Downloading Them Directly from the GO

Total Page:16

File Type:pdf, Size:1020Kb

Downloading Them Directly from the GO bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted March 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Evolution of the D. melanogaster chromatin landscape and its associated proteins Authors and affiliations: Elise Parey(1, 2) and Anton Crombach*(1,3) (1) Center for Interdisciplinary Research in Biology (CIRB), Collè!e de France, C#RS, IN$ERM, P$& Uni(ersit) Paris, 75005 Paris, France (2) (c-rrent address) Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, P$& Uni(ersit) Paris, 75005 Paris, France (3) (current address) Inria, Antenne Lyon La Doua, 69603 Villeurbanne, France Author for Correspondence (*): Anton Crombach, Center for Interdisciplinary Research in Biology (CIRB), Collè!e de France, CNRS, I#$ERM, P$& Uni(ersit) Paris, 75005 Paris, "rance, anton.crombach@colle!e0de-france.fr Keywords: phylogenomics, chromatin-associated proteins, chromatin types, histone modi1cations, centromere dri(e, D. melanogaster. 1 of 46 bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted March 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract (221w, max 250w) In the nucleus of eukaryotic cells, !enomic 3#A associates 4ith numerous protein comple5es and RNAs, forming the chromatin landscape. 6hrough a !enome04ide study of chromatin- associated proteins in Drosophila cells, 1(e ma7or chromatin types 4ere identi1ed as a re1nement of the traditional binary division into hetero- and euchromatin. These fi(e types are de1ned by distinct but o(erlapping combinations of proteins and differ in biological and biochemical properties, including transcriptional activity, replication timing and histone modi1cations. In this 4ork, 4e assess the e(olutionary relationships of chromatin-associated proteins and present an inte!rated vie4 of the e(olution and conser(ation of the fruit 9y D. melanogaster chromatin landscape. :e combine homology prediction across a 4ide range of species 4ith !ene a!e inference methods to determine the origin of each chromatin- associated protein. 6his provides insight into the emer!ence of the different chromatin types. ;ur results indicate that the t4o euchromatic types, <E&&;: and RE3, 4ere one single acti(ating type that split early in eukaryotic history. #e5t, 4e provide evidence that =REE#0 associated proteins are in(ol(ed in a centromere dri(e and expanded in a linea!e-speci1c 4ay in D. melanogaster. ;ur results on &'E chromatin support the hypothesis that the emer!ence of Polycomb =roup proteins is linked to eukaryotic multicellularity. In light of these results, 4e discuss ho4 the regulatory comple5i1cation of chromatin links to the origins of eukaryotic multicell-larity. 2 of 46 bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted March 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Introduction 6he chromatin landscape consists of 3#A, histones and other associated proteins and RNAs, and plays a fundamental role in de(elopment, cell-lar memory, and inte!ration of e5ternal signals. As a uni>ue feature of the eukaryotic cell, it is closely tied to the e(olution of eukaryotes, both re!arding their ori!in and the ma7or transition(s) to multicell-larity (Ne4man 2005; Aravind et al. 2014; =ombar et al. 2014; Penny et al. 2014; %iyamoto et al. 2015; $eb)0Pedrós et al. 2017). At a basic le(el, chromatin is responsible for maintenance, or!aniBation, and correct use of the !enome. Cistone proteins packa!e and condense 3#A in the nucleus, and act as a docking platform for hundreds of structural and regulatory proteins. A (ariety of re(ersible post-translational modi1cations of histones, kno4n as epi!enetic marks, promote the recruitment of speci1c proteins. 6his creates a local context for nuclear processes such as transcriptional activity, replication, as 4ell as 3#A-repair. 6hese and other epi!enetic mechanisms in(ol(ed in chromatin modi1cation ha(e been extensi(ely characteriBed in (ariety of eukaryotic species, 4hich led to the obser(ation that the chromatin landscape is effecti(ely subdivided into a small set of distinct chromatin states (Filion et al. 2010; Ernst et al. 2011; Roudier et al. 2011). A lar!ely open >uestion, ho4e(er, is ho4 these chromatin states ha(e (co-)e(ol(ed. In this 4ork, 4e assess the e(olutionary relationships of chromatin-associated proteins (CAPs) and present an inte!rated vie4 of the e(olution and conser(ation of the fruit fly D. melanogaster chromatin landscape. 3 of 46 bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted March 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Classically, chromatin is divided into t4o states, namely heterochromatin and euchromatin, the former a compacted 3#A state in 4hich transcription is mostly repressed and the latter an open, transcriptionally acti(e configuration. 6his classi1cation has been re1ned into multiple types of chromatin. In partic-lar, a breakthrough result 4as presented by "ilion et al., 4ho established 1(e ma7or chromatin types in D. melanogaster, named 4ith the colors <E&&;:, RE3, =REE#, &'E, and &ACK. 6o do so, they used !enome04ide binding profiles of CAPs obtained via 3amID (Vogel et al. 2007; Filion et al. 2010; van Bemmel et al. 2013). 6his approach is complementary to more commonly used !enome04ide histone mark pro1ling techni>ues, such as ChiP-se>. #e(ertheless, both are consistent 4ith each other and ser(e as independent (alidation. Indeed, the 1(e types can be mapped to an alternati(e classi1cation into nine chromatin states, that is deri(ed from histone modi1cations (Kharchen2o et al. 2011). 6he 1(e chromatin types ha(e different biological and biochemical properties. <E&&;: and RE3 are t4o types of e-chromatin. <E&&;: mainly marks ubi>-itously expressed house2eeping !enes. In contrast, the !enes harbored in RE3 sho4 more restricted expression patterns and are lin2ed to speci1c tissues and de(elopmental processes. Both euchromatin types are replicated in early $ phase, and of the t4o, RE3 tends to be replicated 1rst (Filion et al. 2010). =REE#, &'E, and &ACK are three types of heterochromatin. =REE# is considered a type of constit-ti(e heterochromatin. It is identi1ed by CP1-related proteins and is especially pre(alent in pericentric regions as 4ell as on chromosome @. &'E is fac-ltati(e heterochromatin and concerns mostly !enes speci1cally repressed during 4 of 46 bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted March 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. de(elopment. It is notably composed of the Polycomb =roup (Pc=) proteins, 4hich 4ere ori!inally disco(ered in D. melanogaster to repress Co5 !enes, and 4ere later found to ha(e a !eneral role in de(elopment. (Le4is 1978; 3uncan 1982; Boyer et al. 2006; &ee et al. 2006; #H!re et al. 2006). "inally, &ACK is a ma7or repressi(e type, co(ering G+I of silent !enes, 4hose underlying repressi(e molec-lar mechanisms remain poorly characteriBed (Filion et al. 2010). "rom an e(ol-tionary point of vie4, although prokaryotes ha(e specialiBed proteins associated 4ith their D#A, they do not share homology with eukaryotic CAPs (Lui7sterburg et al. 2008). In !eneral, e(olution of chromatin and di(ersi1cation of epi!enetic mechanisms are s-!!ested to be tightly linked 4ith eukaryotic e(olution, from its origin to the transition to multicell-larity (Ne4man 2005; Aravind et al. 2014; =ombar et al. 2014; Penny et al. 2014; %iyamoto et al. 2015; $eb)0Pedrós et al. 2017). Indeed, the &ast Eukaryotic Common Ancestor (LECA) is considered to possess the 2ey components of eukaryotic epi!enetics, including most histone modi1cation enzymes and some histone mark readers (Aravind et al. 2014). In addition, a current hypothesis on the transition to m-lticell-larity is that complexi1cation of the regulatory !enome, via the emer!ence of repressi(e chromatin conte5ts and distal regulatory elements, permitted to !enerate the cell-type0speci1c transcriptional programs re>uired for multicellularity (Larroux et al. 2006; %endoza et al. 2013; $eb)-Pedrós et al. 2016, 2017; Arenas0%ena 2017; Cinman J Cary 2017). Recently, a system0le(el vie4 of the e(olution of the chromatin modi1cation machinery 4as provided by (On et al. 2010). 6hey demonstrated the high conser(ation of a core of chromatin proteins 5 of 46 bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted March 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
Recommended publications
  • Evolution of the D. Melanogaster Chromatin Landscape and Its Associated Proteins
    bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted January 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Evolution of the D. melanogaster chromatin landscape and its associated proteins Authors and affiliations: Elise Parey(1, 2) and Anton Crombach*(1,3,4) (1) Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Université Paris, 75005 Paris, France (2) (current address) Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France (3) (current address) Inria, Antenne Lyon La Doua, 69603 Villeurbanne, France (4) Université de Lyon, INSA-Lyon, LIRIS, UMR 5205, 69621 Villeurbanne, France Author for Correspondence (*): Anton Crombach, Inria, Antenne Lyon La Doua, 69603 Villeurbanne, France, [email protected] 1 of 49 bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted January 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract (240w, max 250w) In the nucleus of eukaryotic cells, genomic DNA associates with numerous protein complexes and RNAs, forming the chromatin landscape. Through a genome-wide study of chromatin- associated proteins in Drosophila cells, five major chromatin types were identified as a refinement of the traditional binary division into hetero- and euchromatin.
    [Show full text]
  • IISER Pune Annual Report 2015-16 Chairperson Pune, India Prof
    dm{f©H$ à{VdoXZ Annual Report 2015-16 ¼ããäÌãÓ¾ã ãä¶ã¹ã¥ã †Ìãâ Êãà¾ã „ÞÞã¦ã½ã ½ãÖ¦Ìã ‡ãŠñ †‡ãŠ †ñÔãñ Ìãõ—ãããä¶ã‡ãŠ ÔãâÔ©ãã¶ã ‡ãŠãè Ô©ãã¹ã¶ãã ãä•ãÔã½ãò ‚㦾ãã£ãìãä¶ã‡ãŠ ‚ã¶ãìÔãâ£ãã¶ã Ôããä֦㠂㣾ãã¹ã¶ã †Ìãâ ãäÍãàã¥ã ‡ãŠã ¹ãî¥ãùã Ôãñ †‡ãŠãè‡ãŠÀ¥ã Öãñý ãä•ã—ããÔãã ¦ã©ãã ÀÞã¶ã㦽ã‡ãŠ¦ãã Ôãñ ¾ãì§ãŠ ÔãÌããó§ã½ã Ôã½ãã‡ãŠÊã¶ã㦽ã‡ãŠ ‚㣾ãã¹ã¶ã ‡ãñŠ ½ã㣾ã½ã Ôãñ ½ããõãäÊã‡ãŠ ãäÌã—ãã¶ã ‡ãŠãñ ÀãñÞã‡ãŠ ºã¶ãã¶ããý ÊãÞããèÊãñ †Ìãâ Ôããè½ããÀãäÖ¦ã / ‚ãÔããè½ã ¹ã㟿ã‰ãŠ½ã ¦ã©ãã ‚ã¶ãìÔãâ£ãã¶ã ¹ããäÀ¾ããñ•ã¶ãã‚ããò ‡ãñŠ ½ã㣾ã½ã Ôãñ œãñ›ãè ‚ãã¾ãì ½ãò Öãè ‚ã¶ãìÔãâ£ãã¶ã àãñ¨ã ½ãò ¹ãÆÌãñÍãý Vision & Mission Establish scientific institution of the highest caliber where teaching and education are totally integrated with state-of-the- art research Make learning of basic sciences exciting through excellent integrative teaching driven by curiosity and creativity Entry into research at an early age through a flexible borderless curriculum and research projects Annual Report 2015-16 Governance Correct Citation Board of Governors IISER Pune Annual Report 2015-16 Chairperson Pune, India Prof. T.V. Ramakrishnan (till 03/12/2015) Emeritus Professor of Physics, DAE Homi Bhabha Professor, Department of Physics, Indian Institute of Science, Bengaluru Published by Dr. K. Venkataramanan (from 04/12/2015) Director and President (Engineering and Construction Projects), Dr.
    [Show full text]
  • The Drosophila Speciation Factor HMR Localizes to Genomic Insulator Sites
    Aus dem Biomedizinischen Centrum der Ludwig-Maximilians-Universität München Medizinische Fakultät Lehrstuhl für Molekularbiologie Vorstand: Prof. Dr. rer. nat. Peter B. Becker The Drosophila speciation factor HMR localizes to genomic insulator sites Dissertation zum Erwerb des Doktorgrades der Naturwissenschaften an der Medizinischen Fakultät der Ludwig-Maximilians-Universität München vorgelegt von Thomas Andreas Gerland aus München Jahr 2017 Gedruckt mit Genehmigung der Medizinischen Fakultät der Ludwig-Maximilians-Universität München Betreuer: Prof. Dr. rer. nat. Axel Imhof Zweitgutachter: Prof. Dr. André Brändli Dekan: Prof. Dr. med. dent. Reinhard Hickel Tag der mündlichen Prüfung: 14.11.2017 Eidesstattliche Versicherung Gerland, Thomas Andreas Ich erkläre hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Thema “The Drosophila speciation factor HMR localizes to genomic insulator sites” selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln nachgewiesen habe. Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht wurde. _________________________________ _________________________________ Ort, Datum Unterschrift Doktorandin/Doktorand Wesentliche Teile dieser Arbeit sind veröffentlicht in: PLoS ONE, 2017 February 16, doi:10.1371/journal.pone.0171798 The Drosophila speciation factor HMR localizes to genomic insulator sites Gerland T. A., Sun B., Smialowski P., Lukacs A., Thomae A. W., Imhof A. Mitwirkungen: Bioinformatische und statistische Datenanalyse durchgeführt in Zusammenarbeit mit Bo Sun, Dr. Pawel Smialowski und Dr. Tobias Straub Next Generation Sequencing durchgeführt in Zusammenarbeit mit Dr.
    [Show full text]
  • Structure, Function, and Evolution of a Signal-Regulated Enhancer
    Structure, Function, and Evolution of a Signal-Regulated Enhancer by Christina Ione Swanson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cell and Developmental Biology) in the University of Michigan 2010 Doctoral Committee: Assistant Professor Scott E. Barolo, Chair Professor J. Douglas Engel Associate Professor Kenneth M. Cadigan Associate Professor Billy Tsai Assistant Professor Patricia J. Wittkopp To my family, for your truly unconditional love and support. And to Mike - the best thing that happened to me in grad school. ii TABLE OF CONTENTS DEDICATION .................................................................................................................. ii LIST OF FIGURES ............................................................................................................ v CHAPTER I: INTRODUCTION ....................................................................................... 1 What do enhancers look like? ................................................................................ 2 Mechanisms of enhancer function ......................................................................... 3 Enhancer structure and organization ...................................................................... 6 Unanswered questions in the field ....................................................................... 10 The D-Pax2 sparkling enhancer .......................................................................... 12 CHAPTER II: STRUCTURAL RULES
    [Show full text]
  • Promoter-Proximal Chromatin Domain Insulator Protein Beaf Mediates
    Louisiana State University LSU Digital Commons Faculty Publications Department of Biological Sciences 5-1-2020 Promoter-proximal chromatin domain insulator protein BeaF mediates local and long-range communication with a transcription factor and directly activates a housekeeping promoter in Drosophila Yuankai Dong Louisiana State University S. V. Satya Prakash Avva Louisiana State University Mukesh Maharjan Louisiana State University Janice Jacobi Tulane University Craig M. Hart Louisiana State University Follow this and additional works at: https://digitalcommons.lsu.edu/biosci_pubs Recommended Citation Dong, Y., Satya Prakash Avva, S., Maharjan, M., Jacobi, J., & Hart, C. (2020). Promoter-proximal chromatin domain insulator protein BeaF mediates local and long-range communication with a transcription factor and directly activates a housekeeping promoter in Drosophila. Genetics, 215 (1), 89-101. https://doi.org/ 10.1534/genetics.120.303144 This Article is brought to you for free and open access by the Department of Biological Sciences at LSU Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. | INVESTIGATION Promoter-Proximal Chromatin Domain Insulator Protein BEAF Mediates Local and Long-Range Downloaded from https://academic.oup.com/genetics/article/215/1/89/5930442 by LSU Health Sciences Ctr user on 05 August 2021 Communication with a Transcription Factor and Directly Activates a Housekeeping Promoter in Drosophila
    [Show full text]
  • Promoter-Proximal Chromatin Domain Insulator Protein BEAF Mediates Local and Long-Range Communication with a Transcription Facto
    Genetics: Early Online, published on March 17, 2020 as 10.1534/genetics.120.303144 Promoter-proximal chromatin domain insulator protein BEAF mediates local and long- range communication with a transcription factor and directly activates a housekeeping promoter in Drosophila Yuankai Dong,* S. V. Satya Prakash Avva,* Mukesh Maharjan,*,1 Janice Jacobi,† and Craig M. Hart*,2 *Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803 †Hayward Genetics Center, Tulane University, New Orleans, Louisiana 70112 1Present address: Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 0 Copyright 2020. Running title: Transcriptional effects of BEAF insulator proteins Key words: BEAF; Insulators; Chromatin domains; Gene regulation; Enhancer-promoter looping; Drosophila 2Corresponding author: Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, Louisiana, 70803 E-mail: [email protected] 1 ABSTRACT BEAF (Boundary Element-Associated Factor) was originally identified as a Drosophila melanogaster chromatin domain insulator binding protein, suggesting a role in gene regulation through chromatin organization and dynamics. Genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, suggesting a role in promoter function. This would be a nontraditional role for an insulator binding protein. To gain insight into molecular mechanisms of BEAF function, we identified interacting proteins using yeast 2-hybrid assays. Here we focus on the transcription factor Sry-δ. Interactions were confirmed in pull- down experiments using bacterially expressed proteins, by bimolecular fluorescence complementation, and in a genetic assay in transgenic flies. Sry-δ interacted with promoter- proximal BEAF both when bound to DNA adjacent to BEAF or over 2 kb upstream to activate a reporter gene in transient transfection experiments.
    [Show full text]
  • Gene Duplication, Lineage-Specific Expansion, And
    INVESTIGATION Gene Duplication, Lineage-Specific Expansion, and Subfunctionalization in the MADF-BESS Family Patterns the Drosophila Wing Hinge Vallari Shukla, Farhat Habib, Apurv Kulkarni, and Girish S. Ratnaparkhi1 Indian Institute of Science Education and Research, Pune, Maharashtra, India 411008 ABSTRACT Gene duplication, expansion, and subsequent diversification are features of the evolutionary process. Duplicated genes can be lost, modified, or altered to generate novel functions over evolutionary timescales. These features make gene duplication a powerful engine of evolutionary change. In this study, we explore these features in the MADF-BESS family of transcriptional regulators. In Drosophila melanogaster, the family contains 16 similar members, each containing an N-terminal, DNA-binding MADF domain and a C-terminal, protein-interacting, BESS domain. Phylogenetic analysis shows that members of the MADF-BESS family are expanded in the Drosophila lineage. Three members, which we name hinge1, hinge2, and hinge3 are required for wing development, with a critical role in the wing hinge. hinge1 is a negative regulator of Winglesss expression and interacts with core wing-hinge patterning genes such as teashirt, homothorax, and jing. Double knockdowns along with heterologous rescue experiments are used to demonstrate that members of the MADF-BESS family retain function in the wing hinge, in spite of expansion and diversification for over 40 million years. The wing hinge connects the blade to the thorax and has critical roles in fluttering during flight. MADF-BESS family genes appear to retain redundant functions to shape and form elements of the wing hinge in a robust and fail-safe manner. HE MADF-BESS gene family in Drosophila melanogaster in a broader sense a subgroup of the individual, indepen- Tconsists of 16 transcriptional regulators (Figure 1A), dent MADF and BESS family genes, where both MADF and coded by 16 discrete genes.
    [Show full text]
  • Insect Transcription Factors: a Landscape of Their Structures and Biological Functions in Drosophila and Beyond
    International Journal of Molecular Sciences Review Insect Transcription Factors: A Landscape of Their Structures and Biological Functions in Drosophila and beyond Zhaojiang Guo 1,† , Jianying Qin 1,2,†, Xiaomao Zhou 2 and Youjun Zhang 1,* 1 Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; [email protected] (Z.G.); [email protected] (J.Q.) 2 Longping Branch, Graduate School of Hunan University, Changsha 410125, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-82109518 † These authors contributed equally to this work. Received: 23 October 2018; Accepted: 16 November 2018; Published: 21 November 2018 Abstract: Transcription factors (TFs) play essential roles in the transcriptional regulation of functional genes, and are involved in diverse physiological processes in living organisms. The fruit fly Drosophila melanogaster, a simple and easily manipulated organismal model, has been extensively applied to study the biological functions of TFs and their related transcriptional regulation mechanisms. It is noteworthy that with the development of genetic tools such as CRISPR/Cas9 and the next-generation genome sequencing techniques in recent years, identification and dissection the complex genetic regulatory networks of TFs have also made great progress in other insects beyond Drosophila. However, unfortunately, there is no comprehensive review that systematically summarizes the structures and biological functions of TFs in both model and non-model insects. Here, we spend extensive effort in collecting vast related studies, and attempt to provide an impartial overview of the progress of the structure and biological functions of current documented TFs in insects, as well as the classical and emerging research methods for studying their regulatory functions.
    [Show full text]
  • Coordinate Enhancers Share Common Organizational Features in the Drosophila Genome
    Coordinate enhancers share common organizational features in the Drosophila genome Albert Erives and Michael Levine* Center for Integrative Genomics, Department of Molecular and Cell Biology, Division of Genetics and Development, University of California, Berkeley, CA 94720 Contributed by Michael Levine, January 27, 2004 The evolution of animal diversity depends on changes in the provide a unique opportunity to determine whether coordinate regulation of a relatively fixed set of protein-coding genes. To enhancers contain similar arrangements of regulatory elements. understand how these changes might arise, we examined the The four coregulated enhancers were previously shown to organization of shared sequence motifs in four coordinately reg- share binding sites for Dorsal (GGGWWWWCYS, GGGW4– ulated neurogenic enhancers that direct similar patterns of gene 5CCM), Twist (CACATGT), Suppressor of Hairless [Su(H)] expression in the early Drosophila embryo. All four enhancers (YGTGDGAA), as well as an unknown regulatory element (the possess similar arrangements of a subset of putative regulatory ‘‘mystery site,’’ CTGWCCY). The present study identified spe- elements. These shared features were used to identify a neuro- cialized forms of the Dorsal (SGGAAANYCSS), Su(H) (CGT- genic enhancer in the distantly related Anopheles genome. We GGGAAAWDCSM), and mystery sites (CTGRCCBKSMM) suggest that the constrained organization of metazoan enhancers within each enhancer. These specialized motifs exhibit a number may be essential for their ability to produce precise patterns of of organizational constraints within a 300-bp core domain of gene expression during development. Organized binding sites each enhancer. First, the specialized Dorsal site maps within 20 should facilitate the identification of regulatory codes that link bp of an oriented Twist site.
    [Show full text]
  • Transcriptomic Data from Panarthropods Shed New Light on the Evolution of Insulator Binding Proteins in Insects
    Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects Pauli, Thomas; Vedder, Lucia; Dowling, Daniel; Petersen, Malte; Meusemann, Karen; Donath, Alexander; Peters, Ralph S.; Podsiadlowski, Lars; Mayer, Christoph; Liu, Shanlin; Zhou, Xin; Heger, Peter; Wiehe, Thomas; Hering, Lars; Mayer, Georg; Misof, Bernhard; Niehuis, Oliver Published in: BMC Genomics DOI: 10.1186/s12864-016-3205-1 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Pauli, T., Vedder, L., Dowling, D., Petersen, M., Meusemann, K., Donath, A., Peters, R. S., Podsiadlowski, L., Mayer, C., Liu, S., Zhou, X., Heger, P., Wiehe, T., Hering, L., Mayer, G., Misof, B., & Niehuis, O. (2016). Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects. BMC Genomics, 17, [861]. https://doi.org/10.1186/s12864-016-3205-1 Download date: 01. Oct. 2021 Pauli et al. BMC Genomics (2016) 17:861 DOI 10.1186/s12864-016-3205-1 RESEARCHARTICLE Open Access Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects Insect insulator proteins Thomas Pauli1* , Lucia Vedder2, Daniel Dowling3, Malte Petersen1, Karen Meusemann1,4,5, Alexander Donath1, Ralph S. Peters6, Lars Podsiadlowski7, Christoph Mayer1, Shanlin Liu8,9, Xin Zhou10,11, Peter Heger12, Thomas Wiehe12, Lars Hering13, Georg Mayer13, Bernhard Misof1 and Oliver Niehuis1* Abstract Background: Body plan development in multi-cellular organisms is largely determined by homeotic genes. Expression of homeotic genes, in turn, is partially regulated by insulator binding proteins (IBPs).
    [Show full text]
  • 49 Annual Drosophila Research Conference • Program and Abstracts
    49 th Annual Drosophila Research Conference • Program and Abstracts Conference • Program Research Annual Drosophila The Genetics Society of America 9650 Rockville Pike, Bethesda, MD 20814-3998 Telephone: 301/634-7300 • Fax: 301/634-7079 e-mail: [email protected] Web site: www.genetics-gsa.org Conference site: www.drosophila-conf.org 49TH ANNUAL DROSOPHILA RESEARCH CONFERENCE April 2–6, 2008 Town and Country Hotel & Conference Center San Diego, California Program and Abstracts Volume • 2008 Meeting Organizers Nancy Bonini, University of Pennsylvania Susan Celniker, Lawrence Berkeley National Laboratory Brian Oliver, NIDDK, NIH, HHS John Tamkun, University of California, Santa Cruz • 2007/2008 Drosophila Board of Directors Officers and Regional Representatives* President Utpal Banerjee University of California, Los Angeles President-Elect Carl Thummel University of Utah Past-President Trudy MacKay North Carolina State University Past-President & Elections Chair Mark Krasnow Stanford University Past-President Lynn Cooley Yale University Treasurer Michael Bender University of Georgia Canada Howard Lipshitz University of Toronto Great Lakes Amanda Simcox Ohio State University Northwest Jim Truman University of Washington Southeast Rebecca Kellum University of Kentucky California Graeme Davis University of California, San Francisco Heartland Susan Abmayr Stowers Institute for Medical Research New England Mitzi Kuroda Harvard University Medical School Mid-Atlantic Liz Gavis Princeton University Midwest Pam Geyer University of Iowa • International Representatives Australia/Oceana Phil Batterham University of Melbourne Asia Vijay Raghavan The National Centre for Biological Sciences Europe Barry Dickson Research Institute of Molecular Pathology *2008/2009 Board of Directors will be listed in the Program Addendum and take office following the 2008 Drosophila Research Conference.
    [Show full text]
  • In Silico Identification of BESS-DC Genes and Expression Analysis In
    Gene 575 (2016) 478–487 Contents lists available at ScienceDirect Gene journal homepage: www.elsevier.com/locate/gene Research paper In silico identification of BESS-DC genes and expression analysis in the silkworm, Bombyx mori Zhongchen Rao a, Jun Duan b, Qingyou Xia b,QiliFenga,⁎ a Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, 510631, China b State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, China article info abstract Article history: BESS domain is a protein binding domain that can interact each other or with other domains. In this study, 323 Received 27 January 2015 BESS domain containing (BESS-DC) proteins were identified in 3328 proteomes. These BESS-DC genes pertain Received in revised form 10 September 2015 to 41 species of five phyla, most of which are arthropod insects. A BESS domain contains two α-helixes linked Accepted 11 September 2015 by a coil or β-turn. Phylogenetic tree and architecture analysis show that the BESS domain seems to generate Available online 16 September 2015 along with the DNA-binding MADF domain. Two hundred thirty three BESS-DC genes (71.1%) contain at least Keywords: one MADF domain, while 59 genes (18.2%) had only the BESS domain. In addition to BESS and MADF domains, BESS domain some of genes also contain other ligand binding domains, such as DAO, DUS and NAD_C. Nineteen genes Protein–protein interaction (5.8%) are associated with other DNA binding domains, such as Myb and BED. The BESS-DC genes can be divided Bioinformatics into 17 subfamilies, eight of which have more than one clade.
    [Show full text]