ARTICLE Engineering Faster Sorters for Small Sets of Items Timo Bingmann* | Jasper Marianczuk | Peter Sanders 1Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Summary Karlsruhe, Germany Sorting a set of items is a task that can be useful by itself or as a building block for Correspondence more complex operations. That is why a lot of effort has been put into finding sorting *Timo Bingmann, Karlsruhe Institute of Technology, Am Fasanengarten 5, 76131 algorithms that sort large sets as efficiently as possible. But the more sophisticated Karlsruhe, Germany. Email: and fast the algorithms become asymptotically, the less efficient they are for small
[email protected] sets of items due to large constant factors. A relatively simple sorting algorithm that is often used as a base case sorter is inser- tion sort, because it has small code size and small constant factors influencing its execution time. We aim to determine if there is a faster way to sort small sets of items to provide an efficient base case sorter. We looked at sorting networks, at how they can improve the speed of sorting few elements, and how to implement them in an efficient manner using conditional moves. Since sorting networks need to be implemented explicitly for each set size, providing networks for larger sizes becomes less efficient due to increased code sizes. To also enable the sorting of slightly larger base cases, we adapted sample sort to Register Sample Sort, to break down those larger sets into sizes that can in turn be sorted by sorting networks. From our experiments we found that when sorting only small sets of integers, the sort- ing networks outperform insertion sort by a factor of at least 1.76 for any array size between six and sixteen, and by a factor of 2.72 on average across all machines and array sizes.