Issues in Quantitative Phase Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Issues in Quantitative Phase Analysis Issues in Quantitative Phase Analysis Arnt Kern & Ian Madsen This document was presented at PPXRD - Pharmaceutical Powder X-ray Diffraction Symposium Sponsored by The International Centre for Diffraction Data This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community. All copyrights for the presentation are retained by the original authors. The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research. PPXRD Website – www.icdd.com/ppxrd ICDD Website - www.icdd.com Issues in Quantitative Phase Analysis Limitations in accuracy and precision are mostly experimental • Mathematical basis and methodology of quantitative phase analysis is well established and work OK • Errors arise during application of methods ("PICNIC") Sample related errors • The material is not an "ideal powder" • Preferred orientation • Particle statistics • ... • Absorption • ... Issues in Quantitative Phase Analysis Operator errors • Incomplete / wrong phase identification The Reynolds Cup – what is needed to win? Mark D Raven and Peter G Self 29 July 2014 CSIRO LAND AND WATER / MINERALS RESOURCES FLAGSHIPS Non clay minerals (2002-2012) • Quartz (18) • Gypsum (2) • Apatite (1) • K-feldspar (13) • Anhydrite (2) • Tourmaline (2) • Plagioclase (14) • Alunite (1) • Zircon (2) • Calcite (12) • Hematite (6) • Spinel (1) • Dolomite (10) • Goethite (5) • Opal-CT (1) • Magnesite (4) • Magnetite (4) • Amphibole (3) • Aragonite (3) • Anatase (9) • Zeolite (1) • Huntite (1) • Rutile (3) • Epidote (1) • Halite (6) • Ilmenite (3) • Birnessite (1) • Pyrite (7) • Gibbsite (3) • Arcanite (1) • Siderite (8) • Bohmite (1) • Amorphous (6) • Barite (5) • Fluorite (2) 63rd Denver X-ray Conference 28 July – 1 August 2014, Big Sky Resort, Montana, USA | Quantitative 5 | Phase Analysis Workshop Clay minerals (2002-2012) • 2:1 Dioctahedral Clays (18) • Kaolin (15) • Smectite (montmorillonite, • Kaolinite (well and poorly ordered) nontronite) • Halloysite • Mixed layered (illite-smectite, • Dickite glauconite-smectite) • Mica/Illite (muscovite 2M , illite 1 • Chlorite (11) 1Md, 1M) • Clinochlore, Ripidolite • 2:1 Trioctahedral Clays (6) • Serpentine (2) • Smectite (saponite) • Lizardite • Vermiculite • Talc (3) • Mixed layered (corrensite) • Sepiolite (1) • Mica (biotite) • Palygorskite (1) 63rd Denver X-ray Conference 28 July – 1 August 2014, Big Sky Resort, Montana, USA | Quantitative 6 | Phase Analysis Workshop Misidentified phases (2002-2012) • Actinolite • Chrysotile • Ilmenite • Phlogopite (2M1 ) • Vermiculite • Aegerine • Clinochlore • iIterstratified (tri) • Phlogopite (mica-trioctahedral) • Vermiculite Trioctahedral • Aerinite • Clinoenstate • Iron • phosphate hydrate • Vermiculite/illite • Akaganeite • Clinoptilolite • Iron Silicon Iron • Plagioclase • Vermiculite-Smectite Trioctahedral • Albite/anorthite • ClinoPyroxene • Jarosite • Portlandite • Vesuvianite • Allophane • Clinozoisite • KAlSiO4 • Potarite • Wagnerite • Alluaudite Al -Mg• Cordierite • Kaolinite • Prehnite • Wavellite • Almandine • Corrensite • kaolinite/smectite • Pseudobrookite • Whitlockite • Al-Mg • Corundum • Kaolinite-Chlorite • Pumpellyite • Whitmoreite • AlO • Cotunnite • K-feldspar • Pyrite • Wollastonite • Alumina gamma • Cristobalite • Kieserite • Pyrolusite • Wroewolfeite • Aluminite AlO • Cryptohalite • K-rich Chlorite • pyrophyllite 1T • Wuestite • Alunite • Crysotile • Kutnohorite • pyrophyllite 2M • Zeolite • Alunogen • Diaspore • Laueite • Pyroxene • Zeophyllite • Amorphous • Dickite • Laumonite • Pyroxene (Augite) • Zinnwaldite • Amorphous (Allophane) • Dickite/Nacrite • Lepidocrocite • Pyroxene (Ferroan Diopside) • Zircon • Amorphous KAlSi3O8 • Diopside • Leucite • Pyrrhotite • Zirconium sulphate hydroxide • Amorphous Si • Dolomite • Lime • Rectorite hydrate • Amorphous SiO2 • Dolomite/Ankerite • Lithosite • Reyerite • Zoisite • Amorphous Volcanic Glass • Elpidite • Lizardite • Rhodochrosite • Amphibole • Enstatite • Magnesioferrite • Rhodonite • Analcime • Epidote • Magnesite • Rodolicoite • Anatase • Euclase • Magnetite • Rutile • Andesine • Faujasite • Malachite • Sanidine • Anhydrite • Fe oxide • Manganite • Saponite • Ankerite • Fedorite • Melantenite • Sauconite • Anorthite • Feldspar (Kspar) • Mg7Zn3 • Schorl • Antigorite • Ferrihydrite • Mg-calcite Mg7Zn3• Sepiolite • Antlerite • Ferrite magnesian • MgSO4 • Serpentine • Apatite As2O3• Fluorapatite • Mica • Siderite • Aragonite • Forsterite • Mica Trioctahedral • Siderite (Mn-rich) • Arcanite • Galeite • Mica-Vermiculite Trioctahedral • Siderite(not Mg) • Arsenolite As2O3 • Garnet • Microcline • Silicon • Augite • Gehlenite • Missing • Silicon dioxide Silicon • Barite • Gibbsite • Monazite • Sillimanite • Bazalt • Gismondine • Monohydrocalcite • Smectite trioctahedral • Berthierine • Glass/Obsidian • Montmorillonite (Tri) • Smithsonite • Biotite • Glauberite • Moschellandsbergite • Sodalite • Birnessite • Glauconite • Mullite • Spencerite • Bromcarnallite • Goethite • Nacrite • Sphalerite iron • Brookite • Gypsum • Na-Feldspar • Spinel • Brucite • Halite • Natrolite • Staurolite • Brushite C6H5O3PZn • Halite potassian • Nepheline Nitride• Strontianite • Bytownite • Halloysite • Nitride Silicon • Sylvite 260! • C6H5O3PZn • Hectonite • Nordstrandite • Syngenite • Calcite • Hedenbergite • Norrishite Silicon• Szomolnokite • CaMg2Al16O27 • Hematite • Oligoclase • Talc • Carbonate-fluorapatite • Hercynite • Olivine • Thenardite • Carnallite • Heulandite • Opal • Thermonatrite • CaSiO3 • Hexahydrite • Opal CT • Titanite • Celestine • Hornblende • Orthoclase • Titanomagnetite • Chabazite • Hotsonite • OrthoPyroxene • Tobermorite • Chalcosite • Hyalophane • Osumilite • Tourmaline • Chlorargyrite • hydrated Ca-Mg carbonate • Others not precisely identified • Trimerite • Chlorite Dioctahedral • Hydrocalumite • oxide 1 • Trydymite • Chlorite Trioctahedral • Hydrotalcite • oxide 2 • Tungstite • Chlorite-Montmorillonite(Tri) • Hydroxyapophyllite • Palygorskite • Unidentified • Chlorite-Smectite TrioctahedralChromite • Hydroxylapatite • Periclase • Unnamed hydrate • Chlorite-vermiculite • Hypersthene • Perovskite • Vaterite • Chromite • Illite Tri • Phillipsite • Vauxite 63rd Denver X-ray Conference 28 July – 1 August 2014, Big Sky Resort, Montana, USA | Quantitative 7 | Phase Analysis Workshop Issues in Quantitative Phase Analysis Operator errors • Incomplete / wrong phase identification • Incorrect crystal structures: space group, atom coordinates, occupancy factors, temperature factors • Use of poor profile / background models • Failure to refine parameters: Unit cell, profile parameters, ... • Refinement of parameters which are not supported by the data: Background, atom coordinates, occupancy factors, temperature factors, microstructure, ... Issues in Quantitative Phase Analysis Operator errors, ctd. • Inappropriate use of correction models – just because you CAN doesn’t mean you SHOULD! • Preferred orientation correction • Absorption correction • Non-constant diffraction volume • ... • Acceptance of physically unrealistic parameters (esp. thermal parameters) • Acceptance of incomplete refinements • High values of R-factors • Refined parameters not checked • Visual fit of model not checked IUCr CPD Round Robin on 0 Quantitative Phase Analysis 100 10 c • Experimental design for Sample 1 90 20 o Eight mixtures of 3 phases 80 – Corundum – -Al2O3 30 70 Zincite (wt%) – Fluorite – CaF2 40 – Zincite – ZnO 60 o Each phase present at a 50 f 50 range of concentrations 60 o ~ 1.5, 5, 15, 30, 55, 95 wt% 40 Corundum (wt%) g 70 • ‘Simple’ system 30 o Well defined phases d 80 h o Minimal peak overlap e 20 90 o Little absorption contrast 10 b 100 a0 0 10 20 30 40 50 60 70 80 90 100 Fluorite (wt%) 10 | IanIan Madsen Madsen | | CSIRO TOPAS Mineral Training Resources Course– Level 1– Flagship 2013Level 1| || Quantitative2013 | Phase Analysis | DXC2014, Big Sky, Montana IUCr CPD Round Robin on QPA 0 1a 100 CPD Supplied Data 1b 1c 1d 10 • Participant’s results 1e 90 1f o CPD-supplied data 1g 20 1h 80 – Everyone analysed the same data sets 30 o 92% of returns used Rietveld method 70 Zincite (wt%) o Note considerable spread in results 40 60 50 50 60 Corundum (wt%) 40 70 30 80 20 90 10 100 0 0 10 20 30 40 50 60 70 80 90 100 Fluorite (wt%) 11 | IanIan Madsen Madsen | | CSIRO TOPAS Mineral Training Resources Course– Level 1– Flagship 2013Level 1| || Quantitative2013 | Phase Analysis | DXC2014, Big Sky, Montana IUCr CPD Round Robin on QPA 0 1a 100 Participant Collected Data 1b 1c 10 1d 90 • Participant’s results 1e 1f o Participant collected data 1g 20 1h 80 o 75% of returns used a Rietveld method 30 70 o Spread of results is greater than Zincite (wt%) for the CPD-supplied data 40 60 • What are the sources of error ? 50 o Methods ? 50 o Sample preparation ? 60 Corundum (wt%) 40 o Data collection ? 70 o Data analysis ? 30 80 20 90 10 100 0 0 10 20 30 40 50 60 70 80 90 100 Fluorite (wt%) 12 | IanIan Madsen Madsen | | CSIRO TOPAS Mineral Training Resources Course– Level 1– Flagship 2013Level 1| || Quantitative2013 | Phase Analysis | DXC2014, Big Sky, Montana IUCr CPD Round Robin on QPA 0 Test of Various Methods 1a 100 1b 1c 10 1d 90 • Samples analysed in CSIRO labs 1e 1f 20 o 3x replicates of 8 mixtures 1g 80 1h A range of methods used • 30 70 o 2x Rietveld packages Zincite (wt%)
Recommended publications
  • Download the Scanned
    M]NIJRALOGICAL NOTI'S 229 Talr,e 1. Cnrutcet Conpostrron ol Wnolvolrrtn lnon Vanrous Souncos CaO 38 38 38.46 38 83 38.36 38 23 C:O: 49 28 49.65 49.38 50.28 48.69 HrO 12.34 72 74 123l 11.36 Not Determined 1. Ca(C:Oa).HrO 2. Pchery', Bohemia 3. Briix, Bohemia 4. Maikop, Caucasus 5. Milan, Ohio Note: Analyses 2,3 and 4 from Palache et ol. (195L). This find is of interest for the following reasons: 1. It is the first reported in easternUnited States.2. It is the first of any sizablequantity in the United States.3. It is found in older rocks than previous finds. 4. The location is readilv accessibleto interested petrologists. We are glad to acknowledgethe help of Mr. Owen Keim who per- formed the chemicalanalysis and Mr. C. R. Tipton, Jr. who made this work possibie,both of whom werethe authors' associatesat the BasicIn- corporated ResearchCenter. Of course,special thanks and recognition must go to Mr. ClarenceRaver rvhosupplied us with the samples. RrlBnrNcos Guon, A. J., 3rd, E. J. YouNc, V. C KnNNrov aNn L. B Rrr.r:v (1960) Wheu,ellite and celestitefrom a fault opening in San Juan County, IJtah- Am. Mineral.45,1257-1265. Per.ecun, C, H. BnnlreN aNo C FnoNou. (1951) Danos' SystemoJ Mineralogy, Vol. II, 7th ed., John lViley and Sons,Inc., Nelr' York. Pocon.r, W T eNo J. H. Krnn (1954) Whewellite from a septarian iimestone concretion in marine shalenear llavre, Montana Am. Mineral.Jg,208-214. THE AMERICAN MINERALOGIST,VOL 51, JANUARY_FEBRUARY,1966 LACLTSTI{INE GLAUCONITIC MICA FROM PI,UVIAL LAKE MOUND.
    [Show full text]
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Xrd and Tem Studies on Nanophase Manganese
    Clays and Clay Minerals, Vol. 64, No. 5, 488–501, 2016. 1 1 2 2 3 XRD AND TEM STUDIES ON NANOPHASE MANGANESE OXIDES IN 3 4 FRESHWATER FERROMANGANESE NODULES FROM GREEN BAY, 4 5 5 6 LAKE MICHIGAN 6 7 7 8 8 S EUNGYEOL L EE AND H UIFANG X U* 9 9 NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin Madison, Madison, 10 À 10 1215 West Dayton Street, A352 Weeks Hall, Wisconsin 53706 11 11 12 12 13 Abstract—Freshwater ferromanganese nodules (FFN) from Green Bay, Lake Michigan have been 13 14 investigated by X-ray powder diffraction (XRD), micro X-ray fluorescence (XRF), scanning electron 14 microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and scanning 15 transmission electron microscopy (STEM). The samples can be divided into three types: Mn-rich 15 16 nodules, Fe-Mn nodules, and Fe-rich nodules. The manganese-bearing phases are todorokite, birnessite, 16 17 and buserite. The iron-bearing phases are feroxyhyte, goethite, 2-line ferrihydrite, and proto-goethite 17 18 (intermediate phase between feroxyhyte and goethite). The XRD patterns from a nodule cross section 18 19 suggest the transformation of birnessite to todorokite. The TEM-EDS spectra show that todorokite is 19 associated with Ba, Co, Ni, and Zn; birnessite is associated with Ca and Na; and buserite is associated with 20 2+ +2 3+ 20 Ca. The todorokite has an average chemical formula of Ba0.28(Zn0.14Co0.05 21 2+ 4+ 3+ 3+ 3+ 2+ 21 Ni0.02)(Mn4.99Mn0.82Fe0.12Co0.05Ni0.02)O12·nH2O.
    [Show full text]
  • Metamorphism of Sedimentary Manganese Deposits
    Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits.
    [Show full text]
  • Synthesis of Magnesium- and Silicon-Modified Hydroxyapatites By
    www.nature.com/scientificreports OPEN Synthesis of Magnesium- and Silicon-modifed Hydroxyapatites by Microwave-Assisted Method Received: 17 January 2019 Liudmila A. Rasskazova1, Ilya V. Zhuk1, Natalia M. Korotchenko1, Anton S. Brichkov1, Accepted: 19 September 2019 Yu-Wen Chen 2, Evgeniy A. Paukshtis1, Vladimir K. Ivanov1, Irina A. Kurzina 1 & Published: xx xx xxxx Vladimir V. Kozik1 Nanopowders of hydroxyapatite (HA), modifed by magnesium (MgHA) and by silicon (SiHA) were obtained by liquid-phase microwave synthesis method. X-ray difraction and IR spectroscopy results 2+ 4− showed that Mg and SiO4 ions were present in the synthesized products both as secondary phases and as part of the HA phase. Whitlockite was found in the magnesium-modifed HA (MgHA) and larnite was found in the silicon-modifed HA (SiHA); ion substitution for both materials resulted in solid solutions. In the synthesized samples of modifed HA, the increase of particle size of powders was in the order HA < SiHA < MgHA, which was calculated through data specifc surface area and measured pycnometric density of the powders. The Lewis acid sites (Ca2+, Mg2+, Si4+) were present using spectral probes on the surface of the samples of HA, MgHA, and SiHA, and the acidity of these sites decreased in the order SiHA > MgHA > HA. The rates of calcium phosphate layer deposition on the surface of these materials at 37 °C in the model simulated body fuid solution showed similar dependence. Te problem of fnding material for implantation has existed since ancient times. However, towards the end of the twentieth century the requirements for such materials and an informed and scientifcally grounded application began to form.
    [Show full text]
  • Diagenesis in Prehistoric Caves: the Use of Minerals That Form in Situ to Assess the Completeness of the Archaeological Record
    Journal of Archaeological Science (2000) 27, 915–929 doi:10.1006/jasc.1999.0506, available online at http://www.idealibrary.com on Diagenesis in Prehistoric Caves: the Use of Minerals that Form In Situ to Assess the Completeness of the Archaeological Record Panagiotis Karkanas Ephoreia of Palaeoanthropology-Speleology, 34b Ardittou, Athens 11636, Greece Ofer Bar-Yosef Department of Anthropology, Peabody Museum, Harvard University, Cambridge, MA 02138, U.S.A. Paul Goldberg Department of Archaeology, Boston University, 675 Commonwealth Avenue, Boston, MA 02215, U.S.A. Steve Weiner Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel 76100 (Received 21 May 1999, revised manuscript accepted 29 September 1999) An interpretation of the archaeological record, in particular that of a prehistoric cave site, is complicated by the diversity of depositional and post-depositional processes that affect the material deposited. Here we propose to use the authigenic minerals that form in situ within the cave sediments to reconstruct the ancient chemical environments in the sediments. This can be done by experimentally determining the conditions under which each of the authigenic minerals are stable. Although this information is not available to date for minerals formed in a prehistoric cave, we present calculated stability field data for the relevant minerals. The results clearly demonstrate the feasibility of this approach. This information, particularly if based on measurements of real authigenic cave minerals, will facilitate an assessment of the completeness of the cave archaeological record. This is particularly important for determining whether or not the distributions of archaeologically important materials, such as bones, teeth, plant phytoliths, charcoal and ash, reflect their original burial distributions or were altered as a result of secondary diagenetic processes.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Studies of Celadonite and Glauconite
    Studies of Celadonite and Glauconite GEOLOGICAL SURVEY PROFESSIONAL PAPER 614-F Studies of Celadonite and Glauconite By MARGARET D. FOSTER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 614-F A study of the compositional relations between celadonites and glauconites and an interpretation of the composition of glauconites UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1969 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HIGKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S- Government Printing Office Washington, D.C. 20402 - Price 40 cents (paper cover) CONTENTS Page Abstract.-_ ____-____-_--__-_-___--______-__-_______ Fl Interpretation of glauconite coniposition___-___________ F13 Introduction.______________________________________ 1 Relation between trivalent iron and octahedral aluminurn____________________________________ 13 Selection of analyses and calculation of atomic ratios___ 2 The Fe+3 :Fe+2 ratio_______________________ 13 Relation between the composition of celadonites and Relation between iron and potassium____________ 14 glauconites_ _ ___________________________________ 3 Fixation of potassium___________________________ 14 High potassium celadonites and glauconites-_______ 7 Deficiency in potassium content-_________________ 14 Relation between glauconite composition and geo­ Low potassium celadonites and glauconites_________ logic age_____________________________________ 15 Relation between Si, R+2 (VI), Al(VI), and R+3 (VI)_
    [Show full text]
  • Download the Scanned
    INDEX,VOLUME 59* Absorption coefficients Albite, continued attapulgite 1113 1ow-, comparison with ussingite 347 clay ninerals 11r3 nelting in nultispecies fluid 598 dickite 274 Alexandrite, chrorniumIII centers in 159 hal loysite 274 hectorite I 113 ALLAN, DAVID illite 1113 with V. Brown, and J. Stark, Rocke kaolinite 274 and Minez,als of Califowi,a; reviewed metabentonite 1113 by J. Murdoch 387 nontronite 1113 Allemontite, see stibarsen 1331 srnectite 1113 ALLMAN,MICHAEL Absorption spectra with D.F. Lawrence, Geological alexandrite, synthetic 159 Labonatony Techni.ques reviewed apophyllite 62I ; by F.H. Manley and W.R. Powers IL42 garnet 565 olivine 244 A1lophane rhodonite.. shocked t77 dehydration, DTA, infrared spectra 1094 Acmite, Ti-, phase relations of 536 Almandine Actinolite overgrowth by grossularite- spessartine 558 coexisting with hoinblende 529 in netamorphic rocks, optical Arnerican Crystallographic Association, properties 22 abstracts, Spring neeting,1974 1L27 Activity coefficients Amphiboles of coexisting pyroxenes 204 actinolite 2? 529 Al -Ca-anphibole ADMS, HERBERTG. 22 compositions 22 with L.H. Cohen, and W. Klenent, Jr.; coordination polyhedra M High-low quartz inversion : Thermal of site atons in I 083 analysis studies to 7 kbar I 099 hornblende L, 22, 529, 604 ADAMS,JOHN W. magnesioarfvedsonite (authigenic) 830 with T. Botinelly, W.N. Sharp, and refraction indices 22 K. Robinson; Murataite, a new richterite, Mg-Fe- 518 conplex oxide from E1 Paso County, AMSTUTZ,G.C. Colorado L72 with A.J. Bernard, Eds., )nes in Errata 640 Sediments; reviewed by P.B. Barton 881 Aenigmatite ANDERSEN,C.A. in volcanic conplex, composition, and X-ray data Micz,opnobeAnalysis; reviewed by A.E.
    [Show full text]
  • (M = Ca, Mg, Fe2+), a Structural Base of Ca3mg3(PO4)4 Phosphors
    crystals Article Crystal Chemistry of Stanfieldite, Ca7M2Mg9(PO4)12 (M = Ca, Mg, Fe2+), a Structural Base of Ca3Mg3(PO4)4 Phosphors Sergey N. Britvin 1,2,* , Maria G. Krzhizhanovskaya 1, Vladimir N. Bocharov 3 and Edita V. Obolonskaya 4 1 Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, Universitetskaya Nab. 7/9, 199034 St. Petersburg, Russia; [email protected] 2 Nanomaterials Research Center, Kola Science Center of Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, Russia 3 Centre for Geo-Environmental Research and Modelling, Saint-Petersburg State University, Ulyanovskaya ul. 1, 198504 St. Petersburg, Russia; [email protected] 4 The Mining Museum, Saint Petersburg Mining University, 2, 21st Line, 199106 St. Petersburg, Russia; [email protected] * Correspondence: [email protected] Received: 1 May 2020; Accepted: 25 May 2020; Published: 1 June 2020 Abstract: Stanfieldite, natural Ca-Mg-phosphate, is a typical constituent of phosphate-phosphide assemblages in pallasite and mesosiderite meteorites. The synthetic analogue of stanfieldite is used as a crystal matrix of luminophores and frequently encountered in phosphate bioceramics. However, the crystal structure of natural stanfieldite has never been reported in detail, and the data available so far relate to its synthetic counterpart. We herein provide the results of a study of stanfieldite from the Brahin meteorite (main group pallasite). The empirical formula of the mineral is Ca8.04Mg9.25Fe0.72Mn0.07P11.97O48. Its crystal structure has been solved and refined to R1 = 0.034. Stanfieldite from Brahin is monoclinic, C2/c, a 22.7973(4), b 9.9833(2), c 17.0522(3) Å, β 99.954(2)◦, 3 V 3822.5(1)Å .
    [Show full text]
  • Revision 1 New Insights Into the Crystal Chemistry of Sauconite (Zn
    This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7460. http://www.minsocam.org/ Revision 1 New insights into the crystal chemistry of sauconite (Zn-smectite) from the Skorpion zinc deposit (Namibia) via a multi-methodological approach Emanuela Schingaro1*, Gennaro Ventruti1, Doriana Vinci1, Giuseppina Balassone2, Nicola Mondillo2, Fernando Nieto3, Maria Lacalamita1, Matteo Leoni4,5 1Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Via Orabona 4, I-70125, Bari, Italy 2Dipartimento di Scienze della Terra dell’Ambiente e delle Risorse, Università “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126, Napoli, Italy 3Departamento de Mineralogía y Petrología, IACT, Universidad de Granada-CSIC, Av. Fuentenueva s/n, 18002, Granada, Spain 4Saudi Aramco Research and Development Center, P.O. Box 5000, 31311, Dhahran, Saudi Arabia 5Dipartimento di Ingegneria Civile, Ambientale e Meccanica, Università di Trento, Via Mesiano, 77, Trento, 38123, Italy *Corresponding author: Emanuela Schingaro, e-mail: [email protected] RUNNING TITLE: New insights into the crystal chemistry of sauconite 1 Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld This is the peer-reviewed, final accepted version for American Mineralogist,
    [Show full text]
  • Infrared and Raman Spectroscopic Characterization of the Carbonate Bear- Ing Silicate Mineral Aerinite - Implications for the Molecular Structure
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Frost, Ray, Scholz, Ricardo, & Lopez Toro, Andres (2015) Infrared and Raman spectroscopic characterization of the carbonate bear- ing silicate mineral aerinite - Implications for the molecular structure. Journal of Molecular Structure, 1097, pp. 1-5. This file was downloaded from: https://eprints.qut.edu.au/84503/ c Consult author(s) regarding copyright matters This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] License: Creative Commons: Attribution-Noncommercial-No Derivative Works 2.5 Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.molstruc.2015.05.008 Infrared and Raman spectroscopic characterization of the carbonate bearing silicate mineral aerinite – implications for the molecular structure Ray L.
    [Show full text]