Vitamins in Animal and Human Nutrition

Total Page:16

File Type:pdf, Size:1020Kb

Vitamins in Animal and Human Nutrition Lee Russell McDowell Vitamins in Animal and Human Nutrition SECOND EDITION Iowa State University Press / Ames VITAMINS IN ANIMAL AND HUMAN NUTRITION Lee Russell McDowell Vitamins in Animal and Human Nutrition SECOND EDITION Iowa State University Press / Ames Lee Russell McDowell, PhD, is a professor of animal science in the Department of Animal Science, University of Florida, Gainesville. His research interests center pri- marily on minerals for grazing livestock, vitamins for livestock, and feed composition. Dr. McDowell also collaborates with numerous animal nutritionists in tropical coun- tries of Latin America, Africa, and Southeast Asia. © 2000 Iowa State University Press; 1989 Academic Press All rights reserved Iowa State University Press 2121 South State Avenue, Ames, Iowa 50014 Orders: 1-800-862-6657 Office: 1-515-292-0140 Fax: 1-515-292-3348 Web site: www.isupress.edu Authorization to photocopy items for internal or personal use, or the internal or per- sonal use of specific clients, is granted by Iowa State University Press, provided that the base fee of $.10 per copy is paid directly to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For those organizations that have been granted a photocopy license by CCC, a separate system of payments has been arranged. The fee code for users of the Transactional Reporting Service is 0-8138-2630-6/2000 $.10. Printed on acid-free paper in the United States of America First edition, 1989 (© Academic Press) Second edition, 2000 Library of Congress Cataloging-in-Publication Data McDowell, L. R. Vitamins in animal and human nutrition/Lee Russell McDowell—2nd ed. p. cm. Includes bibliographical references and index. ISBN 0-8138-2630-6 1. Vitamins in human nutrition. 2. Vitamins in animal nutrition. 3. Avitaminosis. I. Title. QP771.M396 2000 613.2′86—dc21 00-027082 The last digit is the print number: 9 8 7 6 5 4 3 2 1 This book is dedicated, with appreciation, to my parents; my wife, Lorraine; my daughters, Suzannah, Joanna, and Teresa and their husbands and children; and to Tony J. Cunha (deceased), the former head of the Depart- ment of Animal Science at the University of Florida, for his practical knowledge of the livestock in- dustry and for his support and encouragement to write books. CONTENTS Preface, xv 1. Introduction and Historical Considerations Definition of Vitamins, 3 Classification of Vitamins, 4 Vitamin Nomenclature, 5 Vitamin Requirements, 6 Vitamin Occurrence, 7 History of the Vitamins, 7 References, 13 2. Vitamin A Introduction, 15 History, 16 Chemical Structure and Properties, 18 Analytical Procedures, 21 Metabolism, 22 Functions, 28 Requirements, 39 Natural Sources, 43 Deficiency, 48 Supplementation, 69 β-Carotene Function Independent of Vitamin A, 75 Toxicity, 78 References, 82 3. Vitamin D Introduction, 91 History, 91 Chemical Structure, Properties, and Antagonists, 94 Analytical Procedures, 95 vii CONTENTS Metabolism, 97 Functions, 103 Requirements, 111 Natural Sources, 115 Deficiency, 117 Supplementation, 134 Toxicity, 140 References, 147 4. Vitamin E Introduction, 155 History, 155 Chemical Structure and Properties, 157 Analytical Procedures, 160 Metabolism, 161 Functions, 164 Requirements, 170 Natural Sources, 174 Deficiency, 178 Supplementation, 207 Toxicity, 216 References, 217 5. Vitamin K Introduction, 227 History, 227 Chemical Structure, Properties, and Antagonists, 229 Analytical Procedures, 231 Metabolism, 232 Functions, 235 Requirements, 239 Natural Sources, 242 Deficiency, 244 Supplementation, 254 Toxicity, 258 References, 259 6. Thiamin Introduction, 265 History, 265 Chemical Structure, Properties, and Antagonists, 267 Analytical Procedures, 269 CONTENTS Metabolism, 269 Functions, 271 Requirements, 274 Natural Sources, 278 Deficiency, 280 Supplementation, 301 Toxicity, 305 References, 305 7. Riboflavin Introduction, 311 History, 311 Chemical Structure, Properties, and Antagonists, 312 Analytical Procedures, 314 Metabolism, 315 Functions, 317 Requirements, 321 Natural Sources, 324 Deficiency, 326 Supplementation, 340 Toxicity, 342 References, 342 8. Niacin Introduction, 347 History, 347 Chemical Structure, Properties, and Antagonists, 350 Analytical Procedures, 350 Metabolism, 351 Functions, 355 Requirements, 357 Natural Sources, 360 Deficiency, 362 Supplementation, 376 Toxicity, 379 References, 380 9. Vitamin B6 Introduction, 385 History, 385 Chemical Structure, Properties, and Antagonists, 386 Analytical Procedures, 388 ix CONTENTS Metabolism, 389 Functions, 391 Requirements, 394 Natural Sources, 397 Deficiency, 399 Supplementation, 409 Toxicity, 412 References, 413 10. Pantothenic Acid Introduction, 419 History, 419 Chemical Structure, Properties, and Antagonists, 420 Analytical Procedures, 422 Metabolism, 423 Functions, 424 Requirements, 426 Natural Sources, 429 Deficiency, 430 Supplementation, 439 Toxicity, 441 References, 441 11. Biotin Introduction, 445 History, 445 Chemical Structure, Properties, and Antagonists, 446 Analytical Procedures, 448 Metabolism, 448 Functions, 450 Requirements, 452 Natural Sources, 454 Deficiency, 455 Supplementation, 471 Toxicity, 474 References, 475 12. Folacin Introduction, 479 History, 480 Chemical Structure, Properties, and Antagonists, 481 Analytical Procedures, 484 x CONTENTS Metabolism, 485 Functions, 487 Requirements, 490 Natural Sources, 494 Deficiency, 495 Supplementation, 512 Toxicity, 515 References, 516 13. Vitamin B12 Introduction, 523 History, 523 Chemical Structure, Properties, and Antagonists, 526 Analytical Procedures, 528 Metabolism, 529 Functions, 532 Requirements, 535 Natural Sources, 538 Deficiency, 540 Supplementation, 555 Toxicity, 558 References, 559 14. Choline Introduction, 565 History, 565 Chemical Structure and Properties, 566 Analytical Procedures, 567 Metabolism, 568 Functions, 571 Requirements, 574 Natural Sources, 576 Deficiency, 578 Supplementation, 588 Toxicity, 592 References, 592 15. Vitamin C Introduction, 597 History, 597 Chemical Structure, Properties, and Antagonists, 600 Analytical Procedures, 601 xi CONTENTS Metabolism, 602 Functions, 604 Requirements, 609 Natural Sources, 611 Deficiency, 613 Supplementation, 627 Toxicity, 633 References, 634 16. Carnitine Introduction, 641 History, 641 Chemical Structure and Properties, 641 Analytical Procedures, 642 Metabolism, 642 Functions, 644 Requirements, 645 Natural Sources, 646 Deficiency, 647 Supplementation, 653 Toxicity, 655 References, 655 17. Vitamin-like Substances Introduction, 659 Myo-Inositol (Inositol), 660 Pyrroloquinoline Quinone (PQQ), 666 p-Aminobenzoic Acid (PABA), 667 Flavonoids (Polyphenols), 668 Lipoic Acid (Thioctic Acid), 669 Coenzyme Q (Ubiquinones), 669 Vitamin B13 (Orotic Acid), 670 Vitamin B15 (Pangamic Acid), 670 Vitamin B17 (Laetrile), 670 Vitamin H3 (Gerovital), 671 Vitamin U (Cabagin), 671 Glucose Tolerance Factor, 671 Other Vitamin-like Factors, 671 References, 673 xii CONTENTS 18. Essential Fatty Acids Introduction, 675 History, 675 Chemical Structure and Properties, 676 Analytical Procedures, 678 Metabolism and Functions, 679 Requirements, 689 Natural Sources, 693 Deficiency, 695 Supplementation, 704 Toxicity, 708 References, 708 19. Vitamin Supplementation Introduction, 713 Factors Resulting in Inadequate Dietary Intakes of Vitamins, 714 Factors Affecting Vitamin Requirements and Utilization, 720 Optimum Vitamin Allowances, 723 Vitamin Supplementation Most Needed by Livestock, 727 Vitamin Supplementation for Humans, 732 Providing Vitamin Supplements, 735 Formulating Vitamin Premixes, 741 References, 742 Appendix: Vitamin Requirements of Livestock and Humans; Feed Composition; Metric Conversions A1a: Vitamin Requirements for Ruminants and Horses, 748 A1b: Vitamin Requirements for Monogastric Animals, 750 A1c: Vitamin Requirements for Humans, 756 A2: Composition of Important Feeds, 758 A3: Metric Weights and Measures with Customary Equivalents, 762 Index, 763 xiii PREFACE Vitamins in Animal and Human Nutrition contains 19 chapters of concise, up-to-date information on vitamin nutrition for both animals and humans. The first chapter deals with the definition of vitamins, general considerations, and the fascinating history of these nutrients. Chapters 2 through 16 discuss the 15 established vitamins in relation to history; chemical structure, properties, and antagonists; analytical procedures; metabolism; functions; requirements; sources; deficiency; supplementation; and toxicity. Chapter 17 deals with other vitamin-like substances, and Chapter 18 reviews the importance of essential fatty acids. The final chapter discusses vitamin supplementation considerations. An earlier edition of this book with a somewhat similar title was pub- lished by Academic Press in 1989. The present book has been completely and vigorously revised with one additional chapter. In the last 10 years, a great deal of new information has been generated in the field of vitamins; this is re- flected by the fact that more than half of all the references have been pub- lished since the first edition. It is hoped that this book will be of worldwide use and will continue, as the first edition, to be used as a textbook and as an authoritative reference book for use by research and extension specialists, feed manufacturers, teachers, students, and others. An attempt has been made to provide a balance between animal nutrition and clinical human nutrition. Likewise, a comparison between the balance of chemical, metabolic, and functional aspects of vitamins and their practical and applied considerations has been made.
Recommended publications
  • Correction of Vitamin D Deficiency in Critically Ill Patients Study Protocol
    1 VITdAL@ICU - Correction of vitamin D deficiency in critically ill patients VITdAL@ICU Correction of vitamin D deficiency in critically ill patients Study Protocol Version 1.0, 19.02.2010 Original Version Version 2.0, 10.11.2010 Addition of personal variant for 6 – month – follow-up (including assessment of falls and fractures) and data safety review Version 3.0, 17.8.2012 Addition of 24-month follow-up Downloaded From: https://jamanetwork.com/ on 10/01/2021 2 VITdAL@ICU - Correction of vitamin D deficiency in critically ill patients SYNOPSIS Sponsor- Univ.-Prof. Dr. Harald Dobnig Investigator Department of Internal Medicine Division of Endocrinology and Nuclear Medicine Medical University of Graz Tel.: +43/316/385-80252 Email: [email protected] Correction of vitamin D deficiency in critically ill patients: a Title randomized, double-blind, placebo-controlled trial (“VITDAL@ICU”) Background Low vitamin D status is associated with increased mortality, cardiovascular events, diabetes, hypertension and impaired function of the immune and musculoskeletal system in cross-sectional and prospective cohort studies. Given that most critically ill patients are vitamin D deficient, treatment with sufficiently high doses of vitamin D may represent a promising and inexpensive intervention option. To date, no clinical trial has prospectively evaluated clinical outcomes in patients treated with vitamin D in an intensive care setting. Objectives/ Primary endpoint Outcome - hospital stay measures Secondary endpoints - ICU stay - mortality in
    [Show full text]
  • Nutritional Support of Dogs and Cats After Surgery Or Illness
    Open Journal of Veterinary Medicine, 2014, 4, 44-57 Published Online April 2014 in SciRes. http://www.scirp.org/journal/ojvm http://dx.doi.org/10.4236/ojvm.2014.44006 Nutritional Support of Dogs and Cats after Surgery or Illness Ronald J. Corbee1*, Wim J. S. Van Kerkhoven2 1Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan, Utrecht, The Netherlands 2Viyo International NV, Ijzerenpoortkaai 3, Antwerpen, Belgium Email: *[email protected] Received 24 February 2014; revised 20 March 2014; accepted 27 March 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Nutritional support early during the postoperative period or after onset of illness decreases the mortality rate and shortens the duration of hospitalization of dogs and cats. The preferred feeding route is dependent on the condition of the patient. If there are no contraindications, every patient must receive nutritional support, at least consistent with the resting energy requirement (RER). Several nutrients may be beneficial during healing and recovery from illness or surgery, but further research is needed to empirically certify the effects of these nutrients in critically ill patients. Keywords Recovery, Food Supplementation, Nutrition, Nutraceuticals 1. Introduction Nutritional support is important for animals during recovery from illness or surgery. Many animals will recover from mild illness or standard surgical procedures at home, but patients with more severe disease or conditions will be hospitalized during recovery. It is recommended to have a protocol for nutritional support of hospitalized patients since early nutritional support has been reported to improve outcome and to shorten hospitalization time in humans [1] [2] and dogs [3].
    [Show full text]
  • Common Terms Used in Animal Feeding and Nutrition
    Common Terms Used in Animal Feeding and Nutrition Uttam Saha, Program Coordinator, Feed and Environmental Water Laboratory Leticia Sonon, Program Coordinator, Soil, Plant, and Water Laboratory Dennis Hancock, Assistant Professor, Extension Forage Specialist Nicholas Hill, Professor, Crop and Soil Sciences Lawton Stewart, Assistant Professor, Extension Beef Specialist Gary Heusner, Professor, Extension Equine Specialist David E. Kissel, Professor and Director, Agricultural and Environmental Services Laboratories The largest operating cost in a livestock production enterprise is the feed bill. To keep this cost low, one must sup- ply the right amount of feed to the animals. Overfeeding is wasteful. Underfeeding will decrease animal perfor- mance and profitability. Therefore, proper animal feeding and nutrition are crucial to the profitability of the live- stock enterprise. Laboratory analyses of the composition of feed or forage are used to assess their nutritive value (Figure 1). A typi- cal feed analysis includes measurements of some important quality attributes or parameters (e.g., crude protein, fiber, digestibility, etc.) used to define nutritive value. Other parameters are analyzed under some special circum- stances. For example, acid detergent insoluble crude protein (ADICP) is usually only measured if heat damage to the feed is suspected. Feed or Forage Sample Dry Water Removed Organic Matter (Burned) Burn Moisture Free Feed/Dry Matter (Remains) Ash (Remains): Neutral Detergent Extraction Various Minerals and Sand Neutral Detergent
    [Show full text]
  • Whole Food Veterinary Clinical Nutrition
    2019 Veterinary Guide Whole Food Veterinary Clinical Nutrition Comprehensive Veterinary Product Guide for the exclusive use by licensed veterinarians and technicians It’s Time Vets Take Back Nutrition! JustFoodForDogs offers the world’s first line of clinically proven, scientifically tested, specialist approved daily and veterinary support fresh whole food diets. We have amassed a tremendous amount of pet nutrition knowledge since the first kibble and canned commercial formulas were created, and many veterinarians and pet owners are no longer accepting these feed grade foods – and their highly processed ingredients – as the best nutrition to give to their pets. Our mission is to transform our pets’ health through nutrition and veterinarians are our most valued partners. Our daily recipes are the only whole food diets that have been clinically shown to boost the immune system through independent university research. The results were published in the Journal of Animal Physiology and Animal Nutrition. Our line of daily diets have undergone robust humane feeding trials and digestibility studies through independent universities, and we are committed to ongoing research in fresh whole food nutrition. Our concept is simple: we use only ingredients inspected and approved by the USDA for human consumption to maximize bioavailability and quality and to minimize potential contaminants and toxins. We cook the food to minimum safe temperatures established by the FDA in our own kitchens in Southern California – nothing is raw. Our food is prepared fresh daily in small batches, instantly chilled and packaged fresh frozen. Refrigeration is our only preservative. We worked closely with board certified specialists in various fields on the development of our veterinary line of diets, and we regularly test our food and ingredients through independent laboratories and through our board certified veterinary toxicologist and professor at Western University, Dr.
    [Show full text]
  • Hypervitaminosis - an Emerging Pathological Condition
    International Journal of Health Sciences and Research www.ijhsr.org ISSN: 2249-9571 Review Article Hypervitaminosis - An Emerging Pathological Condition J K Roop PG Department of Zoology, JC DAV College (Affiliated to Panjab University, Chandigarh), Dasuya-144205, District Hoshiarpur, Punjab, India ABSTRACT Vitamins are essential organic compounds that are required in small amounts to regulate various metabolic activities in the body. Prolonged and overconsumption of pharmaceutical forms of both water-soluble and fat-soluble vitamins may lead to toxicity and/or hypervitaminosis. Hypervitaminosis is an acute emerging pathological condition of the body due to excess accumulation of any of the vitamins. In case of acute poisoning with vitamin supplements/drugs, emergency assistance is required to detoxify the effects and restore the organization, structure and function of body’s tissues and organs. Sometimes death may occur due to intoxication to liver, kidney and heart. So, to manage any type of hypervitaminosis, proper diagnosis is essential to initiate eliminating the cause of its occurrence and accelerate the elimination of the supplement from the body. The present review discusses the symptoms of hypervitaminosis that seems to be a matter of concern today and management strategies to overcome toxicity or hypervitaminosis. Keywords: Hypervitaminosis, Toxicity, Vitamins, Vitamin pathology, Fat-soluble vitamin, Water- soluble vitamin. INTRODUCTION body, particularly in the liver. Vitamin B Vitamins are potent organic Complex and vitamin C are water- soluble. compounds present in small concentrations They are dissolved easily in food during in various fruits and vegetables. They cooking and a portion of these vitamins may regulate physiological functions and help in be destroyed by heating.
    [Show full text]
  • Simulation of Physicochemical and Pharmacokinetic Properties of Vitamin D3 and Its Natural Derivatives
    pharmaceuticals Article Simulation of Physicochemical and Pharmacokinetic Properties of Vitamin D3 and Its Natural Derivatives Subrata Deb * , Anthony Allen Reeves and Suki Lafortune Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA; [email protected] (A.A.R.); [email protected] (S.L.) * Correspondence: [email protected] or [email protected]; Tel.: +1-224-310-7870 or +1-305-760-7479 Received: 9 June 2020; Accepted: 20 July 2020; Published: 23 July 2020 Abstract: Vitamin D3 is an endogenous fat-soluble secosteroid, either biosynthesized in human skin or absorbed from diet and health supplements. Multiple hydroxylation reactions in several tissues including liver and small intestine produce different forms of vitamin D3. Low serum vitamin D levels is a global problem which may origin from differential absorption following supplementation. The objective of the present study was to estimate the physicochemical properties, metabolism, transport and pharmacokinetic behavior of vitamin D3 derivatives following oral ingestion. GastroPlus software, which is an in silico mechanistically-constructed simulation tool, was used to simulate the physicochemical and pharmacokinetic behavior for twelve vitamin D3 derivatives. The Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) Predictor and PKPlus modules were employed to derive the relevant parameters from the structural features of the compounds. The majority of the vitamin D3 derivatives are lipophilic (log P values > 5) with poor water solubility which are reflected in the poor predicted bioavailability. The fraction absorbed values for the vitamin D3 derivatives were low except for calcitroic acid, 1,23S,25-trihydroxy-24-oxo-vitamin D3, and (23S,25R)-1,25-dihydroxyvitamin D3-26,23-lactone each being greater than 90% fraction absorbed.
    [Show full text]
  • Question of the Day Archives: Monday, December 5, 2016 Question: Calcium Oxalate Is a Widespread Toxin Found in Many Species of Plants
    Question Of the Day Archives: Monday, December 5, 2016 Question: Calcium oxalate is a widespread toxin found in many species of plants. What is the needle shaped crystal containing calcium oxalate called and what is the compilation of these structures known as? Answer: The needle shaped plant-based crystals containing calcium oxalate are known as raphides. A compilation of raphides forms the structure known as an idioblast. (Lim CS et al. Atlas of select poisonous plants and mushrooms. 2016 Disease-a-Month 62(3):37-66) Friday, December 2, 2016 Question: Which oral chelating agent has been reported to cause transient increases in plasma ALT activity in some patients as well as rare instances of mucocutaneous skin reactions? Answer: Orally administered dimercaptosuccinic acid (DMSA) has been reported to cause transient increases in ALT activity as well as rare instances of mucocutaneous skin reactions. (Bradberry S et al. Use of oral dimercaptosuccinic acid (succimer) in adult patients with inorganic lead poisoning. 2009 Q J Med 102:721-732) Thursday, December 1, 2016 Question: What is Clioquinol and why was it withdrawn from the market during the 1970s? Answer: According to the cited reference, “Between the 1950s and 1970s Clioquinol was used to treat and prevent intestinal parasitic disease [intestinal amebiasis].” “In the early 1970s Clioquinol was withdrawn from the market as an oral agent due to an association with sub-acute myelo-optic neuropathy (SMON) in Japanese patients. SMON is a syndrome that involves sensory and motor disturbances in the lower limbs as well as visual changes that are due to symmetrical demyelination of the lateral and posterior funiculi of the spinal cord, optic nerve, and peripheral nerves.
    [Show full text]
  • Draft Vitamin D and Health Report
    Draft Vitamin D and Health report Scientific consultation: 22 July to 23 September 2015 Contents Page 1. Introduction 3 2. Biology and metabolism 5 3. Photobiology of vitamin D 16 4. Measuring vitamin D exposure (from diet and sunlight) 24 5. Relationship between vitamin D exposure and serum (25(OH)D concentration 29 6. Vitamin D and health outcomes 35 Musculoskeletal outcomes 37 Rickets 39 Osteomalacia 41 Pregnancy and lactation 42 Infants (up to 12 months) 44 Children (1-3y) 45 Children (4-8y) 45 Adults < 50 years 47 Adults > 50 years 50 Conclusions – vitamin D & musculoskeletal health outcomes 59 Non-musculoskeletal health outcomes 61 Pregnancy & lactation – non-musculoskeletal health outcomes 61 Cancers 67 Cardiovascular disease & hypertension 70 All-cause mortality 74 Autoimmune disease 76 Infectious disease 81 Neuropsychological functioning 85 Oral health 88 Age-related macular degeneration 90 Conclusions – non-musculoskeletal health outcomes 92 Selection of health outcomes to inform the setting of DRVs for vitamin D 93 7. Potential adverse effects of high vitamin D intakes/high serum 25(OH)D 95 concentration 8. Dietary vitamin D intakes and serum/plasma 25(OH)D concentrations of the UK 102 population 9. Review of DRVs 109 10. Overall summary & conclusions 121 11. Recommendations 130 12. References 131 2 1. Introduction Background 1. Vitamin D is synthesised in the skin by the action of sunlight. Skin synthesis is the main source of vitamin D for most people; dietary sources are essential when exposure to sunlight containing the appropriate wavelength is limited. The Committee on Medical Aspects of Food and Nutrition Policy (COMA), which set Dietary Reference Values (DRVs) for vitamin D in 1991 (DH1, 1991), did not set a Reference Nutrient Intake (RNI2) for groups in the population considered to receive adequate sunlight exposure.
    [Show full text]
  • Traditional and Novel Carbohydrate Sources for Dogs and Cats As the Most Important Source of Energy for Dogs and Cats, Carbohydrates Are Vital Nutrients in Pet Diets
    December 2015 US$39.00 SPECIAL REPORT Traditional and Novel Carbohydrate Sources for Dogs and Cats As the most important source of energy for dogs and cats, carbohydrates are vital nutrients in pet diets. Carbohydrates are also critical to the proper manufacture of most commercial pet foods. Fortunately, an abundance of safe carbohydrates—natural and synthetic—are available to the pet food industry for use in all types of dietary formulas, even those that are grain-free. by Heather F. Mangian, Ph.D.; Maria R.C. de Godoy, Ph.D.; and George C. Fahey Jr., Ph.D. Traditional and Novel Carbohydrate Sources for Dogs and Cats by Heather F. Mangian, Ph.D.; Maria R.C. de Godoy, Ph.D.; and George C. Fahey Jr., Ph.D. hen the topic of carbohydrates comes up related to pet animal nutrition, some consider this very important nutrient category as a Wtoxin to be avoided at all costs. Popular press articles and Internet chat routinely demonize carbohydrates as being harmful for the health and well-being of dogs and cats. However, a quick review of the facts about carbohydrates reveals their importance in companion animal nutrition and commercial pet food production. Carbohydrates are the major energy-containing constituent of plants and represent about 60 to 90 percent of plant dry matter. In plants, carbohydrates fall either into the “structural” category, composed of plant cell walls, or the “non-structural” category, composed of plant cell contents. The carbohydrates found in the cell contents are starch, disaccharides, oligosaccharides, fructan polysaccharides and resistant starch. Cell walls consist of beta glucans, pectins, gums, hemicelluloses, cellulose and lignin/phenolics.
    [Show full text]
  • Sri Venkateswara Veterinary University, Tirupati
    Volume - 15 Issue - 8 Jan-March, 2019 SRI VENKATESWARA VETERINARY UNIVERSITY, TIRUPATI Visit us at : svvu.edu.in From the Desk of Hon'ble Vice-Chancellor TIME TO RE-ORIENT OUR APPROACH Patron It gives me immense pleasure to announce that SVVU got two Dr. Y. Hari Babu mega projects of International collaboration coordinated by Royal Vice-Chancellor Veterinary College at London and the Scientific Research of Veterinary Republic of Tunisia. Chief Editor During this quarter, University has focused on the capacity building programmes for field Veterinarians, shepherds and dairy Dr. D. Sreenivasulu farmers, organization of kisan mela and breeding ram distribution Director of Extension at LRS, Palamaner, organization of special NSS camps, inaugurations of Diamond Jubilee pylon (1955- 2015), new boys hostel at CVSc, Advisors Tirupati and 10th sports, games, cultural and literary meet at CFSc., Dr. D. Srinivasa Rao Muthukur and a national conference organized by Dept. of Registrar Veterinary Parasitology of CVSc, Tirupati. The Principal Secretary, AHDD & Fishery, AP visited the campus Dr. T.S. Chandrasekhara Rao Dean, Faculty of Veterinary and reviewed the activities of University. The then Hon’ble Chief Science Minister of Andhra Pradesh, inaugurated the new spacious Veterinary Clinical Complex building with the state of art Dr. V. Padmanabha Reddy equipments to cater the needs of animal owners. The activities of Dean, Faculty of Dairy Science KVK, Lam, Guntur were remarkably appreciated by the farmers. The Dr. Y. Hari Babu, Vice-Chancellor work progress on conservation of Ongole and Punganur was Sri Venkateswara Veterinary University, Tirupati. Dr. T.V. Ramana Dean, Faculty of Fishery Science appreciated by the Principal Secretary.
    [Show full text]
  • Livestock Nutrition and Feeding. Student Manual
    DOCUMENT RESUME ED 336 588 CE 058 972 AUTHOR Ridenour, Harlan E. TITLE Livestock Nutrition and Feeding. Student Manual. Second Edition. INSTITUTION Ohio State Univ., Columbus. Agricultural Curriculum Materials Service. SPONS AGENCY Ohio State Dept. of Education, Columbus. Agricultural Education Service. REPORT NO AGDEX-400/50 PUB DATE 91 NOTE 271p. AVAILABLE FROMOhio Agricultural Curriculum Materials Service,2120 Fyffe Road, Room 254, Columbus, OH 43210-1010. PUB TYPE Guides - Classroom Use- Instructional Materials (For Learner) (051) EDRS PRICE MF01/PC11 Plus Postage. DESCRIPTORS *Agricultural Education; *Agricultural Production; *Animal Husbandry; Communication Skills; Course Content; Food; Integrated Curriculum; Learning Activities; *L.Lvestock; Mathematical Applications; Mathematics Instruction; *Nutrition; Postsecondary Education; *Problem Solving; Science Instruction; Secondary Education; Vocabulary; Vocational Education ABSTRACT This manual is designed to help agricultural education students and teachers to apply scientificfacts and principles to problem-solving procedures indetermining nutritious and economical livestock feedingprograms. The manual provides applied scientific activities in biologica/science and chemistry, mathematics, and communication skills. It containssix units that cover the following topics: livestock digestivesystems; the food nutrients; nutrient requirements of livestock;types of feed and their composition; methods and procedures fordetermining nutrient requirements and selecting balanced diets; andfeeding
    [Show full text]
  • ACVPM Toxicology Review
    Top 20 Toxicology Review “I always keep a supply of stimulant handy in case I see a snake………..which I also keep handy. “ - WC Fields The Top 10 (in no particular order….) 1. Bracken fern Pteridium aquilinum –THINK bloody urine cows, ataxic horse 2. Copper –THINK hemolytic crisis, port wine urine, gunmetal kidneys 3. Cyanide—THINK Bright red blood, like bright red cherries 4. Anticoagulant rodenticides--–THINK hemolytic crisis 5. Ethylene glycol (antifreeze) –THINK kidney failure 6. Insecticides (esp. OPPs, carbamates) –THINK miosis, drool, vomiting, diarrhea, seizure 7. Lead--–THINK GI signs + Neuro Sx (blindness) 8. NITRATE / NITRITE Toxicity –THINK Dark Chocolate blood 9. Mycotoxins Aflatoxins –THINK hepatotoxic, carcinogenic Zearalonone / moldy corn –THINK estrogenism, repro dysfunction 10. Nonprotein nitrogen (NPN) ‘Ammonia tox‘ (urea, ammonia, etc) –THINK Bov Bonkers 1 www.zukureview.com © Zuku LLC, All Rights Reserved I. Pathognomonics, weird names, weird smells, NOEL 1. Gunmetal grey kidneys-Cu tox Trifolium subterraneum, cz mineral imbal Senecio, Heliotropum damage liver cz Cu tetention 2. Port wine urine-Cu tox see above 3. Cherry-red blood-Cyanide pitted fruits 4. Chocolate-brown blood- Nitrates 5. “SPECTACLES” Depigmentation around eyes- molybdenul tox 6. Smells a. Garlicky breath- selenium tox b. Bitter almonds in rumen-cyanide c. “Mouse-like odor” to crushed leaves- Conium maculatum (poison hemlock) 7. Diseases a. “Alkali disease”- selenium toxicity (Astragalus, Oxytropis) b. “Blind staggers”-selenium tox c. “Cracker heels” clicking dewclaws w/ Astragalus-miserotoxin d. “Milk sickness” in early American settlers- Eupatorium (white snakeroot) e. “Crooked calf” syndrome- torticollis, carpal flexure, scoliosis in calves exposed in utero d. 40-70 to Lupinus (Lupine, bluebonnet) f.
    [Show full text]