, significant risk of bias, and substantial methodologic heterogeneity. In conclusion, this thesis investigation did not find vitamin D to significantly influence CD pathogenesis. There was nonetheless some evidence to suggest that vitamin D may influence IBD activity. Further investigation with high-quality and larger randomized trials of vitamin D intervention in IBD is warranted. Committee Chair James A. Tonascia, PhD, Professor of Biostatistics and Epidemiology Committee Chair, Emeritus Theodore M. Bayless, MD, Professor Emeritus of Medicine Research Advisor Steven R. Brant, MD, Professor of Medicine Academic Advisor Craig W. Hendrix, MD, Professor of Medicine Thesis Readers N. Franklin Adkinson, MD, Professor of Medicine David M. Levine, MD, Professor of Medicine Eliseo Guallar, MD, DrPH, Professor of Epidemiology Susan M. Hutfless, PhD, Assistant Professor of Medicine iii ACKNOWLEDGEMENTS This dissertation is the culmination of the selfless contributions of the whole “village” that has helped me along my path of clinical and research training. I express my deepest gratitude to Dr. Theodore Bayless who has shown immense altruism in mentorship since my early internship days through my junior faculty years. He has served as a preeminent role model whose life and passion for inflammatory bowel disease (IBD) inspired me to eventually subspecialize in the field. As he has played a strongly defining role in my budding medical career, the opportunity to pursue the Theodore M. Bayless Fellowship in Inflammatory Bowel Diseases was an incredible honor that I will cherish throughout my career. Dr. Francis Giardiello was formally my gastroenterology fellowship director, although he also served as a career mentor during my residency and fellowship training. I truly appreciate his interest in my personal and professional development over the years. My early conversations with him while still an Osler resident solidified my desire to someday pursue further studies through the Graduate Training Programs in Clinical Investigation (GTPCI). Subsequently, as a gastroenterology fellow, Dr. Giardiello guided me through the intricacies of balancing gastroenterology fellowship, my Ph.D. studies, and in my last year at Johns Hopkins, the fellowship in IBD. Drs. N. Franklin Adkinson and Craig Hendrix are pillars of my GTPCI studies. I am indebted to them for their great generosity in time and advice, particularly as I navigated through my Ph.D. studies and thesis research. They have also provided invaluable advice on a diversity of academic matters, such as grant funding, promotions, politics, and building a research career. The foundations of this dissertation and my early IBD research career are credited to Drs. Steven Brant and Susan Hutfless. They served as my primary research mentors on this and other research endeavors throughout fellowship. Despite their myriad of responsibilities and very busy schedules, they have invested innumerable hours, days, and weeks over the past six years in teaching me how to conduct research. While serving as the chair of my Ph.D. thesis committee, Dr. James Tonascia has demonstrated admirable leadership, humor, and kindness. He shepherded me along the path leading up to the final defense with a genuine interest in my success. Despite our nascent interactions over the past few months, I feel as though he had already mentored me for years. I hope to continue learning from him well beyond my graduate education. iv Finally, the strongest drivers behind the person who I am … To my parents, there is no measure for how I can repay you. Your unconditional love and sacrifice throughout my childhood have molded me into the person I have become. I took risks and steadfastly pursued my passions when you helped me overcome internal doubts. I learned to rise from failure when you pulled me out of the pit of discouragement or defeat. I aimed for the skies when you reminded me that I could dream bigger than my limited imagination. As such, I dedicate all my successes to you. To my two sons, Aidan and Ethan, you are still too young to appreciate the inexpressible joy (and stress) you have brought your mother and me. When the days buried in work may feel endless at times, you remind me how rich my life truly is. Thank you for your patience during the many moments I could not play with you, while I focused on my thesis research and this dissertation. I hope to someday inspire you to far exceed what I have done. To my wife, DanDan, just as I have repeated over our 16 years of marriage, I feel greatly blessed to have you in my life. You never cease to amaze me with your incredible love, patience, and selflessness. Throughout my impossible balancing act of life as a husband, father, son, physician, and scientific explorer, you have helped me pick up the pieces and have encouraged me to persevere. While I worked on this dissertation, you minimized any distractions, entertained our sons when I was not available, kept the house in order, and repaired any disorder. This would not have been possible without you. Thank you. v TABLE OF CONTENTS ABSTRACT ..................................................................................................................................................II ACKNOWLEDGEMENTS ....................................................................................................................... IV TABLE OF CONTENTS ........................................................................................................................... VI LIST OF TABLES .................................................................................................................................. VIII LIST OF FIGURES ................................................................................................................................... IX LIST OF ABBREVIATIONS ...................................................................................................................... X CHAPTER I. INTRODUCTION ................................................................................................................. 1 VITAMIN D SYNTHESIS AND ACTION........................................................................................................... 2 VITAMIN D AND THE IMMUNE SYSTEM ....................................................................................................... 3 VITAMIN D AND AUTOIMMUNE DISEASE .................................................................................................... 5 VITAMIN D AND INFLAMMATORY BOWEL DISEASE .................................................................................... 7 Animal Models ....................................................................................................................................... 7 Genetic Evidence ................................................................................................................................... 8 Epidemiologic Evidence ...................................................................................................................... 10 Intervention
Recommended publications
  • Correction of Vitamin D Deficiency in Critically Ill Patients Study Protocol
    1 VITdAL@ICU - Correction of vitamin D deficiency in critically ill patients VITdAL@ICU Correction of vitamin D deficiency in critically ill patients Study Protocol Version 1.0, 19.02.2010 Original Version Version 2.0, 10.11.2010 Addition of personal variant for 6 – month – follow-up (including assessment of falls and fractures) and data safety review Version 3.0, 17.8.2012 Addition of 24-month follow-up Downloaded From: https://jamanetwork.com/ on 10/01/2021 2 VITdAL@ICU - Correction of vitamin D deficiency in critically ill patients SYNOPSIS Sponsor- Univ.-Prof. Dr. Harald Dobnig Investigator Department of Internal Medicine Division of Endocrinology and Nuclear Medicine Medical University of Graz Tel.: +43/316/385-80252 Email: [email protected] Correction of vitamin D deficiency in critically ill patients: a Title randomized, double-blind, placebo-controlled trial (“VITDAL@ICU”) Background Low vitamin D status is associated with increased mortality, cardiovascular events, diabetes, hypertension and impaired function of the immune and musculoskeletal system in cross-sectional and prospective cohort studies. Given that most critically ill patients are vitamin D deficient, treatment with sufficiently high doses of vitamin D may represent a promising and inexpensive intervention option. To date, no clinical trial has prospectively evaluated clinical outcomes in patients treated with vitamin D in an intensive care setting. Objectives/ Primary endpoint Outcome - hospital stay measures Secondary endpoints - ICU stay - mortality in
    [Show full text]
  • Hypervitaminosis - an Emerging Pathological Condition
    International Journal of Health Sciences and Research www.ijhsr.org ISSN: 2249-9571 Review Article Hypervitaminosis - An Emerging Pathological Condition J K Roop PG Department of Zoology, JC DAV College (Affiliated to Panjab University, Chandigarh), Dasuya-144205, District Hoshiarpur, Punjab, India ABSTRACT Vitamins are essential organic compounds that are required in small amounts to regulate various metabolic activities in the body. Prolonged and overconsumption of pharmaceutical forms of both water-soluble and fat-soluble vitamins may lead to toxicity and/or hypervitaminosis. Hypervitaminosis is an acute emerging pathological condition of the body due to excess accumulation of any of the vitamins. In case of acute poisoning with vitamin supplements/drugs, emergency assistance is required to detoxify the effects and restore the organization, structure and function of body’s tissues and organs. Sometimes death may occur due to intoxication to liver, kidney and heart. So, to manage any type of hypervitaminosis, proper diagnosis is essential to initiate eliminating the cause of its occurrence and accelerate the elimination of the supplement from the body. The present review discusses the symptoms of hypervitaminosis that seems to be a matter of concern today and management strategies to overcome toxicity or hypervitaminosis. Keywords: Hypervitaminosis, Toxicity, Vitamins, Vitamin pathology, Fat-soluble vitamin, Water- soluble vitamin. INTRODUCTION body, particularly in the liver. Vitamin B Vitamins are potent organic Complex and vitamin C are water- soluble. compounds present in small concentrations They are dissolved easily in food during in various fruits and vegetables. They cooking and a portion of these vitamins may regulate physiological functions and help in be destroyed by heating.
    [Show full text]
  • Simulation of Physicochemical and Pharmacokinetic Properties of Vitamin D3 and Its Natural Derivatives
    pharmaceuticals Article Simulation of Physicochemical and Pharmacokinetic Properties of Vitamin D3 and Its Natural Derivatives Subrata Deb * , Anthony Allen Reeves and Suki Lafortune Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA; [email protected] (A.A.R.); [email protected] (S.L.) * Correspondence: [email protected] or [email protected]; Tel.: +1-224-310-7870 or +1-305-760-7479 Received: 9 June 2020; Accepted: 20 July 2020; Published: 23 July 2020 Abstract: Vitamin D3 is an endogenous fat-soluble secosteroid, either biosynthesized in human skin or absorbed from diet and health supplements. Multiple hydroxylation reactions in several tissues including liver and small intestine produce different forms of vitamin D3. Low serum vitamin D levels is a global problem which may origin from differential absorption following supplementation. The objective of the present study was to estimate the physicochemical properties, metabolism, transport and pharmacokinetic behavior of vitamin D3 derivatives following oral ingestion. GastroPlus software, which is an in silico mechanistically-constructed simulation tool, was used to simulate the physicochemical and pharmacokinetic behavior for twelve vitamin D3 derivatives. The Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) Predictor and PKPlus modules were employed to derive the relevant parameters from the structural features of the compounds. The majority of the vitamin D3 derivatives are lipophilic (log P values > 5) with poor water solubility which are reflected in the poor predicted bioavailability. The fraction absorbed values for the vitamin D3 derivatives were low except for calcitroic acid, 1,23S,25-trihydroxy-24-oxo-vitamin D3, and (23S,25R)-1,25-dihydroxyvitamin D3-26,23-lactone each being greater than 90% fraction absorbed.
    [Show full text]
  • Question of the Day Archives: Monday, December 5, 2016 Question: Calcium Oxalate Is a Widespread Toxin Found in Many Species of Plants
    Question Of the Day Archives: Monday, December 5, 2016 Question: Calcium oxalate is a widespread toxin found in many species of plants. What is the needle shaped crystal containing calcium oxalate called and what is the compilation of these structures known as? Answer: The needle shaped plant-based crystals containing calcium oxalate are known as raphides. A compilation of raphides forms the structure known as an idioblast. (Lim CS et al. Atlas of select poisonous plants and mushrooms. 2016 Disease-a-Month 62(3):37-66) Friday, December 2, 2016 Question: Which oral chelating agent has been reported to cause transient increases in plasma ALT activity in some patients as well as rare instances of mucocutaneous skin reactions? Answer: Orally administered dimercaptosuccinic acid (DMSA) has been reported to cause transient increases in ALT activity as well as rare instances of mucocutaneous skin reactions. (Bradberry S et al. Use of oral dimercaptosuccinic acid (succimer) in adult patients with inorganic lead poisoning. 2009 Q J Med 102:721-732) Thursday, December 1, 2016 Question: What is Clioquinol and why was it withdrawn from the market during the 1970s? Answer: According to the cited reference, “Between the 1950s and 1970s Clioquinol was used to treat and prevent intestinal parasitic disease [intestinal amebiasis].” “In the early 1970s Clioquinol was withdrawn from the market as an oral agent due to an association with sub-acute myelo-optic neuropathy (SMON) in Japanese patients. SMON is a syndrome that involves sensory and motor disturbances in the lower limbs as well as visual changes that are due to symmetrical demyelination of the lateral and posterior funiculi of the spinal cord, optic nerve, and peripheral nerves.
    [Show full text]
  • Draft Vitamin D and Health Report
    Draft Vitamin D and Health report Scientific consultation: 22 July to 23 September 2015 Contents Page 1. Introduction 3 2. Biology and metabolism 5 3. Photobiology of vitamin D 16 4. Measuring vitamin D exposure (from diet and sunlight) 24 5. Relationship between vitamin D exposure and serum (25(OH)D concentration 29 6. Vitamin D and health outcomes 35 Musculoskeletal outcomes 37 Rickets 39 Osteomalacia 41 Pregnancy and lactation 42 Infants (up to 12 months) 44 Children (1-3y) 45 Children (4-8y) 45 Adults < 50 years 47 Adults > 50 years 50 Conclusions – vitamin D & musculoskeletal health outcomes 59 Non-musculoskeletal health outcomes 61 Pregnancy & lactation – non-musculoskeletal health outcomes 61 Cancers 67 Cardiovascular disease & hypertension 70 All-cause mortality 74 Autoimmune disease 76 Infectious disease 81 Neuropsychological functioning 85 Oral health 88 Age-related macular degeneration 90 Conclusions – non-musculoskeletal health outcomes 92 Selection of health outcomes to inform the setting of DRVs for vitamin D 93 7. Potential adverse effects of high vitamin D intakes/high serum 25(OH)D 95 concentration 8. Dietary vitamin D intakes and serum/plasma 25(OH)D concentrations of the UK 102 population 9. Review of DRVs 109 10. Overall summary & conclusions 121 11. Recommendations 130 12. References 131 2 1. Introduction Background 1. Vitamin D is synthesised in the skin by the action of sunlight. Skin synthesis is the main source of vitamin D for most people; dietary sources are essential when exposure to sunlight containing the appropriate wavelength is limited. The Committee on Medical Aspects of Food and Nutrition Policy (COMA), which set Dietary Reference Values (DRVs) for vitamin D in 1991 (DH1, 1991), did not set a Reference Nutrient Intake (RNI2) for groups in the population considered to receive adequate sunlight exposure.
    [Show full text]
  • Vitamins in Animal and Human Nutrition
    Lee Russell McDowell Vitamins in Animal and Human Nutrition SECOND EDITION Iowa State University Press / Ames VITAMINS IN ANIMAL AND HUMAN NUTRITION Lee Russell McDowell Vitamins in Animal and Human Nutrition SECOND EDITION Iowa State University Press / Ames Lee Russell McDowell, PhD, is a professor of animal science in the Department of Animal Science, University of Florida, Gainesville. His research interests center pri- marily on minerals for grazing livestock, vitamins for livestock, and feed composition. Dr. McDowell also collaborates with numerous animal nutritionists in tropical coun- tries of Latin America, Africa, and Southeast Asia. © 2000 Iowa State University Press; 1989 Academic Press All rights reserved Iowa State University Press 2121 South State Avenue, Ames, Iowa 50014 Orders: 1-800-862-6657 Office: 1-515-292-0140 Fax: 1-515-292-3348 Web site: www.isupress.edu Authorization to photocopy items for internal or personal use, or the internal or per- sonal use of specific clients, is granted by Iowa State University Press, provided that the base fee of $.10 per copy is paid directly to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For those organizations that have been granted a photocopy license by CCC, a separate system of payments has been arranged. The fee code for users of the Transactional Reporting Service is 0-8138-2630-6/2000 $.10. Printed on acid-free paper in the United States of America First edition, 1989 (© Academic Press) Second edition, 2000 Library of Congress Cataloging-in-Publication Data McDowell, L. R. Vitamins in animal and human nutrition/Lee Russell McDowell—2nd ed.
    [Show full text]
  • ACVPM Toxicology Review
    Top 20 Toxicology Review “I always keep a supply of stimulant handy in case I see a snake………..which I also keep handy. “ - WC Fields The Top 10 (in no particular order….) 1. Bracken fern Pteridium aquilinum –THINK bloody urine cows, ataxic horse 2. Copper –THINK hemolytic crisis, port wine urine, gunmetal kidneys 3. Cyanide—THINK Bright red blood, like bright red cherries 4. Anticoagulant rodenticides--–THINK hemolytic crisis 5. Ethylene glycol (antifreeze) –THINK kidney failure 6. Insecticides (esp. OPPs, carbamates) –THINK miosis, drool, vomiting, diarrhea, seizure 7. Lead--–THINK GI signs + Neuro Sx (blindness) 8. NITRATE / NITRITE Toxicity –THINK Dark Chocolate blood 9. Mycotoxins Aflatoxins –THINK hepatotoxic, carcinogenic Zearalonone / moldy corn –THINK estrogenism, repro dysfunction 10. Nonprotein nitrogen (NPN) ‘Ammonia tox‘ (urea, ammonia, etc) –THINK Bov Bonkers 1 www.zukureview.com © Zuku LLC, All Rights Reserved I. Pathognomonics, weird names, weird smells, NOEL 1. Gunmetal grey kidneys-Cu tox Trifolium subterraneum, cz mineral imbal Senecio, Heliotropum damage liver cz Cu tetention 2. Port wine urine-Cu tox see above 3. Cherry-red blood-Cyanide pitted fruits 4. Chocolate-brown blood- Nitrates 5. “SPECTACLES” Depigmentation around eyes- molybdenul tox 6. Smells a. Garlicky breath- selenium tox b. Bitter almonds in rumen-cyanide c. “Mouse-like odor” to crushed leaves- Conium maculatum (poison hemlock) 7. Diseases a. “Alkali disease”- selenium toxicity (Astragalus, Oxytropis) b. “Blind staggers”-selenium tox c. “Cracker heels” clicking dewclaws w/ Astragalus-miserotoxin d. “Milk sickness” in early American settlers- Eupatorium (white snakeroot) e. “Crooked calf” syndrome- torticollis, carpal flexure, scoliosis in calves exposed in utero d. 40-70 to Lupinus (Lupine, bluebonnet) f.
    [Show full text]
  • Can Vitamin D3 Supplementation Reduce the Time to Severe Asthma Exacerbations in Children with Asthma?
    Idan Bokobza1, Nour El Hadi1, Andrew Bush2,3, Heidi Makrinioti1,2 [email protected] Journal club Can vitamin D3 supplementation reduce the time to severe asthma exacerbations in children with asthma? Although the protective levels of vitamin D for Cite as: Bokobza I, El Hadi N, Commentary on: bone health have been well described, we do Bush A, et al. Can vitamin Forno E, et al. Effect of Vitamin D 3 not know what levels of vitamin D are needed for D3 supplementation reduce supplementation on severe asthma optimal immune responses to respiratory viral the time to severe asthma exacerbations in children with asthma and low infections [8]. Vitamin D deficiency is defined as exacerbations in children vitamin D levels: the VDKA randomized clinical with asthma? Breathe 2021; measurable levels of 25-hydroxyvitamin D below trial. JAMA 2020; 324: 752–760. 17: 210071. 20 ng·mL−1 and vitamin D insufficiency is defined as measurable levels of 25-hydroxyvitamin D below Context 30 ng·mL−1 [9], but these are based solely on bone markers. There is considerable evidence that the prevalence There is evidence from observational cohort of asthma is increasing in industrialised countries, studies linking low 25-hydroxyvitamin D levels with particularly in children and young adults [1]. asthma incidence in children [10, 11]. A systematic Exacerbations of asthma constitute the main review of the literature on studies examining the burden of the disease for children and their impact of vitamin D supplementation in children families. The majority of asthma exacerbations are with early diagnosed asthma failed to show triggered by respiratory viruses, most commonly clear positive impact [12].
    [Show full text]
  • Vitamin D in Plants – Occurrence, Analysis and Biosynthesis
    Vitamin D in plants – occurrence, analysis and biosynthesis Rie Bak Jäpelt PhD Thesis 2011 Vitamin D in plants Occurrence, analysis and biosynthesis PhD thesis Rie Bak Jäpelt Division of Food Chemistry National Food Institute Technical University of Denmark 2011 Vitamin D in plants – occurrence, analysis and biosynthesis December 2011 Copyright: National Food Institute, Technical University of Denmark Photo: Colourbox ISBN: 978-87-92763-15-0 This PhD Thesis is available at www.food.dtu.dk National Food Institute Technical University of Denmark Mørkhøj Bygade 19 DK-2860 Søborg Tel: +45 35 88 70 00 Fax: +45 35 88 70 01 Preface This PhD study was conducted from 2008 to 2011 at the Division of Food Chemistry, National Food Institute, Technical University of Denmark. The project was financially supported by Ministry of Food, Agriculture and Fisheries, Directorate for Food, Fisheries and Agri Business (3304-FVFP-07-774-02) and Technical University of Denmark. I will start by expressing my gratitude to everyone who has helped during my PhD study. In particular, I would like to thank my principal supervisor Senior Scientist Jette Jakobsen. Jette has been an invaluable support both in ups and downs. Thank you for giving me diverse and varying tasks and responsibilities and for believing in me. I would also like to thank my co- supervisor, Head of Division Jørn Smedsgaard, for introducing me to mass spectrometry and for valuable discussions on method development. I thank current and former colleagues at Division of Food Chemistry and especially the group of Bioactive Compounds for creating a comfortable work atmosphere.
    [Show full text]
  • Vitamin D: Current Status and Perspectives1)
    Article in press - uncorrected proof Clin Chem Lab Med 2009;47(2):120–127 ᮊ 2009 by Walter de Gruyter • Berlin • New York. DOI 10.1515/CCLM.2009.036 2009/165 Review Vitamin D: current status and perspectives1) Etienne Cavalier1,*, Pierre Delanaye2, Jean-Paul Introduction Chapelle1 and Jean-Claude Souberbielle3 1 Department of Clinical Chemistry, University The discovery of vitamin D may have begun in Bel- Hospital of Liege, University of Liege, Belgium gium in 1900 when Professor Wildiers from the Uni- versity of Louvain studied the ‘‘bios’’, an organic 2 Department of Nephrology, University Hospital of extract of self-autolyzed yeast. This substance stimu- Liege, University of Liege, Belgium lated the proliferation of yeast (1). In 1912, Casimir 3 Universite´Paris Descartes, Inserm U845, and Funk suggested the name ‘‘vitamine’’ for ‘‘nitroge- Hoˆpital Necker, Service d’explorations nous substances, minute quantities of which are fonctionnelles, Paris, France essential in the diet of birds, man and some other ani- mals’’ (2). In 1921, Funk and Dubin showed that there were two different vitamins present in yeast: the absence of one of these, vitamin B, caused polyneur- itis in birds (beri-beri), while the other, which they Abstract called vitamin D, was the ‘‘bios’’, necessary for the activity of low concentrations of yeast cells. Both vita- The role of vitamin D in maintaining bone health has mins were necessary for the proper growth of rats (3, been known for decades. Recently, however, the dis- 4). At the same time the interest for rickets was covery that many tissues expressed the vitamin D renewed.
    [Show full text]
  • Vitamin D Toxicity
    Post N Med 2016; XXIX(10): 756-759 ©Borgis *Ewa Marcinowska-Suchowierska1, Paweł Płudowski2 Vitamin D toxicity Zatrucie witaminą D 1Department of Geriatric, Internal Medicine and Metabolic Bone Disease, Centre of Postgraduate Medical Education, Warsaw Head of Department: Professor Marek Tałałaj, MD, PhD 2Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, Warsaw Head of Department: Professor Roman Janas, PhD Keywords Summary vitamin D, 25(OH)D, toxicity, clinical Vitamin D toxicity (VDT), also called hypervitaminosis D, is a rare but potentially serious symptoms and management condition that occurs when an individual has excessive 25(OH)D levels in the bloodstream. Vitamin D toxicity is usually caused by extremely high doses of vitamin D supplements, not by diet or skin exposure to the sun. The main clinical consequence of VDT is elevated Słowa kluczowe serum calcium level (hypercalcemia) and a variety of nonspecific symptoms. The literature witamina D, 25(OH)D, toksyczność, reports that hypercalcemia due to overdosed vitamin D may appear if serum 25(OH)D objawy kliniczne, leczenie levels are higher than 150-200 ng/ml. Many different mechanisms have been proposed to account for VDT, including the vitamin D metabolite itself, VDR number, activity of 1 al- fa-hydroxylase, inhibition of vitamin D catabolism, and the capacity of VDBP. Mounting evidence that higher levels of vitamin D may have beneficial effects on bone and cellular health may predispose to enhanced administration of vitamin D and increased frequency of VDT. Hypercalcemia from VDT is rare, but a dangerous state for the organism and should receive adequate and sensible treatment.
    [Show full text]
  • Vitamin D and Asthma: What Is the Connection? Disclosure
    Vitamin D and Asthma: What is the Connection? Disclosure Monaghan Medical Corporation – speaker Norvartis – speaker Genetech – speaker Thank you Monaghan! Learning Objectives Discuss basic physiology of vitamin D and the potential consequences of vitamin D deficiency. Describe the potential impact of vitamin D and asthma. Evaluate the emerging role of vitamin D as an adjunctive therapy in asthma management. Vitamin D- The Facts . Vitamin D deficiency is public health problem for adults and children worldwide. Many epidemiological studies have shown that vitamin D deficiency increases the risk of asthma and allergies. Low levels of vitamin D have been associated with asthma severity, poor control with recurrent exacerbations. Rochester Epidemiology Project National Institutes of Health-funded Mayo Clinic 2002 – 2011 Geographic population identifying health trends N = 20,308 8% of subjects vitamin D levels > 50 ng/mL 16,246 people were vitamin D deficient Mayo Clinic, 2015 What is vitamin D deficiency? Deficiency < 20 ng/ml25(OH)D concentration Insufficiency: 20-30 mg/ml Sufficiency: 30-50 ng/ml Toxic: > 150 ng/ ml Endocrine Society Clinical Practice Guideline Vitamin D Deficiency Increase Risk Osteoporosis Osteoporotic fracture Osteomalacia Rickets Heart disease Autoimmune disease Multiple sclerosis Alzheimers Type 1 Diabetes Some cancers Depression Cardiovasular disease Vitamin D Deficiency Increase Risk Asthma Cystic fibrosis Chronic Obstructive Pulmonary Disease (COPD) Interstitial pneumonia Factors Influencing Vitamin D Age Body fat Level of skin melanin Latitude Amount of sun exposures Use of sunscreen Health status Latitude and vitamin D production in the skin Except during the summer months, the skin makes little if any vitamin D from the sun at latitudes above 37 degrees north (in the United States, the shaded region in the map) or below 37 degrees south of the equator.
    [Show full text]