This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.* No.*,*-* Ultra-wideband bias-tee design using distributed network synthesis Nam-Tae Kima) Department of Electronic Engineering, Inje University, Gimhae 621-749, Korea a)
[email protected] Abstract: This paper presents a design methodology for ultra-wideband bias tees, using a distributed network synthesis considering both RF and DC performance. For the design of bias tees, transfer functions of distributed circuits are offered using equal ripple approximation, and DC current-handling capacity is incorporated into the network synthesis by calculating capacity in terms of the characteristic impedance of a transmission line. A bias-tee circuit with the desired characteristics can be synthesized by properly adjusting the minimum insertion loss (MIL) and ripple of the transfer function with reference to the required performance. As an example, a distributed network synthesis is applied to design a bias tee for ultra-wideband applications. Keywords: Bias tee; network synthesis; ultra-wideband Classification: Microwave and millimeter wave devices, circuits, and systems References [1] G. Aiello and G. Rogerson, “Ultra-wideband wireless systems,” IEEE Microwave Mag., vol. 4, pp.36-47, pp. 36-47, Jun. 2003. [2] B. Minnis, “Decade Bandwidth bias T’s for MIC applications up to 50GHz,” IEEE Trans. Microwave Theory Tech., vol. 35, pp. 597-600, Jun. 1987. [3] P. Bell, N. Hoivik, V. Bright, and Z. Popovic, “Micro-bias-tees using micromachined flip-chip inductors,” IEEE MTT-S Int. Microwave Symp. Dig., Philadelphia, U.S.A., pp.