Transcriptional Regulation Mechanisms Involved in Azole Resistance in Candida Species: Focusing on the Transcription Factors Rpn4 and Mrr1

Total Page:16

File Type:pdf, Size:1020Kb

Transcriptional Regulation Mechanisms Involved in Azole Resistance in Candida Species: Focusing on the Transcription Factors Rpn4 and Mrr1 Transcriptional regulation mechanisms involved in azole resistance in Candida species: focusing on the transcription factors Rpn4 and Mrr1 Raquel da Silva Califórnia Thesis to obtain the Master of Science Degree in Biotechnology Supervisor: Prof. Dr. Miguel Nobre Parreira Cacho Teixeira Examination Committee Chairperson: Prof. Dr. Ana Cristina Anjinho Madeira Viegas Supervisor: Prof. Dr. Miguel Nobre Parreira Cacho Teixeira Member of the Committee: Dr. Catarina Isabel Ribeiro Pimentel October 2018 ii Acknowledgements For me the development of this thesis was very challenging and involved a very extensive work, whose purpose would not have been reached without the help of some people I will mention below. First of all, I would like to thank my supervisor Professor Miguel Teixeira for the opportunity given by accepting me in his team and in this project. His tremendous support, guidance and motivation, always available to help, were crucial for the success of this work. I would like to thank Professor Isabel Sá-Correia for giving me the chance to join the Biological Sciences Research Group to develop my master thesis work. The achievement of this thesis required an indispensable help from several parts, which deserve my recognition. For the collaboration in the transcriptomic analysis herein accomplished, I thank Professor Geraldine Butler and her team, from University College of Dublin. For the supply of Candida glabrata mutants used in this work, I have to thank Professor Hiroji Chibana, from University of Chiba, Japan. For the study developed in HPLC analysis of ergosterol levels, I thank also Professor Nuno Mira for his availability and assistance. My gratitude should also be expressed towards my colleague, Pedro Pais, for the great help he has given me throughout this period, always available to help and explain anything. Many of the knowledge I would take with me were given by him, so thank you. Also, I a big thank to Mafalda Cavalheiro, who helped in several steps of my work mainly with HPLC, for her inexhaustible support in the lab as well as to all my other lab partners. And last but not least, I thank to Mónica Galocha for her help and friendship unconditionally, and because without her work, this thesis would never have been possible. For all the friendship and laughs, to my fellow of this journey, I leave a big thanks to all my friends, in special to Cristiana Ulpiano, Susana Vagueiro, Rita Simões, Pedro Monteiro, Mariana São Pedro, João Lampreia, Alexandra Balola, João Carvalho e Inês Sá, that were always present during this important stage of my life, even because half developed his thesis in the same building. To my teammates, for making me leave my house with the desire to train, for the moments of distraction and for helping me unwind my head for a few hours. Without enough words, I thank my boyfriend, Alexandre, for the indefatigable and unequaled support and patience, for always listen me carefully even though he does not realize anything I was saying. Thank you for always stay by my side and believe in me, love you more than everything. Most of all, I would like to thank my family, specially to my parents, for all the love and support throughout the course of my life, thanks for believing in me more than myself. My little sister, Rita, I hope to be always an example for her and a sister he will always be proud of. I have no words to say how much I love you all. This work was financially supported by Fundação para a Ciência e Tecnologia (FCT), contracts PTDC/BBB-BIO/4004/2014, PTDC/BII-BIO/28216/2017 and UID/BIO/04565/2013, and Programa Operacional Regional de Lisboa 2020, contract LISBOA-01-0145-FEDER-022231. iii iv Abstract Candida glabrata has emerged as the second most common cause of invasive candidiasis mainly due to the ability of this pathogenic yeast to resist to azole antifungal drugs. The transcriptional control of fluconazole drug response in C. glabrata was analyzed due to preliminary data suggesting that two transcription factors are determinants of azole drug resistance in C. glabrata, CgRpn4 (ORF CAGL0K01727g) and CgMrr1 (ORF CAGL0B03421g). Using RNA- sequencing, the regulon of CgRpn4 and CgMrr1 in control conditions and fluconazole exposure was defined. As predicted based on the role of the Saccharomyces cerevisiae homolog, CgRpn4 was found to be a major regulator of proteasome genes. In the context of fluconazole resistance mechanisms, CgRpn4 was found to be required for the up-regulation of ERG11, encoding the molecular target of azole drugs, as well as many other genes required for ergosterol biosynthesis. Consistently, Δrpn4 deletion mutant display a lower ergosterol concentration under fluconazole exposure. CgMrr1 was found to control the expression of a wide variety of genes, making it difficult to ascertain its exact role. In the context of fluconazole resistance, Mrr1 was found to up-regulate genes involved in sphingo/glycerophospholipid biosynthesis. Consistent with a role in the control of plasma membrane lipid composition, Rpn4 and Mrr1 were found to contribute to lower the plasma membrane permeability and intracellular fluconazole accumulation. The obtained results establish two new effectors of azole drug resistance and suggest that their activity in this context is the control of the plasma membrane composition, leading to decreased intracellular accumulation of fluconazole. Keywords: Candida glabrata, fluconazole resistance, CgRpn4, CgMrr1, ergosterol and sphingolipid biosynthesis. v vi Resumo Candida glabrata emergiu como a segunda causa mais comum de candidíase invasiva, principalmente devido à sua reduzida suscetibilidade a antifúngicos. O controlo transcricional em resposta ao fluconazole em C. glabrata foi analisado, porque dados preliminares sugeriram dois fatores de transcrição determinantes na resistência aos azóis, CgRpn4 (ORF CAGL0K01727g) e CgMrr1 (ORF CAGL0B03421g). Através dos dados de RNA-seq, o regulão de CgRpn4 e CgMrr1 em condições de controlo e fluconazole foi definido. Como previsto com base no papel do homólogo de Saccharomyces cerevisiae, o CgRpn4 foi considerado um importante regulador dos genes do proteassoma. No contexto dos mecanismos de resistência ao fluconazole, o CgRpn4 mostrou ser necessário para a ativação do ERG11, codifica o alvo molecular dos azóis, assim como muitos outros genes necessários para a biossíntese do ergosterol. Consistentemente, o mutante de deleção Δrpn4 apresenta uma menor concentração de ergosterol sob exposição ao fluconazole. Quanto ao CgMrr1, constatou-se que controla a expressão de uma ampla variedade de genes, tornando difícil determinar o seu papel exato. No contexto da resistência ao fluconazole, verificou-se que o Mrr1 regula positivamente os genes envolvidos na biossíntese de esfingo/glicerofosfolípidos. Consistente com o papel no controlo da composição lipídica da membrana plasmática, Rpn4 e Mrr1 contribuíram para diminuir a permeabilidade da membrana plasmática e a acumulação de fluconazole intracelular. Os resultados obtidos estabelecem dois novos efetores da resistência aos azóis e sugerem que a sua atividade neste contexto é efetuada através do controlo da composição da membrana plasmática, levando à diminuição da acumulação intracelular de fluconazole. Palavras-chave: Candida glabrata, resistência ao fluconazole, CgRpn4, CgMrr1, vias biossintéticas do ergosterol e dos esfingolipídios. vii viii Table of contents Acknowledgements ................................................................................................................................. iii Abstract.....................................................................................................................................................v Resumo .................................................................................................................................................. vii 1. Introduction ...................................................................................................................................... 1 1.1. Candida infections ................................................................................................................... 1 1.2. Candida glabrata ..................................................................................................................... 1 1.3. Antifungal agents used in the treatment of Candida infections ............................................... 3 1.4. Molecular mechanisms of resistance to azole drugs: focus on fluconazole ........................... 5 1.4.1. Efflux pump overexpression ............................................................................................ 6 1.4.2. Drug target overexpression ............................................................................................. 7 1.4.3. Drug target alteration ....................................................................................................... 7 1.4.4. Bypass pathways ............................................................................................................. 8 1.4.5. Sterol biosynthesis pathway alterations .......................................................................... 8 1.4.6. Mitochondrial DNA deficiency .......................................................................................... 9 1.5. The network of transcription regulators that control azole drug resistance, including an inter- species comparison ..........................................................................................................................
Recommended publications
  • Glycerol Dehydrogenase from Gluconobacter Industrius
    Agric. Biol Chem., 49 (4), 1001 -1010, 1985 1001 Solubilization, Purification and Properties of Membrane-bound Glycerol Dehydrogenase from Gluconobacter industrius Minoru Ameyama,Emiko Shinagawa, Kazunobu Matsushita and Osao Adachi Laboratory of Applied Microbiology, Department of Agricultural Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753, Japan Received July 30, 1984 Membrane-bound glycerol dehydrogenase was solubilized and purified about 100-fold from the membraneof Gluconobacter industrius IFO 3260 grown on a glycerol-glutamate medium. Solubilization of the enzyme was successfully achieved by use of 0.5% dimethyldodecylamineoxide in 0.05 m Tris-HCl, pH 8.0. Alcohol dehydrogenase and D-glucose dehydrogenase, which were abundantly formed in the same bacterial membrane, were eliminated on solubilization. Glycerol dehydrogenase was further purified through fractionation with polyethylene glycol 6000. The enzymeshowed a broad substrate specificity and various kinds of polyhydroxyl alcohols, in addition to glycerol, were rapidly oxidized in the presence of 2,6-dichlorophenolindophenoi and phenazine methosulfate as the electron acceptor but NADand NADPwere inert. The enzyme was proved to be a quinoprotein in which pyrroloquinoline quinone functioned as the prosthetic group. The first report on microbial oxidation of localization of the oxidase system in cells of G. glycerol to dihydroxyacetone was by Bertrand liquefaciens and found that the oxidation of with a strain capable of L-sorbose fermen- glycerol and raeso-erythritol
    [Show full text]
  • Histidinol Dehydrogenase from Neurospora Crassa
    Fungal Genetics Reports Volume 3 Article 1 Histidinol dehydrogenase from Neurospora crassa E. H. Creaser R. B. Drysdale Follow this and additional works at: https://newprairiepress.org/fgr This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License. Recommended Citation Creaser, E. H., and R.B. Drysdale (1963) "Histidinol dehydrogenase from Neurospora crassa," Fungal Genetics Reports: Vol. 3, Article 1. https://doi.org/10.4148/1941-4765.2139 This Research Note is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Histidinol dehydrogenase from Neurospora crassa Abstract Histidinol dehydrogenase from Neurospora crassa This research note is available in Fungal Genetics Reports: https://newprairiepress.org/fgr/vol3/iss1/1 RESEARCH NOTES Creaser, E.H. and R. B. Drysdale. Histidinol It is thought that the locus histidine-3 controls hvo --__ dehydrogenase from Neurosooro w. functions in Neurospora, the first of these being in the early stages ot histidine biosynthesis and largely unknown at present. The second function is to direct the formation of the terminal enzyme in the sequence- histidinol dehydrogenase. We have studied the purification and some properties of this enzyme. The enzyme con be extracted from wet mycelium by grinding with gloss powder or from dried mycelium by extraction with pH 9. I Tris buffer. The extract is treated with 0.05M MnC12 to prec:pitate nucleic acids and unwonted proteins. Ammonium sulphate is added to 50% saturation and the precipitate discorded.
    [Show full text]
  • And TROTTER 1967) in a Position Comparable to That of the Histidine Operon in S
    HISTIDINE-REQUIRING MUTANTS OF ESCHERZCHZA COLZ K12 LINDA GARRICK-SILVERSMITH1 AND PHILIP E. HARTMAN Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218 Received April 30, 1970 INSalmonella typhimurium a cluster of nine genes controlling histidine bio- synthesis has been mapped in detail and correlated with enzymes in the biochemical pathway. Numerous observations are in accord with the concept of a unified control-or operon system-for the histidine genes in Salmonella (LOPERet al. 1964; AMESet al. 1967). Mutations leading to a requirement for histidine are known in Escherchia coli and have been located on the E. coli K12 genetic map (TAYLORand TROTTER 1967) in a position comparable to that of the histidine operon in S. typhimurium (SANDERSON1967). Data presented here indicate that the his genes in E. coli are clustered and may constitute an operon very similar to that of Salmonella. The relative positions of two nearby genes in E. coli also are the same as in Salmonella. However, heterogeneity must be present between the two species, for E. coli F’ his recombines readily within E. coli but fails to recombine, or recombines only very rarely, with the chromosome when present in Salmonella. For reasons which are not understood, among E. coli histidine mutations (in comparison with pre- vious studies in Salmonella) extended deletions are unusually common while point mutations, particularly in certain genes, are rare. The independent studies reported in the accompanying paper by GOLDSCHMIDTet al. (1970) extend these observations. MATERIALS AND METHODS Bacteria2 strains: Histidine-requiring mutants were obtained in several E. coli K12 sublines after screening through penicillin (Table 1).
    [Show full text]
  • High-Yield Anaerobic Succinate Production by Strategically
    Meng et al. Microb Cell Fact (2016) 15:141 DOI 10.1186/s12934-016-0536-1 Microbial Cell Factories RESEARCH Open Access High‑yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli Jiao Meng1,2,3†, Baiyun Wang1,2,3†, Dingyu Liu1,2,3, Tao Chen1,2,3,4, Zhiwen Wang1,2,3* and Xueming Zhao1,2,3 Abstract Background: Succinate has been identified by the U.S. Department of Energy as one of the top 12 building block chemicals, which can be used as a specialty chemical in the agricultural, food, and pharmaceutical industries. Escheri- chia coli are now one of the most important succinate producing candidates. However, the stoichiometric maximum succinate yield under anaerobic conditions through the reductive branch of the TCA cycle is restricted by NADH sup- ply in E. coli. Results: In the present work, we report a rational approach to increase succinate yield by regulating NADH supply via pentose phosphate (PP) pathway and enhancing flux towards succinate. The deregulated genes zwf243 (encod- ing glucose-6-phosphate dehydrogenase) and gnd361 (encoding 6-phosphogluconate dehydrogenase) involved in NADPH generation from Corynebacterium glutamicum were firstly introduced into E. coli for succinate production. Co-expression of beneficial mutated dehydrogenases, which removed feedback inhibition in the oxidative part of the PP pathway, increased succinate yield from 1.01 to 1.16 mol/mol glucose. Three critical genes, pgl (encoding 6-phos- phogluconolactonase), tktA (encoding transketolase) and talB (encoding transaldolase) were then overexpressed to redirect more carbon flux towards PP pathway and further improved succinate yield to 1.21 mol/mol glucose.
    [Show full text]
  • Diphosphate (Ppgpp): Positive Effector for Histidine Operon
    Proc. Nat. Aced. Sci. USA Vol. 72, No. 11, pp. 4389-4393, November 1975 Biochemistry Guanosine 5'-diphosphate 3'-diphosphate (ppGpp): Positive effector for histidine operon transcription andgeneral signal for amino-acid deficiency (relaxed-stringent control/alarmones/Salmonella typhimurium/super-control/coupled in vitro protein synthesis) JOHN C. STEPHENS, STANLEY W. ARTZ, AND BRUCE N. AMES Department of Biochemistry, University of California, Berkeley, Calif. 94720 Contributed by Bruce N. Ames, September 5, 1975 ABSTRACT Maximal expression of the histidine operon pression experiments; and TA1995 (dhuAl) and TA1996 of Salmonella typhimurium in a coupled in vitro transcrip- (dhuAl relAl)-amino-acid analog studies. The rel-1 muta- tion-translation system is strongly dependent upon addition tion (8) has been designated a relA mutation (9) on the basis of guanosine 5'-diphosphate 3'-diphosphate (ppGpp). This re- quirement for ppGpp is exerted at the level of transcription of genetic mapping, phenotype, and biochemical character- through a mechanism distinct from the his-operon-specific ization (unpublished experiments). The dhuAl mutation regulatory mechanism. In vivo derepression of the his oper- (10) was used to facilitate strain construction and is not per- on is markedly defective when histidine starvation is im- tinent to these studies. The following Escherichia coli lyso- posed on a relA mutant-unable to rapidly increase synthesis gens (11) were used as source of template DNA: TA1933 of ppGpp-growing in amino-acid-rich medium. Increased [his-6607 StrR h immX cI857 susS7, (80 h dhisO+ sensitivity of relA mutants to growth inhibition by a number (080 of amino-acid analogs suggests that pp-pp is generally im- immA cI857 susS7)]; and TA1940 [his-6607 StrR ()80 h portant in adjusting expression of amino-acid-producing sys- immX cI857 susS7, 4i80 h dhisO1242 immx cI857 susS7)].
    [Show full text]
  • The Diversity of Microbial Aldo/Keto Reductases from Escherichia Coli K12
    Lapthorn, A. J., Zhu, X., and Ellis, E. M. (2013) The diversity of microbial aldo/keto reductases from Escherichia coli K12. Chemico-Biological Interactions, 202(1-3), pp. 168-177. (doi:10.1016/j.cbi.2012.10.008) There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/124204/ Deposited on: 07 October 2016 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk The diversity of microbial aldo/keto reductases from Escherichia coli K12 Adrian J. Lapthorn 1, Xiaofeng Zhu 2,3 and Elizabeth M. Ellis 3 1 School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ 2 College of Life Science and State Key Laboratory of Biotherapy and Cancer Centre, Sichuan University, Chengdu, China 3 Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow, G4 0RE Corresponding author: Adrian J. Lapthorn School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ Tel: +44 141-330 5940 Fax: +44 141-330 4888 E-mail: [email protected] Key Words: Aldo-Keto reductases, methylglyoxal reductase, 2,5-diketo-D-gluconate reductase, tyrosine auxotrophy suppressor protein, L-glyceraldehyde 3-phosphate reductase, AKR quaternary structure. Abstract The genome of Escherichia coli K12 contains 9 open reading frames encoding aldo/keto reductases (AKR) that are differentially regulated and sequence diverse. A significant amount of data is available for the E. coli AKRs through the availability of gene knockouts and gene expression studies, which adds to the biochemical and kinetic data.
    [Show full text]
  • Engineering of Glycerol Utilization in Gluconobacter Oxydans 621H For
    Yan et al. Microb Cell Fact (2018) 17:158 https://doi.org/10.1186/s12934-018-1001-0 Microbial Cell Factories RESEARCH Open Access Engineering of glycerol utilization in Gluconobacter oxydans 621H for biocatalyst preparation in a low‑cost way Jinxin Yan1, Jing Xu1,3, Menghao Cao1, Zhong Li1, Chengpeng Xu1, Xinyu Wang1, Chunyu Yang1, Ping Xu2, Chao Gao1 and Cuiqing Ma1* Abstract Background: Whole cells of Gluconobacter oxydans are widely used in various biocatalytic processes. Sorbitol at high concentrations is commonly used in complex media to prepare biocatalysts. Exploiting an alternative process for preparation of biocatalysts with low cost substrates is of importance for industrial applications. Results: G. oxydans 621H was confrmed to have the ability to grow in mineral salts medium with glycerol, an inevitable waste generated from industry of biofuels, as the sole carbon source. Based on the glycerol utilization mechanism elucidated in this study, the major polyol dehydrogenase (GOX0854) and the membrane-bound alcohol dehydrogenase (GOX1068) can competitively utilize glycerol but play no obvious roles in the biocatalyst prepara- tion. Thus, the genes related to these two enzymes were deleted. Whole cells of G. oxydans ∆GOX1068∆GOX0854 can be prepared from glycerol with a 2.4-fold higher biomass yield than that of G. oxydans 621H. Using whole cells of G. 1 1 oxydans ∆GOX1068∆GOX0854 as the biocatalyst, 61.6 g L− xylonate was produced from 58.4 g L− xylose at a yield of 1 1.05 g g− . Conclusion: This process is an example of efcient preparation of whole cells of G. oxydans with reduced cost.
    [Show full text]
  • Characterization of Glycerol Dehydrogenase from Thermoanaerobacterium Thermosaccharolyticum DSM 571 and GGG Motif Identification
    J. Microbiol. Biotechnol. (2016), 26(6), 1077–1086 http://dx.doi.org/10.4014/jmb.1512.12051 Research Article Review jmb Characterization of Glycerol Dehydrogenase from Thermoanaerobacterium thermosaccharolyticum DSM 571 and GGG Motif Identification Liangliang Wang1,2, Jiajun Wang1,2, Hao Shi1,2, Huaxiang Gu1,2, Yu Zhang1,2, Xun Li1,2, and Fei Wang1,2* 1College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China 2Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, P.R. China Received: December 17, 2015 Revised: March 5, 2016 Glycerol dehydrogenases (GlyDHs) are essential for glycerol metabolism in vivo, catalyzing Accepted: March 9, 2016 its reversible reduction to 1,3-dihydroxypropranone (DHA). The gldA gene encoding a putative GlyDH was cloned from Thermoanaerobacterium thermosaccharolyticum DSM 571 (TtGlyDH) and expressed in Escherichia coli. The presence of Mn2+ enhanced its enzymatic 171 254 271 First published online activity by 79.5%. Three highly conserved residues (Asp , His , and His ) in TtGlyDH were March 14, 2016 associated with metal ion binding. Based on an investigation of glycerol oxidation and DHA *Corresponding author reduction, TtGlyDH showed maximum activity towards glycerol at 60°C and pH 8.0 and Phone: +86-25-85427649; towards DHA at 60°C and pH 6.0. DHA reduction was the dominant reaction, with a lower Fax: +86-25-85427649; K of 1.08 ± 0.13 mM and V of 0.0053 ± 0.0001 mM/s, compared with glycerol oxidation, E-mail: [email protected] m(DHA) max with a Km(glycerol) of 30.29 ± 3.42 mM and Vmax of 0.042 ± 0.002 mM/s.
    [Show full text]
  • Molecular Properties of Membrane-Bound FAD-Containing D-Sorbitol Dehydrogenase from Thermotolerant Gluconobacter Frateurii Isolated from Thailand
    Biosci. Biotechnol. Biochem., 69 (6), 1120–1129, 2005 Molecular Properties of Membrane-Bound FAD-Containing D-Sorbitol Dehydrogenase from Thermotolerant Gluconobacter frateurii Isolated from Thailand y Hirohide TOYAMA,1; Wichai SOEMPHOL,1 Duangtip MOONMANGMEE,2 Osao ADACHI,1 and Kazunobu MATSUSHITA1 1Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan 2Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Prachauthit Road., Tungkru, Bangkok 10140, Thailand Received December 24, 2004; Accepted March 14, 2005 There are two types of membrane-bound D-sorbitol ism leads to applications in industry for fermentation of dehydrogenase (SLDH) reported: PQQ–SLDH, having valuable products such as L-sorbose, dihydroxyacetone, pyrroloquinoline quinone (PQQ), and FAD–SLDH, D-gluconate, and keto-D-gluconates.3,4) containing FAD and heme c as the prosthetic groups. L-Sorbose is an important intermediate in the indus- FAD–SLDH was purified and characterized from the trial production of vitamin C. The membrane-bound PQQ–SLDH mutant strain of a thermotolerant Gluco- D-sorbitol dehydrogenase (SLDH) has been considered nobacter frateurii, having molecular mass of 61.5 kDa, to play a main role in L-sorbose fermentation.5) In 52 kDa, and 22 kDa. The enzyme properties were quite Gluconobacter strains, two types of membrane-bound similar to those of the enzyme from mesophilic G. oxy- D-sorbitol dehydrogenases have been purified and well dans IFO 3254. This enzyme was shown to be inducible characterized. One was purified from G. suboxydans var by D-sorbitol, but not PQQ–SLDH. The oxidation IFO 32546) as flavohemoprotein, containing a cova- product of FAD–SLDH from D-sorbitol was identified lently bound FAD having three subunits with molecular as L-sorbose.
    [Show full text]
  • L -Histidinol Dihydrochloride
    L-Histidinol dihydrochloride Product Number H 6647 Store at Room Temperature Product Description Preparation Instructions Molecular Formula: C6H11N3O • 2HCl Histidinol is soluble in water (50 mg/ml), yielding a Molecular Weight: 214.1 clear, colorless solution. CAS Number: 1596-64-1 Melting point: 193-195 °C1 Storage/Stability A 5% aqueous solution of histidinol is stable at room L-Histidinol is a potent and reversible inhibitor of temperature for a minimum of 24 hours. Frozen stock protein synthesis in cultured human cells2 and is a solutions of histidinol are not recommended for use precursor of histidine in procaryotes and some after one month. eukaryotes. Histidinol does not significantly affect histidine transport into cells, but most likely inhibits References protein synthesis by decreasing the activation of 1. Dictionary of Organic Compounds, 5th ed., histidine. Histidinol competitively inhibits the Chapman and Hall (New York, NY: 1982), pyrophosphate-ATP exchange reaction that is Entry# A-01868. promoted by histidyl-tRNA synthetase in the presence 2. Hansen, B. S., et al., Reversible Inhibition by of histidine. When culture media contains 5 µM Histidinol of Protein Synthesis in Human Cells at histidine, protein synthesis is inhibited 50% in the the Activation of Histidine. J. Biol. Chem., 247(12), presence of 0.1 mM histidinol.2 3854-3857 (1972). 3. Thompson, L. H., Mutant Isolation. Meth. A procedure has been published for the use of Enzymol., 58, 308-322 (1979). histidinol in cell culture mutant selection.3 Histidinol 4. Grubmeyer, C. T., and Gray, W. R., A Cysteine has been used as a substrate for histidinol Residue (Cysteine-116) in the Histidinol Binding dehydrogenase from Salmonella typhimurium at Site of Histidinol Dehydrogenase.
    [Show full text]
  • Prospec (Product
    Name Catalog # Description Customer Price-A Customer Price-B Customer Price-C CYTOKINES AND GROWTH FACTORS Activin A, Active cyt-145 Recombinant Human Activin-A, Active $50/2µg $130/10µg $3,500/1mg Activin A, Plant-Active cyt-414 Recombinant Human Activin-A Active $50/1µg $130/5µg $1,500/100µg Activin A cyt-569 Recombinant Human Activin-A $50/2µg $130/10µg $2,700/1mg Activin A, Plant cyt-052 Recombinant Human Activin-A, Plant $50/2µg $130/10µg $4,800/1mg mActivin A cyt-146 Recombinant Mouse Activin-A $50/2µg $130/10µg $3,500/1mg rActivin A cyt-147 Recombinant Rat Activin-A $50/2µg $130/10µg $3,500/1mg Activin B, Active cyt-057 Recombinant Human Activin-B Active $50/2µg $130/10µg $5,200/1mg Activin B cyt-058 Recombinant Human Activin-B $50/2µg $130/10µg $4,800/1mg ACVR1 cyt-1140 Recombinant Human Activin A Receptor Type 1 $50/2µg $130/10µg $1,000/0.1mg ACVRL1 cyt-920 Recombinant Human Activin A Receptor Type II-Like 1 $50/2µg $130/10µg $5,200/1mg ACVR2A cyt-976 Recombinant Human Activin A Receptor Type 2A $50/2µg $130/10µg $5,200/1mg Acrp30 cyt-024 Human Adiponectin $50/2µg $130/10µg $1,000/0.1mg Acrp30 cyt-280 Recombinant Human Adiponectin $50/5µg $130/25µg $2,700/1mg Acrp30, His cyt-433 Recombinant Human Adiponectin, His tag $50/10µg $130/50µg $1,900/1mg Acrp30 (108-244) cyt-073 Recombinant Human Adiponectin (108-244 a.a.) $50/5µg $130/25µg $2,700/1mg Acrp30, HEK cyt-434 Recombinant Human Adiponectin glycosilated, HEK $50/2µg $130/10µg $4,680/1mg Acrp30, HMW cyt-764 Recombinant Human Adiponectin glycosilated, HMW Rich $50/2µg $130/10µg
    [Show full text]
  • Prospec Product Catalog 2019
    ProSpec Product Catalog 2019 QUALITY PROTEINS for scientific discoveries WE'VE GOT CHEMISTRY BRIGHTEN YOUR RESEARCH part for life sciences 6,000 proteins at your fingertips List by Molecule Name List by Molecule Name 제품별 자세한 설명은 www.prospecbio.com을 방문하세요. 부가세 별도 Molecule 제품번호 제품명 Size A / 가격(원) Size B / 가격(원) Size C / 가격(원) Name 1F8 Chagas cch-002 Recombinant 1F8 Chagas 5µg / 90,500 20µg / 199,000 1mg / 5,110,500 4-1BBL cyt-649 Recombinant Human 4-1BB Ligand, His Tag 5µg / 112,200 20µg / 220,800 1mg / 3,793,200 4-1BBL cyt-149 Recombinant Human 4-1BB Ligand 5µg / 90,500 20µg / 199,000 1mg / 3,771,400 4-1BBR cyt-916 Recombinant Mouse 4-1BB Receptor 1µg / 112,200 5µg / 220,800 50µg / 1,701,000 4-1BBR cyt-463 Recombinant Human 4-1BB Receptor 5µg / 90,500 20µg / 199,000 1mg / 3,771,400 4-1BBR cyt-137 Recombinant Human 4-1BB Receptor His Tag 5µg / 112,200 20µg / 220,800 1mg / 5,016,800 4-1BBR cyt-931 Recombinant Human 4-1BB Receptor sf9 2µg / 112,200 10µg / 220,800 1mg / 7,227,300 A2LD1 pro-172 Recombinant Human AIG2-Like Domain 1 2µg / 112,200 10µg / 220,800 1mg / 7,227,300 A2M pro-551 Human Alpha-2 Macroglobulin Protein 200µg / 90,500 1mg / 317,500 10mg / 2,389,800 Recombinant Human Alpha & Gamma-Adaptin Binding AAGAB pro-1479 5µg / 112,200 20µg / 220,800 1mg / 3,793,200 Protein Recombinant Human Adipogenesis Associated, Mth938 AAMDC pro-2116 5µg / 112,200 20µg / 220,800 1mg / 3,793,200 Domain Containing AARS enz-305 Recombinant Human Alanyl t-RNA Synthetase 5µg / 112,200 20µg / 220,800 1mg / 5,372,000 Recombinant Human Aminoadipate-Semialdehyde
    [Show full text]