The Structural Formula of Talc from the Trimouns

Total Page:16

File Type:pdf, Size:1020Kb

The Structural Formula of Talc from the Trimouns 997 TheCanatlian Mineralo gist Vo].37, pp. 997-1006 (1999) THESTRUCTURAL FORMULA OF TALCFROM THE TRIMOUNS DEPOSIT, PYRENEES.FRANCE FRANQOIS MARTIN$ ANDPIERRE MICOUD Inboratoire de Mindralogie,Universitd Paul Sabatier-Toulouse III, UMR 5563du CNRS,39, Alldes Jules Guesde, F-31000 Toulouse. France LUC DELMOTTE, CLAIRE MARICHAL ANDRONAN LE DRED LaboratoireMatdrieux Mindraux, URA 0428, CNRS, Ecole Nationale Supdrieure de Chimiede Mulhouse, j, rueAlfred Werner,F-68093 Mulhouse Ceder, France PHILIPPE DE PARSEVAL Laboratoirede Mindralogie,Universitd Paul Sabatier-Toulouse III, UMR 5563du CNRS,39, All4es Jules Guesde, F-31000 Toulouse. France ALAIN MARI ktboratoire de Chimiede Coordination,CNRS,205 Route de Narbonne,F-31077 Toulouse Cedex, France JEAN-POL FORTUNE, STEFANO SALVI ANDDIDIER B6ZIAT Laboratoirede Mindralogie,Universitd Paul Sabatier ToulouseIII, UMR 5563du CNRS,39, All4es Jules Guesde, F-31000 Toulouse, France OLIVIER GRAUBY Centrede Recherche de la Moddlisationet de la CroissanceCristalline, CNRS, Campus de Luminy,Case 913, F-13288Marseille Cedex 9. France JOCELYNEFERRET Talc de Luzenac 5.A., BP 1162, F-31036 Toulouse Ceder, France Assrnacr A sample of talc (Tl 11) from the Trimouns deposit, in the Pyr6n6es,France, was studied by various spectroscopicmethods (FTIR, NMR, EPR and M<issbauer),as well as HRTEM and X-ray diffraction, in order to investigate the extent of minor substi- tutions in the tetrahedraland octahedral sites. Substitutions causea deficiency in tetrahedralcharge, compensated by an excessin octahedral charge, ensuring an electroneutrality of the structue The charge deficiency on the layer of tetrahedra explains the active interaction between talc (used as filler) and polymer. Keywords: talc, tetrahedral site, octahedral site, substitutions, spectroscopy,charge deficiency, polymer, Trimouns, Pyr6n6es SovuaInB Un 6chantillon de talc (T111) provenant du gisement de Trimouns (Pyr6n6es,France) a 6t6 6tudi6 en d6tail d l'aide des spectroscopiesFTIR, NMR, EPR et Mijssbauer, du microscope 6lectronique d transmissionet de la diffraction des rayons X afin de quantifier les faibles taux de substitution dans les sites tdtraddriqueset octa6ddques.Les r6sultats monffent que le feuillet du talc Tl 1I est 6lectriquement neutre, avec un d6ficit de charge t6traddrique compens6par un excds de charge octa6drique, ceci 6tant d0 aux nombreusessubstitutions. Le d6ficit local de surface de la couche t6tra6driquepeut expliquer les interactions actives entre le talc, utilis6 comme charge min6ra1e,et les polymdres. Mots-clis: talc, site tefa6drique, site octa6drique,substitutions, spectroscopies, d6ficit de charge,polymdres, Trimouns, Pyr6n6es. s E-mail address: [email protected] 998 THE CANADIAN MINERALOGIST INrnooucrroN due to inclusions of graphite. The total iron content of the talc ore is about 0.6 ! O.2VoFe2O3, but no separate Talc ore is used in paper coating, and its properties iron-bearing phase has been detected. make it useful in the paint, ceramics, and polymer industries. In the automotive industry, talc is added to ANarvrrcer MBrnoos polymers to stabilize and harden parts of automobiles like fenders, dashboard,and steering wheel. However, Chemical analyses various problems appear with these materials, notably an undesirable coloring in ceramics and polymers Whole-rock analysis were performed by Inductively (blush), and variable behavior in polymer applications. Coupled Plasma (ICP) at the CRPG in Nancy. The To improve the use of various types of talc in specific chemical composition of the talc was determined using industrial applications, it is necessary to take into a CamecaSX-50 electron microprobe at the Universitd account the physical and chemical propertiesofthe talc. Paul Sabatier in Toulouse. Operating conditions were In this paper, we characterizethe chemical composition 15 kV and 10 nA, and natural and synthetic standards of a sample of pure talc (T111) from the Trimouns were used. deposit,the largestofthe world. The resultsofthis study X-ray dffiaction (XRD) improve our knowledge of the extent of substitutionsin talc from this deposit by detailed characterization of The talc from the Trimouns deposit was analyzedby element distributions (Fe2+,Fe3+, Al, Mn2+, F), using X-ray diffraction (XRD). The spectrawere collected in variousspectroscopic techniques. reflection mode using a Philips PWl130 diffractometer with Ni-filtered CuKct radiation (30 kV, 30 mA). The BecrcnouNo lNpouaarron spectrawere recorded for 3.5 s per step of 0.0005" from 2' to 80' (e). With this approach,the limit of detection Most samples of talc (2:7 layer silicate) typically of a phasewas establishedat0.5Vo. have a near-end-member composition [Mg3Si4O1e (OH)zl, and in many casesno interlayer exists because Fourier transform infrared spectroscopy( FTIR) the 2:7 layer is electrostatically neutral. However, ma- j or amounts of Fe, minor amounts of Al and F, and faces Fourier transform infrared (FTIR) spectra were of Mn, Ti, Cr, Ni, Na and K have been reported in talc recorded in transmission mode in the 4000-400 cm 1 (Heller-Kallai & Rozenson 1981, Noack et al. 1986, range on a Nicolet 510 FTIR spectrometer.The pellets Abercrombie et al. 198'7, Aramt et al. 1989, Coey et al. were prepared by mixing 4 mg sample with 300 mg L997, de Parsevalet al. 1991,1993). These authors KBr. documented the various potential substitutions in the tetrahedral(Si replacedby Fe3+,Al) and octahedralsites s7Fe Mdssbauer spectroscopy (Mg replaced by Fe2*, Fe3*, A1), but did not establish charge balance of these natural samplesof talc. A 57FeMossbauer absorption spectnrm was recorded over the range!4 mm/s with 512 channelsin the Labo- GBorocrcer- Coxrsxr ratoire de Chimie de Coordination in Toulouse. The Mrissbauer spectrometeris composed of a compact de- The Trimouns talc and chlorite deposit is located rn tector "y-systemfor high count-ratesand a conventional the French Pyr6n6es, 100 km south of Toulouse, at an constant-accelerationMtissbauer device (WISSEL). A 57Co altitude of 1,700 m. It occurs along the eastem side of 1in Rh) source with nominal activity of 50 mCi the Hercynian Saint Barth6l6my Massif of gneissic was used. Powders were finely ground under acetone rocks. The mode of formation of the talc and chlorite rn (to minimize possible oxidation of Fe) and placed in a the deposit is now well established(Fortun6 et a|.7980, plexiglass sample holder. The spectrawere obtained at Moine et al. 1982, 1989, de Parsevalet al. 1993). These room temperature, 80 K and 4 K, and, were recorded minerals originated by hydrothermal alteration of with a Canberra multichannel analyzer, coupled to a wallrock in a zone of intenseshearing between the Saint computer. The isomer shift was recorded with respect Barth6l6my dome and the low-grade Paleozoic meta- to cr-Fe metal. As advocatedby Rancourt et al. (1993), morphic cover. Dolostones of the Paleozoic cover were the absorber thickness ofthe talc sample was approxi- transformed to talc, whereas siliceous and aluminous mated to that of micas in the phlogopite-annite series; rocks (mica-bearing schists and granitic pegmatites) in particular, phlogopite has a Fe content similar to that were completely transformed to chlorite-dominant ore of talc T1 I l. This was done to minimize the width of characterizedby well-defined metasomatic zones. The the absorptionlines in the^spectra.The values are around transformation of dolostone to talc involved addition of 200 mg of mineral per cm'. Lorentzian line-shapeswere Si, leaching of Ca, and loss of CO2during the alteration. assumedfor deconvolutions.based on least-squares The talc ore exhibits facies that vary in color from pure fitting procedures.The r!2 and misfrt values were used white to grey and to black, the latter being principally to measurethe goodnessof the computer fit. THE STRUCTURAL FORMULA OF TALC FROM TRIMOUNS, FRANCE 999 Electron paramagnetic resonance( EPR) spectroscopy TABLE 2 CHEMICAT COMPOSITIONO}- TALC TI I ] All EPR spectrawere recorded at room temperature with a Bruker ESP-300e spectrometeroperating at AlrO: 009 019 X-band frequency (9 GHz). A mercury lamp was used Fe2OrG) 059 068 as UV radiation source (200 W), iradiating the ESR MnO o02 fr 023 Mco 3t 1l 3152 TI cavity through the medium of a quaftz optical fiber. This CaO 002 002 4 60 4.84 procedureallowed us to follow the evolution ofthe ESR Na2O 001 Tr 9961 99 03 on l0 points spectrum of the sample during the UV irradiation. ICP : lnductively Coupled Plasma Nuclear magnetic resonance( NM R) spectroscopy Rssur-rs The solid-state nuclear magnetic resonanceexperr- ments were performed as follows: 29SiNMR measure- Chemicnlcomposition ments were carried out on a Bruker MSL-30 '7.1 spectrometeroperated atBo - T (u6= 59.63 MHz) The talc sample was selected from a vein of pure with B0 the magnetic field. The NMR spectra of 27Al talc; it is representativeof ore in the Trimouns deposit, and leF were recorded on a Bruker DSX-400 spectrom- and was carefully hand-picked. Its chemical composr- eter operating at B0 = 9.4 T (vo= 104.263 and 376.49 tion (Table 2) indicates a virtually monominerallc MHz, respectively).Single-pulse magic-angle spinning sample, with no accessoryminerals and no Fe-bearins (MAS) spectra were obtained using a Bruker MAS minerals, such as sulfides. probe with a 7 mm Zro2rotor for the 2eSiexperiment and a 4 mm rotor for the 27Al and l9F experiments. XRD Acquisitions parameters are summarized in Table 1. Chemical shifts of ze5i, zr41 and 1eFwere externally The powder-diffraction pattern is characteristic
Recommended publications
  • Download the Scanned
    M]NIJRALOGICAL NOTI'S 229 Talr,e 1. Cnrutcet Conpostrron ol Wnolvolrrtn lnon Vanrous Souncos CaO 38 38 38.46 38 83 38.36 38 23 C:O: 49 28 49.65 49.38 50.28 48.69 HrO 12.34 72 74 123l 11.36 Not Determined 1. Ca(C:Oa).HrO 2. Pchery', Bohemia 3. Briix, Bohemia 4. Maikop, Caucasus 5. Milan, Ohio Note: Analyses 2,3 and 4 from Palache et ol. (195L). This find is of interest for the following reasons: 1. It is the first reported in easternUnited States.2. It is the first of any sizablequantity in the United States.3. It is found in older rocks than previous finds. 4. The location is readilv accessibleto interested petrologists. We are glad to acknowledgethe help of Mr. Owen Keim who per- formed the chemicalanalysis and Mr. C. R. Tipton, Jr. who made this work possibie,both of whom werethe authors' associatesat the BasicIn- corporated ResearchCenter. Of course,special thanks and recognition must go to Mr. ClarenceRaver rvhosupplied us with the samples. RrlBnrNcos Guon, A. J., 3rd, E. J. YouNc, V. C KnNNrov aNn L. B Rrr.r:v (1960) Wheu,ellite and celestitefrom a fault opening in San Juan County, IJtah- Am. Mineral.45,1257-1265. Per.ecun, C, H. BnnlreN aNo C FnoNou. (1951) Danos' SystemoJ Mineralogy, Vol. II, 7th ed., John lViley and Sons,Inc., Nelr' York. Pocon.r, W T eNo J. H. Krnn (1954) Whewellite from a septarian iimestone concretion in marine shalenear llavre, Montana Am. Mineral.Jg,208-214. THE AMERICAN MINERALOGIST,VOL 51, JANUARY_FEBRUARY,1966 LACLTSTI{INE GLAUCONITIC MICA FROM PI,UVIAL LAKE MOUND.
    [Show full text]
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Chemical and Structural Evolution of “Metamorphic Vermiculite” in Metaclastic Rocks of the Betic Cordillera, Málaga, Spain: a Synthesis
    249 The Canadian Mineralogist Vol. 44, pp. 249-265 (2006) CHEMICAL AND STRUCTURAL EVOLUTION OF “METAMORPHIC VERMICULITE” IN METACLASTIC ROCKS OF THE BETIC CORDILLERA, MÁLAGA, SPAIN: A SYNTHESIS MARÍA DOLORES RUIZ CRUZ§ Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, Campus de Teatinos, E-29071 Málaga, Spain JOSÉ MIGUEL NIETO Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Huelva, E-21071 Huelva, Spain ABSTRACT Vermiculite-like minerals from a metamorphic sequence of the Betic Cordillera, near Málaga, southeastern Spain, were investigated in detail by X-ray diffraction, electron-microprobe analysis, and transmission-analytical electron microscopy. Our results reveal that the chlorite-to-biotite transformation is much more complex than previously assumed. In addition to mixed- layer minerals with a mica:chlorite ratio of 2:1 and 1:1, which had previously been identifi ed, mixed-layer phases with very high and very low chlorite:vermiculite ratios have been identifi ed, together with true vermiculite, as intermediate steps in the chlorite-to-biotite transformation. The observed sequence is: chlorite → random to ordered 1:2 mica–chlorite mixed-layer phases → regular 1:1 chlorite–vermiculite mixed-layer phases → Vrm-rich chlorite–vermiculite mixed-layer phases → vermiculite → biotite. This sequence includes a continuous increase of interlayer cation content, and is similar to that described in the smectite- to-illite transformation. The high Na content of most of these phases suggests that in the absence of K-feldspar, two parallel sites of reactants, chlorite + phengite and chlorite + albite, account for the formation of vermiculitic phases, and later, of biotite. Keywords: mixed-layer minerals, metamorphic vermiculite, X-ray diffraction, electron-microprobe analysis, transmission elec- tron microscopy, analytical electron microscopy, Betic Cordillera, Spain.
    [Show full text]
  • Studies of Celadonite and Glauconite
    Studies of Celadonite and Glauconite GEOLOGICAL SURVEY PROFESSIONAL PAPER 614-F Studies of Celadonite and Glauconite By MARGARET D. FOSTER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 614-F A study of the compositional relations between celadonites and glauconites and an interpretation of the composition of glauconites UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1969 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HIGKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S- Government Printing Office Washington, D.C. 20402 - Price 40 cents (paper cover) CONTENTS Page Abstract.-_ ____-____-_--__-_-___--______-__-_______ Fl Interpretation of glauconite coniposition___-___________ F13 Introduction.______________________________________ 1 Relation between trivalent iron and octahedral aluminurn____________________________________ 13 Selection of analyses and calculation of atomic ratios___ 2 The Fe+3 :Fe+2 ratio_______________________ 13 Relation between the composition of celadonites and Relation between iron and potassium____________ 14 glauconites_ _ ___________________________________ 3 Fixation of potassium___________________________ 14 High potassium celadonites and glauconites-_______ 7 Deficiency in potassium content-_________________ 14 Relation between glauconite composition and geo­ Low potassium celadonites and glauconites_________ logic age_____________________________________ 15 Relation between Si, R+2 (VI), Al(VI), and R+3 (VI)_
    [Show full text]
  • Greensand.Pdf
    www.natureswayresources.com GREENSAND Greensand is a naturallyoccurring mineral mined from ocean deposits from a sedimentary rock known as “Glauconite”. It is often an olive-green colored sandstonerock found in layers in many sedimentary rock formations. Origin of Greensand Greensand forms in anoxic (without oxygen) marine environments that are rich in organic detritus and low in sedimentary inputs. Some greensands contain marine fossils (i.e. New Jersey Greensand). Greensand has been found in deposits all over the world. The greenish color comes from the mineral glauconite and iron potassiumsilicate that weathers and breaks down releasing the stored minerals. The color may range from a dark greenish gray, green-black to blue-green dependingon the minerals and water content. It often weatherseasilyand forms nodules that have been oxidized with iron bearing minerals that has a reddish brown or rust color. +3 The major chemical description is ((K,Na)(Fe , Al, Mg)2(Si,Al)4O10(OH)2) General chemical information: Iron (Fe) 12-19% Potassium (K) 5-7 % Silicon (Si) 25.0% Oxygen (O) 45% Magnesium (Mg) 2-3 % Aluminum (Al) 1.9 % Sodium (Na) 0.27% Hydrogen (H) 0.47% Over 30 other trace minerals and many micronutrients. Types of Greensand Glauconite is the namegiven to a group of naturally occurring iron rich silica minerals that may be composed of pellets or grains. When glauconite is mined the upper layers that have weathered and become oxidizedand minerals are released.These sometimes form pyrite a iron sulfide (FeS2) when oxygen is www.natureswayresources.com absent. In the deeper layers or reduced zone pyrite crystals often form.
    [Show full text]
  • Controls on Tetrahedral Fe(III) Abundance in 2:1 Phyllosilicates
    1 1 (Revision 2) 2 3 Controls on tetrahedral Fe(III) abundance in 2:1 phyllosilicates 4 5 Javier Cuadrosa, Joseph R. Michalskia,b, M. Darby Dyarc, Vesselin Dekovd 6 7 a Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK 8 ([email protected]) 9 b Department of Earth Sciences and Laboratory for Space Research, University of Hong Kong, 10 Hong Kong, China ([email protected]) 11 c Department of Astronomy, Mount Holyoke College, South Hadley, MA, 01075 USA 12 ([email protected]) 13 d Department of Ocean Sciences, Tokyo University of Marine Science and Technology, 4-5-7 14 Konan, Minato-ku, Tokyo 108-8477, Japan; e-mail ([email protected]) 15 16 17 18 19 Short title: Controls on tetrahedral Fe(III) in 2:1 phyllosilicates 20 21 Corresponding author: Javier Cuadros; [email protected] 22 23 2 24 ABSTRACT 25 Iron (II) only occupies octahedral sites in phyllosilicates, whereas Fe(III) can occupy both 26 octahedral and tetrahedral sites. The controls on Fe(III) distribution between tetrahedral and 27 octahedral sites have been a matter of great interest in order to understand the interplay between 28 formation environment (Fe abundance, redox conditions) and crystal-chemical factors (stability of 29 the crystal lattice) during crystallization of Fe-phyllosilicates. Here, for the first time, we present a 30 model of Fe(III) distribution in 2:1 phyllosilicates. We investigated 21 samples of 2:1 31 phyllosilicates of submarine hydrothermal origin using XRD, chemical analysis and Mössbauer 32 spectroscopy (and other supporting techniques not presented here).
    [Show full text]
  • Clay Minerals Soils to Engineering Technology to Cat Litter
    Clay Minerals Soils to Engineering Technology to Cat Litter USC Mineralogy Geol 215a (Anderson) Clay Minerals Clay minerals likely are the most utilized minerals … not just as the soils that grow plants for foods and garment, but a great range of applications, including oil absorbants, iron casting, animal feeds, pottery, china, pharmaceuticals, drilling fluids, waste water treatment, food preparation, paint, and … yes, cat litter! Bentonite workings, WY Clay Minerals There are three main groups of clay minerals: Kaolinite - also includes dickite and nacrite; formed by the decomposition of orthoclase feldspar (e.g. in granite); kaolin is the principal constituent in china clay. Illite - also includes glauconite (a green clay sand) and are the commonest clay minerals; formed by the decomposition of some micas and feldspars; predominant in marine clays and shales. Smectites or montmorillonites - also includes bentonite and vermiculite; formed by the alteration of mafic igneous rocks rich in Ca and Mg; weak linkage by cations (e.g. Na+, Ca++) results in high swelling/shrinking potential Clay Minerals are Phyllosilicates All have layers of Si tetrahedra SEM view of clay and layers of Al, Fe, Mg octahedra, similar to gibbsite or brucite Clay Minerals The kaolinite clays are 1:1 phyllosilicates The montmorillonite and illite clays are 2:1 phyllosilicates 1:1 and 2:1 Clay Minerals Marine Clays Clays mostly form on land but are often transported to the oceans, covering vast regions. Kaolinite Al2Si2O5(OH)2 Kaolinite clays have long been used in the ceramic industry, especially in fine porcelains, because they can be easily molded, have a fine texture, and are white when fired.
    [Show full text]
  • 12. Major and Trace Element Compositions of Secondary Clays in Basalts Altered at Low Temperature, Eastern Flank of the Juan De Fuca Ridge1
    Fisher, A., Davis, E.E., and Escutia, C. (Eds.), 2000 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 168 12. MAJOR AND TRACE ELEMENT COMPOSITIONS OF SECONDARY CLAYS IN BASALTS ALTERED AT LOW TEMPERATURE, EASTERN FLANK OF THE JUAN DE FUCA RIDGE1 Sean Porter,2 David A. Vanko,2,3 and A. Mohamad Ghazi2 ABSTRACT A drilling transect across the sedimented eastern flank of the Juan de Fuca Ridge, conducted during Leg 168 of the Ocean Drilling Program, resulted in the recovery of samples of volcanic basement rocks (pillow basalts, massive basalts, and volcanic glass breccias) that exhibit the effects of low-temperature hydrothermal alteration. Secondary clays are ubiquitous, with Mg- rich and Fe-rich saponite and celadonitic clays commonly accounting for several percent, and up to 10%–20% by volume. Present-day temperatures of the basement sites vary from 15° to 64°C, with the coolest site being about 0.8 Ma, and the warm- est site being about 3.5 Ma. Whereas clays are abundant at sites that have been heated to present temperatures of 23°C and higher, the youngest site at 15°C has only a small trace of secondary clay alteration. Alteration increases as temperatures increase and as the volcanic basement ages. The chemical compositions of secondary clays were determined by electron microprobe, and additional trace element data were determined by both conventional nebulization inductively coupled plasma-mass spectroscopy (ICP-MS) and laser-abla- tion ICP-MS. Trioctahedral saponite and pyrite are characteristic of the interior of altered rock pieces, forming under conditions of low-oxygen fugacity.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Muscovite Solid Solutions in the System K20-Mgo-Feo-A1203-Sio2-H20: an Experimental Study at 2 Kbar Ph2o and Comparison with Natural Li-Free White Micas
    MINERALOGICAL MAGAZINE, JUNE 1986, VOL. 50, PP. 257-66 Muscovite solid solutions in the system K20-MgO-FeO-A1203-SiO2-H20: an experimental study at 2 kbar PH2o and comparison with natural Li-free white micas GILLES MoNIER Laboratoire de P&rologie, Universit6 d'Or16ans, 45046 Orlrans Cedex, France AND JI~AN-LouIs ROBERT Centre de Recherche sur la Synthrse et Chimie des MinSraux, G.I.S.C.N.R.S.-B.R.G.M., 1A rue de la Frrollerie, 45071 Odrans Cedex 2, France ABSTRACT. This paper presents the results of an experi- K EY W OR O S : muscovite, phengite, solid solution, crystal- mental study of muscovite solid solutions in the system chemistry, experimental mineralogy, granites, hydro- K20-M~+O-A1203 SiO2-H20 (HF), with M2+= thermal alteration. Mg 2+ or Fe 2§ in the temperature range 300 700~ under 2 kbar P.~o, Muscovite solid solutions can be described, in this system, as the result of two substitutions. NATURAL lithium-free white micas are generally One is the phengitic substitution (x), which preserves the described as solid solutions between the muscovite pure dioctahedral character of the mica; the second is the end member K(A12R)(Si3AI)Olo(OH)2, where [] biotitic substitution (y), which leads to trioctahedral stands for an octahedral vacant site, and the micas and does not change the composition of the celadonite end member K(AIM z+ [3)Si4010(OH)2, tetrahedral layer Si3AI. The general formula of muscovite with M 2 + = Mg 2., Fe E+, thus, they are considered in this system is K(A12_~_2y/aM2+yOl_y/a)(Sia+~All_x) to belong to the so-called phengitic series.
    [Show full text]
  • The Role of Ferrous Clays in the Interpretation of Wettability – a Case Study
    SCA2018-019 1/12 THE ROLE OF FERROUS CLAYS IN THE INTERPRETATION OF WETTABILITY – A CASE STUDY Velazco M.A, Bruce A., Ferris M, Reed J., Kandasamy R. Lloyd’s Register Energy Consultancy, Rock Properties Group, Aberdeen, UK This paper was prepared for presentation at the International Symposium of the Society of Core Analysts held in Trondheim, Norway, 27-30 August 2018 ABSTRACT Clean sandstone, with minimal clay content, is expected to be strongly water wet once the rock has been through an effective cleaning process. Even samples containing significant clay minerals are usually expected to be water wet after appropriate cleaning. However, tests carried out on core samples from Fields in three different global locations show mixed indices, even for clean state samples where no aging with crude oil has taken place. A few hypotheses for this behaviour considered herein are: whether the cleaning method was adequate, whether wettability was altered by an external factor, or if wettability was due to mineral composition. This paper presents the results obtained from wettability studies on fresh, clean and restored state core plug samples from three different Fields. Wettability indices were obtained by using the combined Amott-USBM method. Petrography was performed on sample end-trims to investigate the possible presence of halite or barite in the clean state samples, thought to be from drilling fluid infiltration, which should have been removed by the methanol cleaning cycle. This showed no organic material or salt (halite), negating wetting change from inefficient cleaning. From a reactive clays [1] model perspective, these rock samples are considered clean-sand (i.e.
    [Show full text]
  • List of Abbreviations
    List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote
    [Show full text]