Coordinate Enhancers Share Common Organizational Features in the Drosophila Genome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Downloading Them Directly from the GO
bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted March 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Evolution of the D. melanogaster chromatin landscape and its associated proteins Authors and affiliations: Elise Parey(1, 2) and Anton Crombach*(1,3) (1) Center for Interdisciplinary Research in Biology (CIRB), Collè!e de France, C#RS, IN$ERM, P$& Uni(ersit) Paris, 75005 Paris, France (2) (c-rrent address) Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, P$& Uni(ersit) Paris, 75005 Paris, France (3) (current address) Inria, Antenne Lyon La Doua, 69603 Villeurbanne, France Author for Correspondence (*): Anton Crombach, Center for Interdisciplinary Research in Biology (CIRB), Collè!e de France, CNRS, I#$ERM, P$& Uni(ersit) Paris, 75005 Paris, "rance, anton.crombach@colle!e0de-france.fr Keywords: phylogenomics, chromatin-associated proteins, chromatin types, histone modi1cations, centromere dri(e, D. melanogaster. 1 of 46 bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted March 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract (221w, max 250w) In the nucleus of eukaryotic cells, !enomic 3#A associates 4ith numerous protein comple5es and RNAs, forming the chromatin landscape. -
Evolution of the D. Melanogaster Chromatin Landscape and Its Associated Proteins
bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted January 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Evolution of the D. melanogaster chromatin landscape and its associated proteins Authors and affiliations: Elise Parey(1, 2) and Anton Crombach*(1,3,4) (1) Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Université Paris, 75005 Paris, France (2) (current address) Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France (3) (current address) Inria, Antenne Lyon La Doua, 69603 Villeurbanne, France (4) Université de Lyon, INSA-Lyon, LIRIS, UMR 5205, 69621 Villeurbanne, France Author for Correspondence (*): Anton Crombach, Inria, Antenne Lyon La Doua, 69603 Villeurbanne, France, [email protected] 1 of 49 bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted January 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract (240w, max 250w) In the nucleus of eukaryotic cells, genomic DNA associates with numerous protein complexes and RNAs, forming the chromatin landscape. Through a genome-wide study of chromatin- associated proteins in Drosophila cells, five major chromatin types were identified as a refinement of the traditional binary division into hetero- and euchromatin. -
IISER Pune Annual Report 2015-16 Chairperson Pune, India Prof
dm{f©H$ à{VdoXZ Annual Report 2015-16 ¼ããäÌãÓ¾ã ãä¶ã¹ã¥ã †Ìãâ Êãà¾ã „ÞÞã¦ã½ã ½ãÖ¦Ìã ‡ãŠñ †‡ãŠ †ñÔãñ Ìãõ—ãããä¶ã‡ãŠ ÔãâÔ©ãã¶ã ‡ãŠãè Ô©ãã¹ã¶ãã ãä•ãÔã½ãò ‚㦾ãã£ãìãä¶ã‡ãŠ ‚ã¶ãìÔãâ£ãã¶ã Ôããä֦㠂㣾ãã¹ã¶ã †Ìãâ ãäÍãàã¥ã ‡ãŠã ¹ãî¥ãùã Ôãñ †‡ãŠãè‡ãŠÀ¥ã Öãñý ãä•ã—ããÔãã ¦ã©ãã ÀÞã¶ã㦽ã‡ãЦãã Ôãñ ¾ãì§ãŠ ÔãÌããó§ã½ã Ôã½ãã‡ãŠÊã¶ã㦽ã‡ãŠ ‚㣾ãã¹ã¶ã ‡ãñŠ ½ã㣾ã½ã Ôãñ ½ããõãäÊã‡ãŠ ãäÌã—ãã¶ã ‡ãŠãñ ÀãñÞã‡ãŠ ºã¶ãã¶ããý ÊãÞããèÊãñ †Ìãâ Ôããè½ããÀãäÖ¦ã / ‚ãÔããè½ã ¹ã㟿ã‰ãŠ½ã ¦ã©ãã ‚ã¶ãìÔãâ£ãã¶ã ¹ããäÀ¾ããñ•ã¶ãã‚ããò ‡ãñŠ ½ã㣾ã½ã Ôãñ œãñ›ãè ‚ãã¾ãì ½ãò Öãè ‚ã¶ãìÔãâ£ãã¶ã àãñ¨ã ½ãò ¹ãÆÌãñÍãý Vision & Mission Establish scientific institution of the highest caliber where teaching and education are totally integrated with state-of-the- art research Make learning of basic sciences exciting through excellent integrative teaching driven by curiosity and creativity Entry into research at an early age through a flexible borderless curriculum and research projects Annual Report 2015-16 Governance Correct Citation Board of Governors IISER Pune Annual Report 2015-16 Chairperson Pune, India Prof. T.V. Ramakrishnan (till 03/12/2015) Emeritus Professor of Physics, DAE Homi Bhabha Professor, Department of Physics, Indian Institute of Science, Bengaluru Published by Dr. K. Venkataramanan (from 04/12/2015) Director and President (Engineering and Construction Projects), Dr. -
The Drosophila Speciation Factor HMR Localizes to Genomic Insulator Sites
Aus dem Biomedizinischen Centrum der Ludwig-Maximilians-Universität München Medizinische Fakultät Lehrstuhl für Molekularbiologie Vorstand: Prof. Dr. rer. nat. Peter B. Becker The Drosophila speciation factor HMR localizes to genomic insulator sites Dissertation zum Erwerb des Doktorgrades der Naturwissenschaften an der Medizinischen Fakultät der Ludwig-Maximilians-Universität München vorgelegt von Thomas Andreas Gerland aus München Jahr 2017 Gedruckt mit Genehmigung der Medizinischen Fakultät der Ludwig-Maximilians-Universität München Betreuer: Prof. Dr. rer. nat. Axel Imhof Zweitgutachter: Prof. Dr. André Brändli Dekan: Prof. Dr. med. dent. Reinhard Hickel Tag der mündlichen Prüfung: 14.11.2017 Eidesstattliche Versicherung Gerland, Thomas Andreas Ich erkläre hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Thema “The Drosophila speciation factor HMR localizes to genomic insulator sites” selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln nachgewiesen habe. Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht wurde. _________________________________ _________________________________ Ort, Datum Unterschrift Doktorandin/Doktorand Wesentliche Teile dieser Arbeit sind veröffentlicht in: PLoS ONE, 2017 February 16, doi:10.1371/journal.pone.0171798 The Drosophila speciation factor HMR localizes to genomic insulator sites Gerland T. A., Sun B., Smialowski P., Lukacs A., Thomae A. W., Imhof A. Mitwirkungen: Bioinformatische und statistische Datenanalyse durchgeführt in Zusammenarbeit mit Bo Sun, Dr. Pawel Smialowski und Dr. Tobias Straub Next Generation Sequencing durchgeführt in Zusammenarbeit mit Dr. -
Structure, Function, and Evolution of a Signal-Regulated Enhancer
Structure, Function, and Evolution of a Signal-Regulated Enhancer by Christina Ione Swanson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cell and Developmental Biology) in the University of Michigan 2010 Doctoral Committee: Assistant Professor Scott E. Barolo, Chair Professor J. Douglas Engel Associate Professor Kenneth M. Cadigan Associate Professor Billy Tsai Assistant Professor Patricia J. Wittkopp To my family, for your truly unconditional love and support. And to Mike - the best thing that happened to me in grad school. ii TABLE OF CONTENTS DEDICATION .................................................................................................................. ii LIST OF FIGURES ............................................................................................................ v CHAPTER I: INTRODUCTION ....................................................................................... 1 What do enhancers look like? ................................................................................ 2 Mechanisms of enhancer function ......................................................................... 3 Enhancer structure and organization ...................................................................... 6 Unanswered questions in the field ....................................................................... 10 The D-Pax2 sparkling enhancer .......................................................................... 12 CHAPTER II: STRUCTURAL RULES -
Promoter-Proximal Chromatin Domain Insulator Protein Beaf Mediates
Louisiana State University LSU Digital Commons Faculty Publications Department of Biological Sciences 5-1-2020 Promoter-proximal chromatin domain insulator protein BeaF mediates local and long-range communication with a transcription factor and directly activates a housekeeping promoter in Drosophila Yuankai Dong Louisiana State University S. V. Satya Prakash Avva Louisiana State University Mukesh Maharjan Louisiana State University Janice Jacobi Tulane University Craig M. Hart Louisiana State University Follow this and additional works at: https://digitalcommons.lsu.edu/biosci_pubs Recommended Citation Dong, Y., Satya Prakash Avva, S., Maharjan, M., Jacobi, J., & Hart, C. (2020). Promoter-proximal chromatin domain insulator protein BeaF mediates local and long-range communication with a transcription factor and directly activates a housekeeping promoter in Drosophila. Genetics, 215 (1), 89-101. https://doi.org/ 10.1534/genetics.120.303144 This Article is brought to you for free and open access by the Department of Biological Sciences at LSU Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. | INVESTIGATION Promoter-Proximal Chromatin Domain Insulator Protein BEAF Mediates Local and Long-Range Downloaded from https://academic.oup.com/genetics/article/215/1/89/5930442 by LSU Health Sciences Ctr user on 05 August 2021 Communication with a Transcription Factor and Directly Activates a Housekeeping Promoter in Drosophila -
Promoter-Proximal Chromatin Domain Insulator Protein BEAF Mediates Local and Long-Range Communication with a Transcription Facto
Genetics: Early Online, published on March 17, 2020 as 10.1534/genetics.120.303144 Promoter-proximal chromatin domain insulator protein BEAF mediates local and long- range communication with a transcription factor and directly activates a housekeeping promoter in Drosophila Yuankai Dong,* S. V. Satya Prakash Avva,* Mukesh Maharjan,*,1 Janice Jacobi,† and Craig M. Hart*,2 *Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803 †Hayward Genetics Center, Tulane University, New Orleans, Louisiana 70112 1Present address: Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 0 Copyright 2020. Running title: Transcriptional effects of BEAF insulator proteins Key words: BEAF; Insulators; Chromatin domains; Gene regulation; Enhancer-promoter looping; Drosophila 2Corresponding author: Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, Louisiana, 70803 E-mail: [email protected] 1 ABSTRACT BEAF (Boundary Element-Associated Factor) was originally identified as a Drosophila melanogaster chromatin domain insulator binding protein, suggesting a role in gene regulation through chromatin organization and dynamics. Genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, suggesting a role in promoter function. This would be a nontraditional role for an insulator binding protein. To gain insight into molecular mechanisms of BEAF function, we identified interacting proteins using yeast 2-hybrid assays. Here we focus on the transcription factor Sry-δ. Interactions were confirmed in pull- down experiments using bacterially expressed proteins, by bimolecular fluorescence complementation, and in a genetic assay in transgenic flies. Sry-δ interacted with promoter- proximal BEAF both when bound to DNA adjacent to BEAF or over 2 kb upstream to activate a reporter gene in transient transfection experiments. -
Gene Duplication, Lineage-Specific Expansion, And
INVESTIGATION Gene Duplication, Lineage-Specific Expansion, and Subfunctionalization in the MADF-BESS Family Patterns the Drosophila Wing Hinge Vallari Shukla, Farhat Habib, Apurv Kulkarni, and Girish S. Ratnaparkhi1 Indian Institute of Science Education and Research, Pune, Maharashtra, India 411008 ABSTRACT Gene duplication, expansion, and subsequent diversification are features of the evolutionary process. Duplicated genes can be lost, modified, or altered to generate novel functions over evolutionary timescales. These features make gene duplication a powerful engine of evolutionary change. In this study, we explore these features in the MADF-BESS family of transcriptional regulators. In Drosophila melanogaster, the family contains 16 similar members, each containing an N-terminal, DNA-binding MADF domain and a C-terminal, protein-interacting, BESS domain. Phylogenetic analysis shows that members of the MADF-BESS family are expanded in the Drosophila lineage. Three members, which we name hinge1, hinge2, and hinge3 are required for wing development, with a critical role in the wing hinge. hinge1 is a negative regulator of Winglesss expression and interacts with core wing-hinge patterning genes such as teashirt, homothorax, and jing. Double knockdowns along with heterologous rescue experiments are used to demonstrate that members of the MADF-BESS family retain function in the wing hinge, in spite of expansion and diversification for over 40 million years. The wing hinge connects the blade to the thorax and has critical roles in fluttering during flight. MADF-BESS family genes appear to retain redundant functions to shape and form elements of the wing hinge in a robust and fail-safe manner. HE MADF-BESS gene family in Drosophila melanogaster in a broader sense a subgroup of the individual, indepen- Tconsists of 16 transcriptional regulators (Figure 1A), dent MADF and BESS family genes, where both MADF and coded by 16 discrete genes. -
View for Two New Positions 7 Connections in China Associated with the AMBI and the Newly Formed Genetics Cluster
www.biology.uiowa.edu Winter 2012 in this issue Changes to Biology Undergraduate and Graduate Programs Former Dean Maxson Rejoins Department of Biology 1 Strengthening Connections in China Winter 2012 | Department of Biology | The UniversiTy of ioWa neW faculty Veena Prahlad Most proteins function efficiently within a narrow range of optimal conditions. Yet, cells and organisms not only survive a wide variety of environmental and physiological fluctuations, but have evolved to colonize a vast diversity of environmental niches. Our lab seeks to understand how organisms function in, and adapt to, varying and stressful environments. To begin to understand this, we focus on an ancient and highly conserved transcriptional program that minimizes the accumulation of damaged and misfolded proteins upon exposure to stress. This transcriptional program, called the heat shock response, is implemented by the transcription factor, heat shock factor 1 (HSF1). Upon exposure to extreme environments, HSF1 activity increases the intracellular levels of specific cytoprotective proteins called the heat shock proteins (HSPs). HSPs are molecular chaperones that maintain protein conformation and help refold or degrade damaged proteins that can result due to stress, thereby restoring cellular function. In isolated cells and unicellular organisms, the heat shock response is autonomously controlled by every cell. However, in the metazoan C. elegans, although the heat shock machinery is present in every cell, the ability of the cell to activate a heat shock response is centrally controlled by the animal’s nervous system. In our lab we ask how the nervous system controls HSP gene expression in non-neuronal cells. Specifically, we investigate how the sensory perception of suboptimal conditions or stress is signaled by the nervous system, which signaling pathways are involved, how the signals are transmitted to non-neuronal cells to regulate protein folding and HSP gene expression, and how the neuronal regulation of the heat shock response impacts organismal growth and reproduction. -
A Schnurri/Mad/Medea Complex Attenuates the Dorsal–Twist Gradient Readout at Vnd
Developmental Biology 378 (2013) 64–72 Contents lists available at SciVerse ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Genomes and Developmental Control A Schnurri/Mad/Medea complex attenuates the dorsal–twist gradient readout at vnd Justin Crocker a, Albert Erives b,* a Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA b Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242-1324, USA article info abstract Article history: Morphogen gradients are used in developing embryos, where they subdivide a field of cells into territories Received 24 November 2012 characterized by distinct cell fate potentials. Such systems require both a spatially-graded distribution of the Received in revised form morphogen, and an ability to encode different responses at different target genes. However, the potential for 13 February 2013 different temporal responses is also present because morphogen gradients typically provide temporal cues, Accepted 4 March 2013 which may be a potential source of conflict. Thus, a low threshold response adapted for an early temporal Available online 13 March 2013 onset may be inappropriate when the desired spatial response is a spatially-limited, high-threshold expression Keywords: pattern. Here, we identify such a case with the Drosophila vnd locus, which is a target of the dorsal (dl) nuclear Drosophila concentration gradient that patterns the dorsal/ventral (D/V) axis of the embryo. The vnd gene plays a critical Morphogen gradients role in the “ventral dominance” hierarchy of vnd, ind,andmsh, which individually specify distinct D/V neural vnd columnar fates in increasingly dorsal ectodermal compartments. -
Localized Repressors Delineate the Neurogenic Ectoderm in the Early Drosophila Embryo
Developmental Biology 280 (2005) 482–493 www.elsevier.com/locate/ydbio Genomes & Developmental Control Localized repressors delineate the neurogenic ectoderm in the early Drosophila embryo Angelike StathopoulosT,1, Michael Levine Division of Genetics and Development, Department of Molecular Cell Biology, Center for Integrative Genomics, University of California, Berkeley, CA 94720, USA Received for publication 3 February 2005, revised 3 February 2005, accepted 3 February 2005 Abstract The Dorsal gradient produces sequential patterns of gene expression across the dorsoventral axis of early embryos, thereby establishing the presumptive mesoderm, neuroectoderm, and dorsal ectoderm. Spatially localized repressors such as Snail and Vnd exclude the expression of neurogenic genes in the mesoderm and ventral neuroectoderm, respectively. However, no repressors have been identified that establish the dorsal limits of neurogenic gene expression. To investigate this issue, we have conducted an analysis of the ind gene, which is selectively expressed in lateral regions of the presumptive nerve cord. A novel silencer element was identified within the ind enhancer that is essential for eliminating expression in the dorsal ectoderm. Evidence is presented that the associated repressor can function over long distances to silence neighboring enhancers. The ind enhancer also contains a variety of known activator and repressor elements. We propose a model whereby Dorsal and EGF signaling, together with the localized Schnurri repressor, define a broad domain of ind expression throughout the entire presumptive neuroectoderm. The ventral limits of gene expression are defined by the Snail and Vnd repressors, while the dorsal border is established by the newly defined silencer element. D 2005 Elsevier Inc. All rights reserved. -
A Schnurri/Mad/Medea Complex Attenuates the Dorsalamp
Developmental Biology 378 (2013) 64–72 Contents lists available at SciVerse ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Genomes and Developmental Control A Schnurri/Mad/Medea complex attenuates the dorsal–twist gradient readout at vnd Justin Crocker a, Albert Erives b,* a Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA b Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242-1324, USA article info abstract Article history: Morphogen gradients are used in developing embryos, where they subdivide a field of cells into territories Received 24 November 2012 characterized by distinct cell fate potentials. Such systems require both a spatially-graded distribution of the Received in revised form morphogen, and an ability to encode different responses at different target genes. However, the potential for 13 February 2013 different temporal responses is also present because morphogen gradients typically provide temporal cues, Accepted 4 March 2013 which may be a potential source of conflict. Thus, a low threshold response adapted for an early temporal Available online 13 March 2013 onset may be inappropriate when the desired spatial response is a spatially-limited, high-threshold expression Keywords: pattern. Here, we identify such a case with the Drosophila vnd locus, which is a target of the dorsal (dl) nuclear Drosophila concentration gradient that patterns the dorsal/ventral (D/V) axis of the embryo. The vnd gene plays a critical Morphogen gradients role in the “ventral dominance” hierarchy of vnd, ind,andmsh, which individually specify distinct D/V neural vnd columnar fates in increasingly dorsal ectodermal compartments.