Characterization of Boundary Element-Associated Factors BEAF-32A and BEAF-32B and Identification of Novel Interaction Partners in Drosophila Melanogaster S

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Boundary Element-Associated Factors BEAF-32A and BEAF-32B and Identification of Novel Interaction Partners in Drosophila Melanogaster S Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2016 Characterization of Boundary Element-Associated Factors BEAF-32A and BEAF-32B and Identification of Novel Interaction Partners in Drosophila Melanogaster S. V. Satya Prakash Avva Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Avva, S. V. Satya Prakash, "Characterization of Boundary Element-Associated Factors BEAF-32A and BEAF-32B and Identification of Novel Interaction Partners in Drosophila Melanogaster" (2016). LSU Doctoral Dissertations. 617. https://digitalcommons.lsu.edu/gradschool_dissertations/617 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. CHARACTERIZATION OF BOUNDARY ELEMENT-ASSOCIATED FACTORS BEAF-32A AND BEAF-32B AND IDENTIFICATION OF NOVEL INTERACTION PARTNERS IN DROSOPHILA MELANOGASTER A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by S. V. Satya Prakash Avva B. Tech., ICFAI University, 2007 August 2016 I dedicate this to my father Late. Dr. Siva Rama Krishna Avva. You will always be in my thoughts. I remember the days when you came home from practice late in the night and still found the time to pick up a book. This vision of you, keeps me motivated, more than you could have ever imagined. ii ACKNOWLEDGEMENTS I take this opportunity to express my profound sense of gratitude to my advisor, Dr. Craig M. Hart, for his invaluable guidance, and for allowing me to carry out this project in his lab. He has generously taken out his valuable time on numerous occasions to discuss the projects and also to give my ideas and thoughts a proper direction. I would like to thank my committee members, Dr. David Donze, Dr. Patrick DiMario, Dr. Joomyeong Kim and Dr. Rendy Kartika for providing their thoughtful suggestions on my project, during our meetings. Particularly, I am very grateful for Dr. Donze’s help in yeast-two-hybrid assays and also for allowing me to use his lab facilities and reagents. I would also like to thank Dr. DiMario for lending valuable reagents. I extend my gratitude to Dr. William E. Wischusen, for enhancing my experience of the graduate program through various leadership and teaching duties. My sincere thanks to Dr. David Burk and Dr. Hollie Hale-Donze, for their timely help in fluorescent microscopy experiments, and Ms. Ying Xiao for her guidance in SEM. My lab mates have been a huge part of my experience in the graduate program. I have shared many fond memories with them. Shraddha Shrestha, Yu (Alex) Ge, Keller McKowen, Mukesh Maharjan, Dr. Peter Klein and Yuankai Dong have all been very supportive in my research endeavours and other wise. I like to thank them all for inculcating a sense of comradery among the lab members and also for their involvement in creating a conducive environment for learning and doing thoughtful research. LBRN summer undergrad, Janice Jacobi, has put in a lot of effort in making clones for yeast two-hybrid assays, in chapter three. I am very thankful for her assistance. Many other undergrads at LSU have worked in this lab with me who have been very helpful. iii Trace Favre, Luis Guerrero, Charles Lewis, and Armand Jacques to just name a few among many. I hope I made their time in the lab worthwhile. I thank all the scholars and staff of LSU, who have talked and discussed about their research work, and providing a stimulating and intellectual environment. Finally, it’s hard to ink all the heart felt feelings for my parents. I am always indebted to them, for being a source of inspiration to pursue studies in the field of biology, and for extending their moral support in all forms, throughout my professional and personal life. iv TABLE OF CONTENTS ACKNOWLEDGEMENTS……………………………………………………………...iii ABSTRACT…....………………………………………………………………………..vii CHAPTER ONE: GENOME ORGANIZATION, CHROMATIN DOMAINS AND INSULATOR ELEMENTS: RELATIONSHIP BETWEEN STRUCTURE AND FUNCTION……………………………………………………………………………….1 Introduction…………………………………………………….……..…….………….….1 Histone Modifications in Gene Regulation and Chromatin Structure.…………….……...3 Chromatin Loop Domain Model………………………………………………….……….7 Regulatory Elements…………………………………………………………….………...8 Insulator (Boundary) Elements……………………………………………………………9 Insulator (Architectural) Proteins….……………………………………………………..11 Topologically Associated Domains (TADs)…………………………….…………….…14 Boundary Element Associated Factor-32 (BEAF-32).....………………………………..19 Research Objectives………………………………………………………………….…..23 References……………………………………………………………………..…………24 CHAPTER TWO: DETERMINATION OF THE ESSENTIAL DOMAINS INSIDE BEAF-32 PROTEINS…………………………………………………………………....37 Introduction………………………………………………………………………………37 Materials and Methods…………………………………………………………………...40 Results…………………………………………………………………………………....44 Discussion………………………………………………………………………………..51 References………………………………………………………………………………..54 CHAPTER THREE: IDENTIFICATION OF NOVEL PHYSICAL INTERACTION PARTNERS OF BEAF-32B PROTEIN AND TESTING THEIR SIGNIFICANCE USING A GENETIC SCREEN….………….…..………………………………………………...57 Introduction………………………………………………………………………...…….57 Materials and Methods…………………………………….……………………………..62 Results……………………………………………………….………………….………..68 Discussion…………………………………………………….………………………….79 References…………………………………………………….………………………….86 CHAPTER FOUR: FLUORESCENT STUDIES ON BEAF-32A AND BEAF-32B PROTEINS.…..……………………………………………………………………….....94 Introduction…..…………………………………………………………………………..94 Fluorescent Labelling of BEAF……………..……………………………………………96 Materials and Methods…………………………………………………………………...98 Results…………………………………………………………………………………..101 Discussion…..…………………………………..………………………………………107 References………………………………………………………………………………109 v CHAPTER FIVE: YEAST TWO-HYBRID TEST FOR PHYSICAL INTERACTIONS BETWEEN INSULATOR PROTEINS………...............................................................115 Introduction……………………………………………………………………………..115 Materials and Methods………………………………………………………………….118 Results…………………………………………………………………………………..119 Discussion…..…………………………..……………………………………………....122 References………………………………………………………………………………126 CHAPTER SIX: CONCLUDING REMARKS………….…………………….……….132 References………………………………………………………………………………139 VITA…………………………………………………..………………………………..142 vi ABSTRACT Regulatory elements are DNA sequences which have specialized activities that coordinate the functions of the genome. Promoters, enhancers, locus control regions, boundary elements (or insulator elements) are examples of DNA sequences that have regulatory properties. In transgenic assays insulator elements have been shown to block communication between regulatory regions, such as enhancers and promoters, when placed between these sequences and also protect genes from position effects when bracketing them, thereby affecting gene expression. Insulator sequences are bound by insulator proteins that direct the function of these sequences. One such insulator protein is the Boundary Element Associated Factor-32 (BEAF-32), a 32 kDa protein which was originally found to bind to the scs’ insulator sequence in the 87A heat shock locus of the Drosophila genome. BEAF-32 has two isoforms: 32A and 32B. BEAF was immunolocalized to numerous binding sites across the Drosophila genome. This was substantiated by various genome-wide mapping experiments, which have identified from 1800 to 6000 BEAF binding sites across the genome. Hence, BEAF-32 likely plays an important role in chromatin organization and gene regulation in combination with other proteins in the nucleus. However, it is not clear how BEAF-32 affects genome organization and gene regulation. We characterized essential domains in the BEAF-32 protein and identified protein partners, some of which include Transcription Factors (TFs). We further mapped the interaction regions inside BEAF and these TFs. We then attempted Fluorescent Recovery After Photobleaching (FRAP) to assess the dynamics of BEAF-32 on polytene chromosomes and also observed banding patterns, with the help of fluorescent protein labels, and evaluated its behavior during mitosis in early embryos. Finally, results obtained vii with BEAF prompted us to test for physical interactions between various insulator proteins and to check contradictory reported results from the literature to document interactions. viii CHAPTER ONE: GENOME ORGANIZATION, CHROMATIN DOMAINS AND INSULATOR ELEMENTS: RELATIONSHIP BETWEEN STRUCTURE AND FUNCTION Introduction Genomes in higher eukaryotes are tightly packed inside the nucleus. The level of compaction of a genome is very dramatic, for example: in humans the length of the entire genome is about 2 meters (m) when stretched from end to end. However the average diameter of a human nucleus is around only 10 m which roughly translates into a compaction rate in the order of 105 (FUENTES-MASCORRO et al. 2000). This could be suggestive of an idea that the DNA is randomly arranged inside the nucleus to optimize the packaging of the genome. But as it turns out processes such as DNA replication, repair, recombination and gene expression are highly regulated mechanisms inside the spatially
Recommended publications
  • Downloading Them Directly from the GO
    bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted March 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Evolution of the D. melanogaster chromatin landscape and its associated proteins Authors and affiliations: Elise Parey(1, 2) and Anton Crombach*(1,3) (1) Center for Interdisciplinary Research in Biology (CIRB), Collè!e de France, C#RS, IN$ERM, P$& Uni(ersit) Paris, 75005 Paris, France (2) (c-rrent address) Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, P$& Uni(ersit) Paris, 75005 Paris, France (3) (current address) Inria, Antenne Lyon La Doua, 69603 Villeurbanne, France Author for Correspondence (*): Anton Crombach, Center for Interdisciplinary Research in Biology (CIRB), Collè!e de France, CNRS, I#$ERM, P$& Uni(ersit) Paris, 75005 Paris, "rance, anton.crombach@colle!e0de-france.fr Keywords: phylogenomics, chromatin-associated proteins, chromatin types, histone modi1cations, centromere dri(e, D. melanogaster. 1 of 46 bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted March 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract (221w, max 250w) In the nucleus of eukaryotic cells, !enomic 3#A associates 4ith numerous protein comple5es and RNAs, forming the chromatin landscape.
    [Show full text]
  • Evolution of the D. Melanogaster Chromatin Landscape and Its Associated Proteins
    bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted January 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Evolution of the D. melanogaster chromatin landscape and its associated proteins Authors and affiliations: Elise Parey(1, 2) and Anton Crombach*(1,3,4) (1) Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Université Paris, 75005 Paris, France (2) (current address) Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France (3) (current address) Inria, Antenne Lyon La Doua, 69603 Villeurbanne, France (4) Université de Lyon, INSA-Lyon, LIRIS, UMR 5205, 69621 Villeurbanne, France Author for Correspondence (*): Anton Crombach, Inria, Antenne Lyon La Doua, 69603 Villeurbanne, France, [email protected] 1 of 49 bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted January 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract (240w, max 250w) In the nucleus of eukaryotic cells, genomic DNA associates with numerous protein complexes and RNAs, forming the chromatin landscape. Through a genome-wide study of chromatin- associated proteins in Drosophila cells, five major chromatin types were identified as a refinement of the traditional binary division into hetero- and euchromatin.
    [Show full text]
  • IISER Pune Annual Report 2015-16 Chairperson Pune, India Prof
    dm{f©H$ à{VdoXZ Annual Report 2015-16 ¼ããäÌãÓ¾ã ãä¶ã¹ã¥ã †Ìãâ Êãà¾ã „ÞÞã¦ã½ã ½ãÖ¦Ìã ‡ãŠñ †‡ãŠ †ñÔãñ Ìãõ—ãããä¶ã‡ãŠ ÔãâÔ©ãã¶ã ‡ãŠãè Ô©ãã¹ã¶ãã ãä•ãÔã½ãò ‚㦾ãã£ãìãä¶ã‡ãŠ ‚ã¶ãìÔãâ£ãã¶ã Ôããä֦㠂㣾ãã¹ã¶ã †Ìãâ ãäÍãàã¥ã ‡ãŠã ¹ãî¥ãùã Ôãñ †‡ãŠãè‡ãŠÀ¥ã Öãñý ãä•ã—ããÔãã ¦ã©ãã ÀÞã¶ã㦽ã‡ãŠ¦ãã Ôãñ ¾ãì§ãŠ ÔãÌããó§ã½ã Ôã½ãã‡ãŠÊã¶ã㦽ã‡ãŠ ‚㣾ãã¹ã¶ã ‡ãñŠ ½ã㣾ã½ã Ôãñ ½ããõãäÊã‡ãŠ ãäÌã—ãã¶ã ‡ãŠãñ ÀãñÞã‡ãŠ ºã¶ãã¶ããý ÊãÞããèÊãñ †Ìãâ Ôããè½ããÀãäÖ¦ã / ‚ãÔããè½ã ¹ã㟿ã‰ãŠ½ã ¦ã©ãã ‚ã¶ãìÔãâ£ãã¶ã ¹ããäÀ¾ããñ•ã¶ãã‚ããò ‡ãñŠ ½ã㣾ã½ã Ôãñ œãñ›ãè ‚ãã¾ãì ½ãò Öãè ‚ã¶ãìÔãâ£ãã¶ã àãñ¨ã ½ãò ¹ãÆÌãñÍãý Vision & Mission Establish scientific institution of the highest caliber where teaching and education are totally integrated with state-of-the- art research Make learning of basic sciences exciting through excellent integrative teaching driven by curiosity and creativity Entry into research at an early age through a flexible borderless curriculum and research projects Annual Report 2015-16 Governance Correct Citation Board of Governors IISER Pune Annual Report 2015-16 Chairperson Pune, India Prof. T.V. Ramakrishnan (till 03/12/2015) Emeritus Professor of Physics, DAE Homi Bhabha Professor, Department of Physics, Indian Institute of Science, Bengaluru Published by Dr. K. Venkataramanan (from 04/12/2015) Director and President (Engineering and Construction Projects), Dr.
    [Show full text]
  • The Drosophila Speciation Factor HMR Localizes to Genomic Insulator Sites
    Aus dem Biomedizinischen Centrum der Ludwig-Maximilians-Universität München Medizinische Fakultät Lehrstuhl für Molekularbiologie Vorstand: Prof. Dr. rer. nat. Peter B. Becker The Drosophila speciation factor HMR localizes to genomic insulator sites Dissertation zum Erwerb des Doktorgrades der Naturwissenschaften an der Medizinischen Fakultät der Ludwig-Maximilians-Universität München vorgelegt von Thomas Andreas Gerland aus München Jahr 2017 Gedruckt mit Genehmigung der Medizinischen Fakultät der Ludwig-Maximilians-Universität München Betreuer: Prof. Dr. rer. nat. Axel Imhof Zweitgutachter: Prof. Dr. André Brändli Dekan: Prof. Dr. med. dent. Reinhard Hickel Tag der mündlichen Prüfung: 14.11.2017 Eidesstattliche Versicherung Gerland, Thomas Andreas Ich erkläre hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Thema “The Drosophila speciation factor HMR localizes to genomic insulator sites” selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln nachgewiesen habe. Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht wurde. _________________________________ _________________________________ Ort, Datum Unterschrift Doktorandin/Doktorand Wesentliche Teile dieser Arbeit sind veröffentlicht in: PLoS ONE, 2017 February 16, doi:10.1371/journal.pone.0171798 The Drosophila speciation factor HMR localizes to genomic insulator sites Gerland T. A., Sun B., Smialowski P., Lukacs A., Thomae A. W., Imhof A. Mitwirkungen: Bioinformatische und statistische Datenanalyse durchgeführt in Zusammenarbeit mit Bo Sun, Dr. Pawel Smialowski und Dr. Tobias Straub Next Generation Sequencing durchgeführt in Zusammenarbeit mit Dr.
    [Show full text]
  • Structure, Function, and Evolution of a Signal-Regulated Enhancer
    Structure, Function, and Evolution of a Signal-Regulated Enhancer by Christina Ione Swanson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cell and Developmental Biology) in the University of Michigan 2010 Doctoral Committee: Assistant Professor Scott E. Barolo, Chair Professor J. Douglas Engel Associate Professor Kenneth M. Cadigan Associate Professor Billy Tsai Assistant Professor Patricia J. Wittkopp To my family, for your truly unconditional love and support. And to Mike - the best thing that happened to me in grad school. ii TABLE OF CONTENTS DEDICATION .................................................................................................................. ii LIST OF FIGURES ............................................................................................................ v CHAPTER I: INTRODUCTION ....................................................................................... 1 What do enhancers look like? ................................................................................ 2 Mechanisms of enhancer function ......................................................................... 3 Enhancer structure and organization ...................................................................... 6 Unanswered questions in the field ....................................................................... 10 The D-Pax2 sparkling enhancer .......................................................................... 12 CHAPTER II: STRUCTURAL RULES
    [Show full text]
  • Promoter-Proximal Chromatin Domain Insulator Protein Beaf Mediates
    Louisiana State University LSU Digital Commons Faculty Publications Department of Biological Sciences 5-1-2020 Promoter-proximal chromatin domain insulator protein BeaF mediates local and long-range communication with a transcription factor and directly activates a housekeeping promoter in Drosophila Yuankai Dong Louisiana State University S. V. Satya Prakash Avva Louisiana State University Mukesh Maharjan Louisiana State University Janice Jacobi Tulane University Craig M. Hart Louisiana State University Follow this and additional works at: https://digitalcommons.lsu.edu/biosci_pubs Recommended Citation Dong, Y., Satya Prakash Avva, S., Maharjan, M., Jacobi, J., & Hart, C. (2020). Promoter-proximal chromatin domain insulator protein BeaF mediates local and long-range communication with a transcription factor and directly activates a housekeeping promoter in Drosophila. Genetics, 215 (1), 89-101. https://doi.org/ 10.1534/genetics.120.303144 This Article is brought to you for free and open access by the Department of Biological Sciences at LSU Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. | INVESTIGATION Promoter-Proximal Chromatin Domain Insulator Protein BEAF Mediates Local and Long-Range Downloaded from https://academic.oup.com/genetics/article/215/1/89/5930442 by LSU Health Sciences Ctr user on 05 August 2021 Communication with a Transcription Factor and Directly Activates a Housekeeping Promoter in Drosophila
    [Show full text]
  • Molecular Characterization of the T(4;9)12Gso Mutation and Analysis of the Associated Fitness, Skeletal, and Lymphoproliferative Phenotypes
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2002 Molecular Characterization of the T(4;9)12Gso Mutation and Analysis of the Associated Fitness, Skeletal, and Lymphoproliferative Phenotypes Laura Ray Chittenden University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Biomedical Engineering and Bioengineering Commons Recommended Citation Chittenden, Laura Ray, "Molecular Characterization of the T(4;9)12Gso Mutation and Analysis of the Associated Fitness, Skeletal, and Lymphoproliferative Phenotypes. " PhD diss., University of Tennessee, 2002. https://trace.tennessee.edu/utk_graddiss/2105 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Laura Ray Chittenden entitled "Molecular Characterization of the T(4;9)12Gso Mutation and Analysis of the Associated Fitness, Skeletal, and Lymphoproliferative Phenotypes." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Biomedical Engineering.
    [Show full text]
  • Promoter-Proximal Chromatin Domain Insulator Protein BEAF Mediates Local and Long-Range Communication with a Transcription Facto
    Genetics: Early Online, published on March 17, 2020 as 10.1534/genetics.120.303144 Promoter-proximal chromatin domain insulator protein BEAF mediates local and long- range communication with a transcription factor and directly activates a housekeeping promoter in Drosophila Yuankai Dong,* S. V. Satya Prakash Avva,* Mukesh Maharjan,*,1 Janice Jacobi,† and Craig M. Hart*,2 *Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803 †Hayward Genetics Center, Tulane University, New Orleans, Louisiana 70112 1Present address: Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 0 Copyright 2020. Running title: Transcriptional effects of BEAF insulator proteins Key words: BEAF; Insulators; Chromatin domains; Gene regulation; Enhancer-promoter looping; Drosophila 2Corresponding author: Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, Louisiana, 70803 E-mail: [email protected] 1 ABSTRACT BEAF (Boundary Element-Associated Factor) was originally identified as a Drosophila melanogaster chromatin domain insulator binding protein, suggesting a role in gene regulation through chromatin organization and dynamics. Genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, suggesting a role in promoter function. This would be a nontraditional role for an insulator binding protein. To gain insight into molecular mechanisms of BEAF function, we identified interacting proteins using yeast 2-hybrid assays. Here we focus on the transcription factor Sry-δ. Interactions were confirmed in pull- down experiments using bacterially expressed proteins, by bimolecular fluorescence complementation, and in a genetic assay in transgenic flies. Sry-δ interacted with promoter- proximal BEAF both when bound to DNA adjacent to BEAF or over 2 kb upstream to activate a reporter gene in transient transfection experiments.
    [Show full text]
  • Phylogenetic and Epigenetic Footprinting of the Putative Enhancers of the Peg3 Domain
    RESEARCH ARTICLE Phylogenetic and Epigenetic Footprinting of the Putative Enhancers of the Peg3 Domain Joomyeong Kim*,AnYe Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States of America * [email protected] Abstract The Peg3 (Paternally Expressed Gene 3) imprinted domain is predicted to be regulated through a large number of evolutionarily conserved regions (ECRs) that are localized within a11111 its middle 200-kb region. In the current study, we characterized these potential cis-regula- tory regions using phylogenetic and epigenetic approaches. According to the results, the majority of these ECRs are potential enhancers for the transcription of the Peg3 domain. Also, these potential enhancers can be divided into two groups based on their histone modi- fication and DNA methylation patterns: ubiquitous and tissue-specific enhancers. Phyloge- netic and bioinformatic analyses further revealed that several cis-regulatory motifs are OPEN ACCESS frequently associated with the ECRs, such as the E box, PITX2, NF-κB and RFX1 motifs. A series of subsequent ChIP experiments demonstrated that the trans factor MYOD indeed Citation: Kim J, Ye A (2016) Phylogenetic and Epigenetic Footprinting of the Putative Enhancers of binds to the E box of several ECRs, further suggesting that MYOD may play significant the Peg3 Domain. PLoS ONE 11(4): e0154216. roles in the transcriptional control of the Peg3 domain. Overall, the current study identifies, doi:10.1371/journal.pone.0154216 for the first time, a set of cis-regulatory motifs and corresponding trans factors that may be Editor: Martina Stromvik, McGill University, CANADA critical for the transcriptional regulation of the Peg3 domain.
    [Show full text]
  • Epigenetic Instability of Imprinted Genes in Human Cancers Joomyeong Kim*, Corey L
    Published online 3 September 2015 Nucleic Acids Research, 2015, Vol. 43, No. 22 10689–10699 doi: 10.1093/nar/gkv867 Epigenetic instability of imprinted genes in human cancers Joomyeong Kim*, Corey L. Bretz and Suman Lee Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA Received May 10, 2015; Revised August 14, 2015; Accepted August 17, 2015 ABSTRACT (2,3). Among the 100 imprinted genes found in the hu- man genome, the well-known examples include H19, IGF2 Many imprinted genes are often epigenetically af- (Insulin-like growth factor 2), IGF2R (IGF2 receptor), fected in human cancers due to their functional link- GNAS (stimulatory GTPase ␣), GRB10 (Growth factor- age to insulin and insulin-like growth factor signal- bound protein 10), MEST (Mesoderm-Specific Transcript) ing pathways. Thus, the current study systemati- and PEG3 (Paternally Expressed Gene 3) (3). cally characterized the epigenetic instability of im- Imprinted genes are also clustered in specific chromoso- printed genes in multiple human cancers. First, the mal domains, size-ranging from 0.5 to 2-megabase pair in survey results from TCGA (The Cancer Genome At- length. Yet, small genomic regions, 2–4 kb in length, are las) revealed that the expression levels of the major- known to control the imprinting of large genomic domains, ity of imprinted genes are downregulated in primary thus named Imprinting Control Regions (ICRs) (4). One tumors compared to normal cells. These changes of the main functions of ICRs is first to inherit germ cell- driven DNA methylation as a gametic signal, and later to are also accompanied by DNA methylation level maintain the subsequent allele-specific DNA methylation changes in several imprinted domains, such as the pattern within somatic cells (5).
    [Show full text]
  • Gene Duplication, Lineage-Specific Expansion, And
    INVESTIGATION Gene Duplication, Lineage-Specific Expansion, and Subfunctionalization in the MADF-BESS Family Patterns the Drosophila Wing Hinge Vallari Shukla, Farhat Habib, Apurv Kulkarni, and Girish S. Ratnaparkhi1 Indian Institute of Science Education and Research, Pune, Maharashtra, India 411008 ABSTRACT Gene duplication, expansion, and subsequent diversification are features of the evolutionary process. Duplicated genes can be lost, modified, or altered to generate novel functions over evolutionary timescales. These features make gene duplication a powerful engine of evolutionary change. In this study, we explore these features in the MADF-BESS family of transcriptional regulators. In Drosophila melanogaster, the family contains 16 similar members, each containing an N-terminal, DNA-binding MADF domain and a C-terminal, protein-interacting, BESS domain. Phylogenetic analysis shows that members of the MADF-BESS family are expanded in the Drosophila lineage. Three members, which we name hinge1, hinge2, and hinge3 are required for wing development, with a critical role in the wing hinge. hinge1 is a negative regulator of Winglesss expression and interacts with core wing-hinge patterning genes such as teashirt, homothorax, and jing. Double knockdowns along with heterologous rescue experiments are used to demonstrate that members of the MADF-BESS family retain function in the wing hinge, in spite of expansion and diversification for over 40 million years. The wing hinge connects the blade to the thorax and has critical roles in fluttering during flight. MADF-BESS family genes appear to retain redundant functions to shape and form elements of the wing hinge in a robust and fail-safe manner. HE MADF-BESS gene family in Drosophila melanogaster in a broader sense a subgroup of the individual, indepen- Tconsists of 16 transcriptional regulators (Figure 1A), dent MADF and BESS family genes, where both MADF and coded by 16 discrete genes.
    [Show full text]
  • Epigenetic Profiling of Mammalian Retrotransposons Arundhati Bakshi Louisiana State University and Agricultural and Mechanical College
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2017 Epigenetic Profiling of Mammalian Retrotransposons Arundhati Bakshi Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Life Sciences Commons Recommended Citation Bakshi, Arundhati, "Epigenetic Profiling of Mammalian Retrotransposons" (2017). LSU Doctoral Dissertations. 4357. https://digitalcommons.lsu.edu/gradschool_dissertations/4357 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. EPIGENETIC PROFILING OF MAMMALIAN RETROTRANSPOSONS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Arundhati Bakshi B.S., Louisiana State University, 2013 August 2017 ACKNOWLEDGEMENTS I joined Dr. Joomyeong Kim’s lab as an undergraduate student, a “newbie” to the world of science. He discovered in me the potential to be a good scientist, and then gave me the opportunity in his lab to realize that potential. For that, I will always remain grateful to Dr. Kim, my boss and mentor for the past six years. He gave me the opportunity to learn from his knowledge and experience, and his constructive criticisms frequently helped me fine-tune my ideas. He also trained me to think of science both in publication units as well as the “big- picture,” which is an invaluable skill for a scientist.
    [Show full text]