Table 4.3 Enzyme Activities and Glycerol Utilization and Ethanol Synthesis Fluxes for Wild-Type MG1655 and Strains Overexpressing Glycerol Utilization Enzymes

Total Page:16

File Type:pdf, Size:1020Kb

Table 4.3 Enzyme Activities and Glycerol Utilization and Ethanol Synthesis Fluxes for Wild-Type MG1655 and Strains Overexpressing Glycerol Utilization Enzymes Abstract Understanding Fermentative Glycerol Metabolism and its Application for the Production of Fuels and Chemicals by James M. Clomburg Due to its availability, low-price, and higher degree of reduction than lignocellulosic sugars, glycerol has become an attractive carbon source for the production of fuels and reduced chemicals. However, this high degree of reduction of carbon atoms in glycerol also results in significant challenges in regard to its utilization under fermentative conditions. Therefore, in order to unlock the full potential of microorganisms for the fermentative conversion of glycerol into fuels and chemicals, a detailed understanding of the anaerobic fermentation of glycerol is required. The work presented here highlights a comprehensive experimental investigation into fermentative glycerol metabolism in Escherichia coli, which has elucidated several key pathways and mechanisms. The activity of both the fermentative and respiratory glycerol dissimilation pathways was found to be important for maximum glycerol utilization, a consequence of the metabolic cycle and downstream effects created by the essential involvement of PEP-dependent dihydroxyacetone kinase (DHAK) in the fermentative glycerol dissimilation pathway. The decoupling of this cycle is of central importance during fermentative glycerol metabolism, and while multiple decoupling mechanisms were identified, their relative inefficiencies dictated not only their level of involvement, but also iii implicated the activity of other pathways/enzymes, including fumarate reductase and pyruvate kinase. The central role of the PEP-dependent DHAK, an enzyme whose transcription was found to be regulated by the cyclic adenosine monophosphate (cAMP) receptor protein (CRP)-cAMP complex, was also tied to the importance of multiple fructose 1,6-bisphosphotases (FBPases) encoded by fbp, glpX, and yggF. The activity of these FBPases, and as a result the levels of fructose 1,6-bisphosphate, a key regulatory compound, appear to also play a role in the involvement of several other enzymes during fermentative glycerol metabolism including PEP carboxykinase. Using this improved understanding of fermentative glycerol metabolism as a platform, E. coli has been engineered to produce high yields and titers of ethanol (19.8 g/L, 0.46 g/g), co-produced along with hydrogen, and 1,2-propanediol (5.6 g/L, 0.21 g/g) from glycerol, demonstrating its potential as a carbon source for the production of fuels and reduced chemicals. Acknowledgments First and foremost, I would like to express my deepest gratitude and thanks to my Ph.D. advisor Professor Ramon Gonzalez. I do not think I can overstate his contribution to both my research and continued development as a scientist and engineer. His enthusiasm and enjoyment for science and teaching is contagious and made my work enjoyable even during most difficult and frustrating periods of my research. I am truly indebted to him for all of his support and cannot thank him enough for offering me the chance to join his research group when I started at Rice. I would also like to thank all of the other members of the Gonzalez group over the years for their support and guidance, with special thanks to Dr. Syed Shams Yazdani for teaching me the majority of laboratory techniques required for my research when I first started. In addition, the teaching and guidance I received from other professors and members of the Rice community has been invaluable. My friends and family also deserve special recognition for their support during the pursuit of my degree. Lastly and most importantly, I would like to thank my parents for their love and support over the years, as without them none of this would have been possible. Contents Acknowledgments ..................................................................................................... iv Contents .................................................................................................................... v List of Figures ........................................................................................................... vii List of Tables .............................................................................................................. x Introduction ............................................................................................................... 1 Advantages and Challenges of the Use of Glycerol as a Carbon Source for the Fermentative Production of Fuels and Chemicals ...................................................... 13 2.1. Efficient production of reduced chemicals and fuels ............................................. 14 2.2. Fermentative utilization of glycerol by microorganisms ........................................ 16 2.3. Metabolic models for the fermentative utilization of glycerol in microorganisms 19 2.3.1. 1,3-Propanediol dependent model ................................................................. 20 2.3.2. 1,2-Propanediol-ethanol dependent model .................................................... 22 2.3.3. Other models for the fermentative utilization of glycerol .............................. 24 2.4. Glycerol metabolism in Escherichia coli ................................................................. 26 2.4.1. Respiratory metabolism of glycerol ................................................................. 26 2.4.2. Fermentative metabolism of glycerol ............................................................. 28 2.4.2.1. Environmental factors influencing glycerol fermentation ........................ 29 2.4.2.2. Proposed model for glycerol fermentation by Escherichia coli ................ 32 Materials and Methods ............................................................................................ 40 3.1. Strains, plasmids, and genetic methods................................................................. 40 3.2. Culture medium and cultivation conditions ........................................................... 44 3.3. Analytical methods ................................................................................................. 47 3.4. Enzyme assays ........................................................................................................ 48 3.5. Calculation of fermentation parameters ............................................................... 52 3.6. in silico Metabolic Flux Analysis ............................................................................. 52 On the Pathways and Regulation of Fermentative Glycerol Metabolism in Escherichia coli ........................................................................................................................... 54 4.1. in silico Metabolic Flux Analysis of fermentative glycerol metabolism ................. 57 vi 4.2. Experimental investigation into fermentative glycerol metabolism in Escherichia coli ................................................................................................................................. 61 4.2.1. Glycerol transport and dissimilation ............................................................... 63 4.2.2. Conversion of 3-carbon intermediates into 6-carbon intermediates ............. 71 4.2.3. PEP/Pyruvate nodes and carboxylating enzymes ............................................ 80 4.2.4. Pathways and mechanisms ensuring the availability of 3-carbon intermediates ................................................................................................................................... 86 4.2.5. Regulation of fermentative glycerol metabolism ............................................ 93 4.3. Kinetics of fermentative glycerol utilization ........................................................ 100 4.4. Improved model for fermentative glycerol metabolism in Escherichia coli ........ 106 Metabolic Engineering of Escherichia coli for the Efficient Production of Reduced Chemicals and Fuels from Glycerol ......................................................................... 113 5.1. Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol ............................................................................................................... 115 5.1.1. Proposed metabolic engineering strategies for the conversion of glycerol into 1,2-PDO .................................................................................................................... 117 5.1.2. Engineering of 1,2-propanediol synthesis pathways .................................... 120 5.1.3. Manipulation of glycerol utilization pathways .............................................. 124 5.1.4. Engineering of major fermentation pathways .............................................. 127 5.1.5. Kinetics of glycerol consumptions and product formation in E. coli strain engineered for 1,2-PDO production ........................................................................ 132 5.2. Efficient co-production of ethanol and hydrogen from glycerol waste streams . 139 Conclusions and Future Work ................................................................................. 153 References ............................................................................................................. 162 Appendix................................................................................................................ 178 List of Figures Figure 1.1 Oils, fats, biodiesel, and glycerol ................................................................... 4 Figure 1.2 Ethanol
Recommended publications
  • Glycerol Dehydrogenase from Gluconobacter Industrius
    Agric. Biol Chem., 49 (4), 1001 -1010, 1985 1001 Solubilization, Purification and Properties of Membrane-bound Glycerol Dehydrogenase from Gluconobacter industrius Minoru Ameyama,Emiko Shinagawa, Kazunobu Matsushita and Osao Adachi Laboratory of Applied Microbiology, Department of Agricultural Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753, Japan Received July 30, 1984 Membrane-bound glycerol dehydrogenase was solubilized and purified about 100-fold from the membraneof Gluconobacter industrius IFO 3260 grown on a glycerol-glutamate medium. Solubilization of the enzyme was successfully achieved by use of 0.5% dimethyldodecylamineoxide in 0.05 m Tris-HCl, pH 8.0. Alcohol dehydrogenase and D-glucose dehydrogenase, which were abundantly formed in the same bacterial membrane, were eliminated on solubilization. Glycerol dehydrogenase was further purified through fractionation with polyethylene glycol 6000. The enzymeshowed a broad substrate specificity and various kinds of polyhydroxyl alcohols, in addition to glycerol, were rapidly oxidized in the presence of 2,6-dichlorophenolindophenoi and phenazine methosulfate as the electron acceptor but NADand NADPwere inert. The enzyme was proved to be a quinoprotein in which pyrroloquinoline quinone functioned as the prosthetic group. The first report on microbial oxidation of localization of the oxidase system in cells of G. glycerol to dihydroxyacetone was by Bertrand liquefaciens and found that the oxidation of with a strain capable of L-sorbose fermen- glycerol and raeso-erythritol
    [Show full text]
  • <I>Lactobacillus Reuteri</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in Food Science and Food Science and Technology Department Technology 2014 From prediction to function using evolutionary genomics: Human-specific ecotypes of Lactobacillus reuteri have diverse probiotic functions Jennifer K. Spinler Texas Children’s Hospital, [email protected] Amrita Sontakke Baylor College of Medicine Emily B. Hollister Baylor College of Medicine Susan F. Venable Baylor College of Medicine Phaik Lyn Oh University of Nebraska, Lincoln See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/foodsciefacpub Spinler, Jennifer K.; Sontakke, Amrita; Hollister, Emily B.; Venable, Susan F.; Oh, Phaik Lyn; Balderas, Miriam A.; Saulnier, Delphine M.A.; Mistretta, Toni-Ann; Devaraj, Sridevi; Walter, Jens; Versalovic, James; and Highlander, Sarah K., "From prediction to function using evolutionary genomics: Human-specific ce otypes of Lactobacillus reuteri have diverse probiotic functions" (2014). Faculty Publications in Food Science and Technology. 132. http://digitalcommons.unl.edu/foodsciefacpub/132 This Article is brought to you for free and open access by the Food Science and Technology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in Food Science and Technology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Jennifer K. Spinler, Amrita Sontakke, Emily B. Hollister,
    [Show full text]
  • Medium and Long-Term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources
    Medium and Long-term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources - The Potential of White Biotechnology The BREW Project Final report Prepared under the European Commission’s GROWTH Programme (DG Research) Project team: Academy Utrecht University (UU), Dept. of Science, Technology and Society (STS), Utrecht, Netherlands Fraunhofer Institute for Systems and Innovation Research (FhG-ISI), Karlsruhe, Germany Universidad Complutense de Madrid (UCM), Dept. of Chemical Engineering, Madrid, Spain Plant Research International (PRI), Wageningen, Netherlands CERISS (Centro per l'Educazione, la Ricerca, l'Informazione su Scienza e Società), Milan, Italy A&F (Agrotechnology and Food Innovations) Wageningen, Netherlands Industry partners BP Chemicals, Hull, United Kingdom Degussa AG, Hanau, Germany DSM NV, Heerlen, Netherlands DuPont, Bad Homburg, Germany NatureWorks, Naarden, Netherlands Novozymes A/S, Bagsvaerd, Denmark Roquette Frères, Lestrem, France Shell International Chemicals BV, Amsterdam, Netherlands Uniqema, Wilton/Redcar, United Kingdom Utrecht, September 2006 Authors Dr. Martin Patel (project co-ordinator) Utrecht University (UU) Manuela Crank, BE Chem Department of Science, Technology Dr. Veronika Dornburg and Society (STS) Barbara Hermann, M.Sc. Heidelberglaan 2 Lex Roes, M.Sc. NL-3584 CS Utrecht, Netherlands Tel. +31 (0) 30 253-7600 Fax +31 (0) 30 253-7601 [email protected] Dr. Bärbel Hüsing Fraunhofer Institute for Systems and Innovation Research (FhG-ISI), Karlsruhe, Germany Dr. Leo Overbeek Plant Research International (PRI) Wageningen, Netherlands Dr. Fabio Terragni CERISS (Centro per l'Educazione, la Dr. Elena Recchia Ricerca, l'Informazione su Scienza e Società), Milan, Italy Contributors Academy Dr. Ruud Weusthuis A&F (Agrotechnology and Food Innovations) Wageningen, Netherlands Prof.
    [Show full text]
  • Evolution of Coenzyme BI2 Synthesis Among Enteric Bacteria
    Copyright 0 1996 by the Genetics Society of America Evolution of Coenzyme BI2Synthesis Among Enteric Bacteria: Evidence for Loss and Reacquisition of a Multigene Complex Jeffrey G. Lawrence and John R. Roth Department of Biology, University of Utah, Salt Lake City, Utah 84112 Manuscript received June 16, 1995 Accepted for publication October 4, 1995 ABSTRACT We have examined the distribution of cobalamin (coenzyme BI2) synthetic ability and cobalamin- dependent metabolism among entericbacteria. Most species of enteric bacteria tested synthesize cobala- min under both aerobic and anaerobic conditions and ferment glycerol in a cobalamindependent fashion. The group of species including Escha'chia coli and Salmonella typhimurium cannot ferment glyc- erol. E. coli strains cannot synthesize cobalamin de novo, and Salmonella spp. synthesize cobalamin only under anaerobic conditions. In addition, the cobalamin synthetic genes of Salmonella spp. (cob) show a regulatory pattern different from that of other enteric taxa tested. We propose that the cobalamin synthetic genes, as well asgenes providing cobalamindependent diol dehydratase, were lostby a common ancestor of E. coli and Salmonella spp. and were reintroduced as a single fragment into the Salmonella lineage from an exogenous source. Consistent with this hypothesis, the S. typhimurium cob genes do not hybridize with the genomes of other enteric species. The Salmonella cob operon may represent a class of genes characterized by periodic loss and reacquisition by host genomes. This process may be an important aspect of bacterial population genetics and evolution. OBALAMIN (coenzyme BIZ) is a large evolution- The cobalamin biosynthetic genes have been charac- C arily ancient molecule ( GEORGOPAPADAKOUand terized in S.
    [Show full text]
  • High-Yield Anaerobic Succinate Production by Strategically
    Meng et al. Microb Cell Fact (2016) 15:141 DOI 10.1186/s12934-016-0536-1 Microbial Cell Factories RESEARCH Open Access High‑yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli Jiao Meng1,2,3†, Baiyun Wang1,2,3†, Dingyu Liu1,2,3, Tao Chen1,2,3,4, Zhiwen Wang1,2,3* and Xueming Zhao1,2,3 Abstract Background: Succinate has been identified by the U.S. Department of Energy as one of the top 12 building block chemicals, which can be used as a specialty chemical in the agricultural, food, and pharmaceutical industries. Escheri- chia coli are now one of the most important succinate producing candidates. However, the stoichiometric maximum succinate yield under anaerobic conditions through the reductive branch of the TCA cycle is restricted by NADH sup- ply in E. coli. Results: In the present work, we report a rational approach to increase succinate yield by regulating NADH supply via pentose phosphate (PP) pathway and enhancing flux towards succinate. The deregulated genes zwf243 (encod- ing glucose-6-phosphate dehydrogenase) and gnd361 (encoding 6-phosphogluconate dehydrogenase) involved in NADPH generation from Corynebacterium glutamicum were firstly introduced into E. coli for succinate production. Co-expression of beneficial mutated dehydrogenases, which removed feedback inhibition in the oxidative part of the PP pathway, increased succinate yield from 1.01 to 1.16 mol/mol glucose. Three critical genes, pgl (encoding 6-phos- phogluconolactonase), tktA (encoding transketolase) and talB (encoding transaldolase) were then overexpressed to redirect more carbon flux towards PP pathway and further improved succinate yield to 1.21 mol/mol glucose.
    [Show full text]
  • The Diversity of Microbial Aldo/Keto Reductases from Escherichia Coli K12
    Lapthorn, A. J., Zhu, X., and Ellis, E. M. (2013) The diversity of microbial aldo/keto reductases from Escherichia coli K12. Chemico-Biological Interactions, 202(1-3), pp. 168-177. (doi:10.1016/j.cbi.2012.10.008) There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/124204/ Deposited on: 07 October 2016 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk The diversity of microbial aldo/keto reductases from Escherichia coli K12 Adrian J. Lapthorn 1, Xiaofeng Zhu 2,3 and Elizabeth M. Ellis 3 1 School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ 2 College of Life Science and State Key Laboratory of Biotherapy and Cancer Centre, Sichuan University, Chengdu, China 3 Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow, G4 0RE Corresponding author: Adrian J. Lapthorn School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ Tel: +44 141-330 5940 Fax: +44 141-330 4888 E-mail: [email protected] Key Words: Aldo-Keto reductases, methylglyoxal reductase, 2,5-diketo-D-gluconate reductase, tyrosine auxotrophy suppressor protein, L-glyceraldehyde 3-phosphate reductase, AKR quaternary structure. Abstract The genome of Escherichia coli K12 contains 9 open reading frames encoding aldo/keto reductases (AKR) that are differentially regulated and sequence diverse. A significant amount of data is available for the E. coli AKRs through the availability of gene knockouts and gene expression studies, which adds to the biochemical and kinetic data.
    [Show full text]
  • Engineering of Glycerol Utilization in Gluconobacter Oxydans 621H For
    Yan et al. Microb Cell Fact (2018) 17:158 https://doi.org/10.1186/s12934-018-1001-0 Microbial Cell Factories RESEARCH Open Access Engineering of glycerol utilization in Gluconobacter oxydans 621H for biocatalyst preparation in a low‑cost way Jinxin Yan1, Jing Xu1,3, Menghao Cao1, Zhong Li1, Chengpeng Xu1, Xinyu Wang1, Chunyu Yang1, Ping Xu2, Chao Gao1 and Cuiqing Ma1* Abstract Background: Whole cells of Gluconobacter oxydans are widely used in various biocatalytic processes. Sorbitol at high concentrations is commonly used in complex media to prepare biocatalysts. Exploiting an alternative process for preparation of biocatalysts with low cost substrates is of importance for industrial applications. Results: G. oxydans 621H was confrmed to have the ability to grow in mineral salts medium with glycerol, an inevitable waste generated from industry of biofuels, as the sole carbon source. Based on the glycerol utilization mechanism elucidated in this study, the major polyol dehydrogenase (GOX0854) and the membrane-bound alcohol dehydrogenase (GOX1068) can competitively utilize glycerol but play no obvious roles in the biocatalyst prepara- tion. Thus, the genes related to these two enzymes were deleted. Whole cells of G. oxydans ∆GOX1068∆GOX0854 can be prepared from glycerol with a 2.4-fold higher biomass yield than that of G. oxydans 621H. Using whole cells of G. 1 1 oxydans ∆GOX1068∆GOX0854 as the biocatalyst, 61.6 g L− xylonate was produced from 58.4 g L− xylose at a yield of 1 1.05 g g− . Conclusion: This process is an example of efcient preparation of whole cells of G. oxydans with reduced cost.
    [Show full text]
  • Characterization of Glycerol Dehydrogenase from Thermoanaerobacterium Thermosaccharolyticum DSM 571 and GGG Motif Identification
    J. Microbiol. Biotechnol. (2016), 26(6), 1077–1086 http://dx.doi.org/10.4014/jmb.1512.12051 Research Article Review jmb Characterization of Glycerol Dehydrogenase from Thermoanaerobacterium thermosaccharolyticum DSM 571 and GGG Motif Identification Liangliang Wang1,2, Jiajun Wang1,2, Hao Shi1,2, Huaxiang Gu1,2, Yu Zhang1,2, Xun Li1,2, and Fei Wang1,2* 1College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China 2Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, P.R. China Received: December 17, 2015 Revised: March 5, 2016 Glycerol dehydrogenases (GlyDHs) are essential for glycerol metabolism in vivo, catalyzing Accepted: March 9, 2016 its reversible reduction to 1,3-dihydroxypropranone (DHA). The gldA gene encoding a putative GlyDH was cloned from Thermoanaerobacterium thermosaccharolyticum DSM 571 (TtGlyDH) and expressed in Escherichia coli. The presence of Mn2+ enhanced its enzymatic 171 254 271 First published online activity by 79.5%. Three highly conserved residues (Asp , His , and His ) in TtGlyDH were March 14, 2016 associated with metal ion binding. Based on an investigation of glycerol oxidation and DHA *Corresponding author reduction, TtGlyDH showed maximum activity towards glycerol at 60°C and pH 8.0 and Phone: +86-25-85427649; towards DHA at 60°C and pH 6.0. DHA reduction was the dominant reaction, with a lower Fax: +86-25-85427649; K of 1.08 ± 0.13 mM and V of 0.0053 ± 0.0001 mM/s, compared with glycerol oxidation, E-mail: [email protected] m(DHA) max with a Km(glycerol) of 30.29 ± 3.42 mM and Vmax of 0.042 ± 0.002 mM/s.
    [Show full text]
  • Invasive Escherichia Colito Exposure to Bile Salts
    www.nature.com/scientificreports OPEN Metabolic adaptation of adherent- invasive Escherichia coli to exposure to bile salts Received: 7 August 2018 Julien Delmas 1,2, Lucie Gibold1,2, Tiphanie Faïs1,2, Sylvine Batista1, Martin Leremboure4, Accepted: 13 December 2018 Clara Sinel3, Emilie Vazeille2,5, Vincent Cattoir3, Anthony Buisson2,5, Nicolas Barnich2,6, Published: xx xx xxxx Guillaume Dalmasso 2 & Richard Bonnet1,2 The adherent-invasive Escherichia coli (AIEC), which colonize the ileal mucosa of Crohn’s disease patients, adhere to intestinal epithelial cells, invade them and exacerbate intestinal infammation. The high nutrient competition between the commensal microbiota and AIEC pathobiont requires the latter to occupy their own metabolic niches to survive and proliferate within the gut. In this study, a global RNA sequencing of AIEC strain LF82 has been used to observe the impact of bile salts on the expression of metabolic genes. The results showed a global up-regulation of genes involved in degradation and a down-regulation of those implicated in biosynthesis. The main up-regulated degradation pathways were ethanolamine, 1,2-propanediol and citrate utilization, as well as the methyl-citrate pathway. Our study reveals that ethanolamine utilization bestows a competitive advantage of AIEC strains that are metabolically capable of its degradation in the presence of bile salts. We observed that bile salts activated secondary metabolism pathways that communicate to provide an energy beneft to AIEC. Bile salts may be used by AIEC as an environmental signal to promote their colonization. Te adherent-invasive Escherichia coli (AIEC) pathogroup was initially characterized in isolates from the ileal mucosa of Crohn’s disease (CD) patients1–5.
    [Show full text]
  • Molecular Properties of Membrane-Bound FAD-Containing D-Sorbitol Dehydrogenase from Thermotolerant Gluconobacter Frateurii Isolated from Thailand
    Biosci. Biotechnol. Biochem., 69 (6), 1120–1129, 2005 Molecular Properties of Membrane-Bound FAD-Containing D-Sorbitol Dehydrogenase from Thermotolerant Gluconobacter frateurii Isolated from Thailand y Hirohide TOYAMA,1; Wichai SOEMPHOL,1 Duangtip MOONMANGMEE,2 Osao ADACHI,1 and Kazunobu MATSUSHITA1 1Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan 2Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Prachauthit Road., Tungkru, Bangkok 10140, Thailand Received December 24, 2004; Accepted March 14, 2005 There are two types of membrane-bound D-sorbitol ism leads to applications in industry for fermentation of dehydrogenase (SLDH) reported: PQQ–SLDH, having valuable products such as L-sorbose, dihydroxyacetone, pyrroloquinoline quinone (PQQ), and FAD–SLDH, D-gluconate, and keto-D-gluconates.3,4) containing FAD and heme c as the prosthetic groups. L-Sorbose is an important intermediate in the indus- FAD–SLDH was purified and characterized from the trial production of vitamin C. The membrane-bound PQQ–SLDH mutant strain of a thermotolerant Gluco- D-sorbitol dehydrogenase (SLDH) has been considered nobacter frateurii, having molecular mass of 61.5 kDa, to play a main role in L-sorbose fermentation.5) In 52 kDa, and 22 kDa. The enzyme properties were quite Gluconobacter strains, two types of membrane-bound similar to those of the enzyme from mesophilic G. oxy- D-sorbitol dehydrogenases have been purified and well dans IFO 3254. This enzyme was shown to be inducible characterized. One was purified from G. suboxydans var by D-sorbitol, but not PQQ–SLDH. The oxidation IFO 32546) as flavohemoprotein, containing a cova- product of FAD–SLDH from D-sorbitol was identified lently bound FAD having three subunits with molecular as L-sorbose.
    [Show full text]
  • J. Nutr. Sci. Vitaminol., 28, 225-236, 1982 the Mechanism of in Situ
    J. Nutr. Sci. Vitaminol.,28, 225-236, 1982 The Mechanism of In Situ Reactivation of Glycerol Inactivated Coenzyme B12-Dependent Enzymes, Glycerol Dehydratase and Diol Dehydratasel Kazutoshi USHIO, Susumu HONDA, Tetsuo TORAYA,2 and Saburo FUKUI3 Laboratory of Industrial Biochemistry, Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606, Japan (Received September 28, 1981) Summary In the previous paper (S. Honda, T. Toraya, and S. Fukui, J. Bacteriol., 143, 1458-1465 (1980)), we reported that the glycerol inactivated holoenzymes of adenosylcobalamin-dependent glycerol dehy dratase and diol dehydratase are rapidly and continually reactivated in toluene-treated cells (in situ) by adenosine 5•L-triphosphate (ATP) and divalent metal ions in the presence of free adenosylcobalamin. To elucidate the mechanism of this in situ reactivation, the nature of the binding of various irreversible cobalamin inhibitors to the dehydratases in situ was investigated. In the presence of ATP and Mn2+, enzyme-bound hydroxocobalamin, cyanocobalamin and methylcobalamin were rapidly displaced by added adenosylcobalamin. Without ATP and Mn2+, such displacement did not take place. In contrast, enzyme-bound adeninyl butylcobalamin and adenosylethylcobalamin were essentially not displace able by the free coenzyme even in the presence of ATP and Mn2+. Inosylcobalamin was a very weak inhibitor irrespective of the presence of ATP and Mn2+ . These results indicate that the relative affinity of the enzymes in situ for the cobalamins with simple Cof ligands was markedly lowered in the presence of ATP and Mn2+, whereas that for the cobalamins with adenine-containing ligands was not. When the glycerol inactivated holoenzymes in situ were dialyzed against a buffer containing ATP and Mg2+, the inactivated coenzyme moiety dissociated from the enzymes leaving apoproteins.
    [Show full text]
  • A Universal Tradeoff Between Growth and Lag in Fluctuating Environments
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nature. Manuscript Author Author manuscript; Manuscript Author available in PMC 2021 January 15. Published in final edited form as: Nature. 2020 August ; 584(7821): 470–474. doi:10.1038/s41586-020-2505-4. A universal tradeoff between growth and lag in fluctuating environments Markus Basan1,2,¶,*, Tomoya Honda3,4,*, Dimitris Christodoulou2, Manuel Hörl2, Yu-Fang Chang1, Emanuele Leoncini1, Avik Mukherjee1, Hiroyuki Okano3, Brian R. Taylor3, Josh M. Silverman5, Carlos Sanchez1, James R. Williamson5, Johan Paulsson1, Terence Hwa3,4,¶, Uwe Sauer2,¶ 1Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. 2Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland. 3Department of Physics, University of California at San Diego, La Jolla, CA 92093 USA. 4Section of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093 USA. 5Department of Integrative Structural and Computational Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Abstract The rate of cell growth is crucial for bacterial fitness and a main driver of proteome allocation1,2, but it is unclear what ultimately determines growth rates in different environmental conditions. Increasing evidence suggests that other objectives also play key roles3–7, such as the rate of physiological adaptation to changing environments8,9. The challenge for cells is that these objectives often cannot be independently optimized, and maximizing one often reduces another. Many such tradeoffs have indeed been hypothesized, based on qualitative correlative studies8–11. Here we report the occurrence of a tradeoff between steady-state growth rate and physiological adaptability for Escherichia coli, upon abruptly shifting a growing culture from a preferred carbon source to fermentation products such as acetate.
    [Show full text]