142 POSTERS: Cell Division and Growth Control

Total Page:16

File Type:pdf, Size:1020Kb

142 POSTERS: Cell Division and Growth Control 142 POSTERS: Cell Division and Growth Control 157A An expression-based approach to identifying factors that mediate cell competition. Claire de la Cova, Laura A. Johnston. Genetics and Development, Columbia University, New York, NY. Cell competition is a process that results in elimination of “losing” cells and survival of “winning” cells within growing organs of both vertebrates and Drosophila melanogaster. In a mosaic Drosophila wing imaginal disc, cells expressing high levels of dMyc compete against and eliminate their neighbors with lower dMyc levels. “Losing” cells die frequently and their competitive elimination requires the pro-apoptotic gene hid. Because little is known about the signal that kills “losing” cells, and no biological markers specific to cell competition exist, we sought to better characterize “winning” and “losing” cells using a gene expression approach. We have generated and isolated competing cell populations from the wing imaginal disc and used gene expression microarrays identify mRNA expression changes in “winning” dMyc cells and wildtype “losing” cells. A large number of significant expression changes occur in dMyc-expressing cells (750 genes at ≥1.5-fold). On the other hand, when growing near dMyc-expressing cells, wildtype “losing” cells display a comparably small number of significant expression changes (58 genes at ≥1.5-fold). We have selected several candidate genes whose expression levels are altered in “losing” cells and used a simple clonal assay of cell competition in the wing imaginal disc to explore their roles in the competitive process. We find that some of our candidate genes contribute to the cell death or to the growth disadvantage of “losing” cells, while others are required for the survival of dMyc- expressing “winning” cells. This data raises the possibility that both “winning” and “losing” cells produce signals necessary for cell competition. 158B Characterization of a Mutation that Produces Cell Competition. Yassi Hafezi, Iswar Hariharan. Molecular and Cell Biology, Univ. of California, Berkeley, Berkeley, CA. The goal of this study is to address the mechanistic basis of a phenomenon known as cell competition. In Drosophila melanogaster, viable yet slow-growing clones of cells can be eliminated from a tissue when they are adjacent to certain faster-growing cells. The basis of competitive ability and the mechanism by which cells eliminate other cells are unclear. Our laboratory has previously identified mutants in over twenty loci in an extensive screen for genes that negatively regulate growth in the developing Drosophila eye. In this study we characterize one viable mutation from this screen and show that it is involved in cell competition. We are currently trying to map the mutation to identify the gene responsible for this phenotype. We are also testing the effects of this mutation on molecules previously implicated in cell competition, dMyc and Decapentaplegic (Dpp), to determine whether it competes in the same way or through a novel mechanism. Ultimately, we hope to better understand this interesting cell behavior. 159C A functional analysis of cell competition using Drosophila cell culture. Nanami Senoo-Matsuda, Laura A. Johnston. Department of Genetics & Development, College of Physicians & Surgeons, Columbia University, New York, NY 10032. Our studies have revealed that developing wing cells in Drosophila melanogaster that differ in expression levels of the growth regulator dMyc can compete, leading to the apoptotic death of the cells with less dMyc (“losers”) and over-representation of cells with more dMyc (“winners”) in the wing (de la Cova et al., 2004). This phenomenon, called cell competition, seems to play a crucial role in the control of organ size. To identify the genetic logic underlying cell competition, we have developed an S2 cell-culture based assay for cell competition to use in a genome-wide, functional RNAi screen. We have made stable cell lines that inducibly express either dMyc or the PI3K, Dp110, or constitutively express GFP, and established an in vitro model of cell competition. Using a variety of co-culture assays we find that cell competition is induced in a dMyc-concentration and time-dependent manner. Our results indicate that cell competition does not require direct cell-to-cell contact and is the result of factors secreted from both the “winner” and “loser” cell population. We will discuss these results and our efforts to identify genes required for competition to occur. POSTERS: Cell Division and Growth Control 143 160A Studies on the regulation of dMyc expression by Insulin and Nutrients signaling. Rajendra Chilukuri1, Federica Parisi2, Daniela Grifoni2, Paola Bellosta1. 1) City College-CUNY,New York, NY; 2) University of Bologna, Italy. myc is a gene whose deregulation is prominent in cancer, and is a critical regulator of growth in flies and mammals. Genetic studies in vertebrates and invertebrates suggest that signals from the conserved patterns organizing morphogens such as Insulin, BMP/Dpp/TGF-b Wnt/Wingless, and Hedgehog contribute to this program, but it is unclear how they monitor and regulate growth. Our and others microarray analysis revealed that the majority of Myc target genes play a role in ribosome biogenesis, protein synthesis and metabolism, consistent with dMyc’s role in cellular growth. We recently demonstrated in vitro using S2 cells, that stimulation of cells with Insulin increases Myc protein levels and this event is dependent on Tor signaling. Our data are consistent with a role of dMyc on Insulin and Nutrients signaling. Most recent data will be presented. 161B Drosophila TCTP is a new component of the TSC pathway. Ya-Chieh Hsu1, Kwang-Wook Choi1,2. 1) Program in Developmental Biology, Baylor College Med, Houston, TX; 2) Molec & Cell Biol, Baylor College Med, Houston, TX. Cellular growth and proliferation are properly coordinated during organogenesis. Misregulation of these processes leads to pathological conditions such as cancer. Tuberous Sclerosis (TSC) is a benign tumor syndrome caused by mutations in either TSC1 or TSC2. Recent studies in Drosophila and other organisms have identified TSC signalling as a conserved pathway for growth control. Activation of the TSC pathway is mediated by Rheb (Ras homologue enriched in brain), a Ras superfamily GTPase. TSC2 has been shown to be the GTPase activating protein (GAP) for Rheb, but a guanine nucleotide exchange factor (GEF) that facilitates the GDP/GTP exchange on Rheb has not been identified. We have found genetic and biochemical evidence which suggests that the highly conserved protein Translationally Controlled Tumor Protein (TCTP) is a new component of the TSC pathway. Reducing dTCTP levels affects cell size, cell number and organ size, which mimics the Drosophila Rheb (dRheb) mutant phenotypes. dTCTP is genetically epistatic to TSC1 and dRheb, but acts upstream of ds6k, a downstream target of dRheb. In addition, dTCTP directly associates with dRheb and displays GEF activity to it both in vivo and in vitro. Expression of the human TCTP (hTCTP) can rescue dTCTP mutant phenotypes. Since hTCTP is also able to interact with human Rheb (hRheb) and stimulates its GTP/GDP exchange, the function of TCTP in the TSC pathway is likely to be conserved throughout evolution. Currently we are identifying critical amino acids mediating the function of dTCTP and dRheb. 162C The role of CUL4-DDB1 in the control of growth and CDT1/DUP levels during Drosophila development. Hyun O Lee, Sima Zacharek. GMB, University of North Carolina, Chapel Hill, NC. CDT1/DUP is an essential replication licensing factor that is degraded at the onset of S phase via ubiquitin-mediated proteolysis to ensure that the genome is replicated only once per cell cycle. The CUL4DDB1 E3 ubiquitin ligase is necessary for the regulated proteolysis of CDT1/DUP after DNA damage, but whether it plays an essential role in the destruction of CDT1/DUP at the beginning of S phase is unclear. In order to examine this issue and to determine the in vivo function of CUL4DDB1 we isolated and characterized mutations in the essential Drosophila Cul4 and Ddb1 genes. Cul4 and Ddb1 null mutants develop until the 1st or 2nd larval instar stage, and then display phenotypes consistent with a growth defect: The mutant animals can survive for up to 10 days without developing further and fail to incorporate BrdU in most cells. Clones of Ddb1 null mutant cells generated by mitotic recombination in larval imaginal discs are reduced in size relative to control clones. Similarly, Cul4 mutant cells grow slowly and are eventually eliminated from the imaginal epithelia most likely via competition with phenotypically normal neighboring cells. Depletion of either CUL4 or DDB1 in homozygous mutant larvae or by RNAi in cultured S2 or HeLa cells results in mild hyper-accumulation of CDT1/ DUP. DDB1 and CDT1/DUP were detected in CUL4 immunocomplexes. Thus, we were surprised to find that clones of either Ddb1 or Cul4 mutant imaginal cells demonstrated normal CDT1/DUP degradation at the G1-S transition, suggesting that CUL4DDB1 is not necessary for cell cycle regulated CDT1/DUP degradation and that the observed hyper-accumulation may be due to growth or cell cycle arrest. Recent results in vertebrate systems suggest redundancy between CUL4 and CUL1 E3 ligases in the control of CDT1/ DUP degradation during the cell cycle. However, cells in Cul1 or Cul1 Cul4 double mutant clones also fail to hyper-accumulate CDT1/DUP. 144 POSTERS: Cell Division and Growth Control 163A Identification and characterisation of novel regulators of insulin signalling. Shivanthy M Visvalingam, Deborah C.I Goberdhan, Clive Wilson. Department of Physiology, Anatomy & Genetics, Le Gros Clark Building, Oxford University, Oxford, GB. The Insulin/Insulin-like growth factor signalling (IIS) cascade is a highly conserved pathway which regulates growth and metabolism in response to the availability of nutrients. Investigating this pathway has immense importance in understanding tumorigenesis, a process which is frequently upregulated, and type 2 diabetes where IIS is reduced.
Recommended publications
  • Columbia College Columbia University in the City of New York
    Columbia College Columbia University in the City of New York BULLETIN | 2011–2012 JULY 15, 2011 Directory of Services University Information (212) 854-1754 Columbia College On-Line http://www.college.columbia.edu/ ADDRESS INQUIRIES AS FOLLOWS: Financial Aid: Office of Financial Aid and Educational Financing Office of the Dean: Mailing address: Columbia College 100 Hamilton Hall 208 Hamilton Hall Mail Code 2802 Mail Code 2805 1130 Amersterdam Avenue 1130 Amersterdam Avenue New York, NY 10027 New York, NY 10027 Office location: 407 Alfred Lerner Hall telephone (212) 854-2441 telephone (212) 854-3711 Academic Success Programs (HEOP/NOP): Health Services: 403 Alfred Lerner Hall Health Services at Columbia Mail Code 2607 401 John Jay Hall 2920 Broadway Mail Code 3601 New York, NY 10027 519 West 114th Street telephone (212) 854-3514 New York, NY 10027 telephone (212) 854-7210 Admissions: http://www.health.columbia.edu/ Office of Undergraduate Admissions 212 Hamilton Hall Housing on Campus: Mail Code 2807 Residence Halls Assignment Office 1130 Amsterdam Avenue 111 Wallach Hall New York, NY 10027 Mail Code 4202 telephone (212) 854-2522 1116 Amsterdam Avenue http://www.studentaffairs.columbia.edu/admissions/ New York, NY 10027 (First-year, transfer, and visitor applications) telephone (212) 854-2775 http://www.columbia.edu/cu/reshalls/ Dining Services: 103 Wein Hall Housing off Campus: Mail Code 3701 Off-Campus Housing Assistance 411 West 116th Street 419 West 119th Street New York, NY 10027 New York, NY 10027 telephone (212) 854-6536 telephone
    [Show full text]
  • Downloading Them Directly from the GO
    bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted March 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Evolution of the D. melanogaster chromatin landscape and its associated proteins Authors and affiliations: Elise Parey(1, 2) and Anton Crombach*(1,3) (1) Center for Interdisciplinary Research in Biology (CIRB), Collè!e de France, C#RS, IN$ERM, P$& Uni(ersit) Paris, 75005 Paris, France (2) (c-rrent address) Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, P$& Uni(ersit) Paris, 75005 Paris, France (3) (current address) Inria, Antenne Lyon La Doua, 69603 Villeurbanne, France Author for Correspondence (*): Anton Crombach, Center for Interdisciplinary Research in Biology (CIRB), Collè!e de France, CNRS, I#$ERM, P$& Uni(ersit) Paris, 75005 Paris, "rance, anton.crombach@colle!e0de-france.fr Keywords: phylogenomics, chromatin-associated proteins, chromatin types, histone modi1cations, centromere dri(e, D. melanogaster. 1 of 46 bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted March 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract (221w, max 250w) In the nucleus of eukaryotic cells, !enomic 3#A associates 4ith numerous protein comple5es and RNAs, forming the chromatin landscape.
    [Show full text]
  • Evolution of the D. Melanogaster Chromatin Landscape and Its Associated Proteins
    bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted January 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Evolution of the D. melanogaster chromatin landscape and its associated proteins Authors and affiliations: Elise Parey(1, 2) and Anton Crombach*(1,3,4) (1) Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Université Paris, 75005 Paris, France (2) (current address) Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France (3) (current address) Inria, Antenne Lyon La Doua, 69603 Villeurbanne, France (4) Université de Lyon, INSA-Lyon, LIRIS, UMR 5205, 69621 Villeurbanne, France Author for Correspondence (*): Anton Crombach, Inria, Antenne Lyon La Doua, 69603 Villeurbanne, France, [email protected] 1 of 49 bioRxiv preprint doi: https://doi.org/10.1101/284828; this version posted January 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract (240w, max 250w) In the nucleus of eukaryotic cells, genomic DNA associates with numerous protein complexes and RNAs, forming the chromatin landscape. Through a genome-wide study of chromatin- associated proteins in Drosophila cells, five major chromatin types were identified as a refinement of the traditional binary division into hetero- and euchromatin.
    [Show full text]
  • The Destinies and Destinations Meeting Review of Rnas
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell, Vol. 95, 451±460, November 13, 1998, Copyright 1998 by Cell Press The Destinies and Destinations Meeting Review of RNAs Tulle Hazelrigg GMC. Since Prospero is independently localized to the Department of Biological Sciences GMC, is prospero mRNA localization gratuitous? The Columbia University answer is no. While staufen mutants alone are not defec- New York, New York 10027 tive in GMC differentation, staufen is important for GMC fate, since staufen mutations enhance defects in GMC fate caused by hypomorphic prospero alleles. Thus, this The third biennial FASEB Summer Research Confer- binary cell fate decision appears to be controlled redun- ence, ªIntracellular RNA Sorting, Transport, and Local- dantly by localization of both prospero mRNA and Pros- ization,º was held June 6±11 in Snowmass, Colorado. pero to the GMC daughter cell. Topics included the biological functions of localized Early Embryonic Development RNAs, the nature of nuclear±cytoplasmic RNA transport, Several mRNAs are localized to the animal or vegetal the role of signaling pathways in RNA localization, the poles of the Xenopus oocyte, and some are implicated nature of cis-acting localization elements within RNAs, in axial patterning of the embryo (reviewed in Schnapp the proteins that bind these elements, and the cellular et al., 1997). Mary Lou King (University of Miami Medical mechanisms that achieve cytoplasmic transport and an- School) presented definitive evidence for an essential choring of RNAs to specific domains within cells. role of one vegetally localized mRNA, VegT mRNA, in early embryogenesis.
    [Show full text]
  • IISER Pune Annual Report 2015-16 Chairperson Pune, India Prof
    dm{f©H$ à{VdoXZ Annual Report 2015-16 ¼ããäÌãÓ¾ã ãä¶ã¹ã¥ã †Ìãâ Êãà¾ã „ÞÞã¦ã½ã ½ãÖ¦Ìã ‡ãŠñ †‡ãŠ †ñÔãñ Ìãõ—ãããä¶ã‡ãŠ ÔãâÔ©ãã¶ã ‡ãŠãè Ô©ãã¹ã¶ãã ãä•ãÔã½ãò ‚㦾ãã£ãìãä¶ã‡ãŠ ‚ã¶ãìÔãâ£ãã¶ã Ôããä֦㠂㣾ãã¹ã¶ã †Ìãâ ãäÍãàã¥ã ‡ãŠã ¹ãî¥ãùã Ôãñ †‡ãŠãè‡ãŠÀ¥ã Öãñý ãä•ã—ããÔãã ¦ã©ãã ÀÞã¶ã㦽ã‡ãŠ¦ãã Ôãñ ¾ãì§ãŠ ÔãÌããó§ã½ã Ôã½ãã‡ãŠÊã¶ã㦽ã‡ãŠ ‚㣾ãã¹ã¶ã ‡ãñŠ ½ã㣾ã½ã Ôãñ ½ããõãäÊã‡ãŠ ãäÌã—ãã¶ã ‡ãŠãñ ÀãñÞã‡ãŠ ºã¶ãã¶ããý ÊãÞããèÊãñ †Ìãâ Ôããè½ããÀãäÖ¦ã / ‚ãÔããè½ã ¹ã㟿ã‰ãŠ½ã ¦ã©ãã ‚ã¶ãìÔãâ£ãã¶ã ¹ããäÀ¾ããñ•ã¶ãã‚ããò ‡ãñŠ ½ã㣾ã½ã Ôãñ œãñ›ãè ‚ãã¾ãì ½ãò Öãè ‚ã¶ãìÔãâ£ãã¶ã àãñ¨ã ½ãò ¹ãÆÌãñÍãý Vision & Mission Establish scientific institution of the highest caliber where teaching and education are totally integrated with state-of-the- art research Make learning of basic sciences exciting through excellent integrative teaching driven by curiosity and creativity Entry into research at an early age through a flexible borderless curriculum and research projects Annual Report 2015-16 Governance Correct Citation Board of Governors IISER Pune Annual Report 2015-16 Chairperson Pune, India Prof. T.V. Ramakrishnan (till 03/12/2015) Emeritus Professor of Physics, DAE Homi Bhabha Professor, Department of Physics, Indian Institute of Science, Bengaluru Published by Dr. K. Venkataramanan (from 04/12/2015) Director and President (Engineering and Construction Projects), Dr.
    [Show full text]
  • The Drosophila Speciation Factor HMR Localizes to Genomic Insulator Sites
    Aus dem Biomedizinischen Centrum der Ludwig-Maximilians-Universität München Medizinische Fakultät Lehrstuhl für Molekularbiologie Vorstand: Prof. Dr. rer. nat. Peter B. Becker The Drosophila speciation factor HMR localizes to genomic insulator sites Dissertation zum Erwerb des Doktorgrades der Naturwissenschaften an der Medizinischen Fakultät der Ludwig-Maximilians-Universität München vorgelegt von Thomas Andreas Gerland aus München Jahr 2017 Gedruckt mit Genehmigung der Medizinischen Fakultät der Ludwig-Maximilians-Universität München Betreuer: Prof. Dr. rer. nat. Axel Imhof Zweitgutachter: Prof. Dr. André Brändli Dekan: Prof. Dr. med. dent. Reinhard Hickel Tag der mündlichen Prüfung: 14.11.2017 Eidesstattliche Versicherung Gerland, Thomas Andreas Ich erkläre hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Thema “The Drosophila speciation factor HMR localizes to genomic insulator sites” selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln nachgewiesen habe. Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht wurde. _________________________________ _________________________________ Ort, Datum Unterschrift Doktorandin/Doktorand Wesentliche Teile dieser Arbeit sind veröffentlicht in: PLoS ONE, 2017 February 16, doi:10.1371/journal.pone.0171798 The Drosophila speciation factor HMR localizes to genomic insulator sites Gerland T. A., Sun B., Smialowski P., Lukacs A., Thomae A. W., Imhof A. Mitwirkungen: Bioinformatische und statistische Datenanalyse durchgeführt in Zusammenarbeit mit Bo Sun, Dr. Pawel Smialowski und Dr. Tobias Straub Next Generation Sequencing durchgeführt in Zusammenarbeit mit Dr.
    [Show full text]
  • Structure, Function, and Evolution of a Signal-Regulated Enhancer
    Structure, Function, and Evolution of a Signal-Regulated Enhancer by Christina Ione Swanson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cell and Developmental Biology) in the University of Michigan 2010 Doctoral Committee: Assistant Professor Scott E. Barolo, Chair Professor J. Douglas Engel Associate Professor Kenneth M. Cadigan Associate Professor Billy Tsai Assistant Professor Patricia J. Wittkopp To my family, for your truly unconditional love and support. And to Mike - the best thing that happened to me in grad school. ii TABLE OF CONTENTS DEDICATION .................................................................................................................. ii LIST OF FIGURES ............................................................................................................ v CHAPTER I: INTRODUCTION ....................................................................................... 1 What do enhancers look like? ................................................................................ 2 Mechanisms of enhancer function ......................................................................... 3 Enhancer structure and organization ...................................................................... 6 Unanswered questions in the field ....................................................................... 10 The D-Pax2 sparkling enhancer .......................................................................... 12 CHAPTER II: STRUCTURAL RULES
    [Show full text]
  • Promoter-Proximal Chromatin Domain Insulator Protein Beaf Mediates
    Louisiana State University LSU Digital Commons Faculty Publications Department of Biological Sciences 5-1-2020 Promoter-proximal chromatin domain insulator protein BeaF mediates local and long-range communication with a transcription factor and directly activates a housekeeping promoter in Drosophila Yuankai Dong Louisiana State University S. V. Satya Prakash Avva Louisiana State University Mukesh Maharjan Louisiana State University Janice Jacobi Tulane University Craig M. Hart Louisiana State University Follow this and additional works at: https://digitalcommons.lsu.edu/biosci_pubs Recommended Citation Dong, Y., Satya Prakash Avva, S., Maharjan, M., Jacobi, J., & Hart, C. (2020). Promoter-proximal chromatin domain insulator protein BeaF mediates local and long-range communication with a transcription factor and directly activates a housekeeping promoter in Drosophila. Genetics, 215 (1), 89-101. https://doi.org/ 10.1534/genetics.120.303144 This Article is brought to you for free and open access by the Department of Biological Sciences at LSU Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. | INVESTIGATION Promoter-Proximal Chromatin Domain Insulator Protein BEAF Mediates Local and Long-Range Downloaded from https://academic.oup.com/genetics/article/215/1/89/5930442 by LSU Health Sciences Ctr user on 05 August 2021 Communication with a Transcription Factor and Directly Activates a Housekeeping Promoter in Drosophila
    [Show full text]
  • Promoter-Proximal Chromatin Domain Insulator Protein BEAF Mediates Local and Long-Range Communication with a Transcription Facto
    Genetics: Early Online, published on March 17, 2020 as 10.1534/genetics.120.303144 Promoter-proximal chromatin domain insulator protein BEAF mediates local and long- range communication with a transcription factor and directly activates a housekeeping promoter in Drosophila Yuankai Dong,* S. V. Satya Prakash Avva,* Mukesh Maharjan,*,1 Janice Jacobi,† and Craig M. Hart*,2 *Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803 †Hayward Genetics Center, Tulane University, New Orleans, Louisiana 70112 1Present address: Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 0 Copyright 2020. Running title: Transcriptional effects of BEAF insulator proteins Key words: BEAF; Insulators; Chromatin domains; Gene regulation; Enhancer-promoter looping; Drosophila 2Corresponding author: Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, Louisiana, 70803 E-mail: [email protected] 1 ABSTRACT BEAF (Boundary Element-Associated Factor) was originally identified as a Drosophila melanogaster chromatin domain insulator binding protein, suggesting a role in gene regulation through chromatin organization and dynamics. Genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, suggesting a role in promoter function. This would be a nontraditional role for an insulator binding protein. To gain insight into molecular mechanisms of BEAF function, we identified interacting proteins using yeast 2-hybrid assays. Here we focus on the transcription factor Sry-δ. Interactions were confirmed in pull- down experiments using bacterially expressed proteins, by bimolecular fluorescence complementation, and in a genetic assay in transgenic flies. Sry-δ interacted with promoter- proximal BEAF both when bound to DNA adjacent to BEAF or over 2 kb upstream to activate a reporter gene in transient transfection experiments.
    [Show full text]
  • Gene Duplication, Lineage-Specific Expansion, And
    INVESTIGATION Gene Duplication, Lineage-Specific Expansion, and Subfunctionalization in the MADF-BESS Family Patterns the Drosophila Wing Hinge Vallari Shukla, Farhat Habib, Apurv Kulkarni, and Girish S. Ratnaparkhi1 Indian Institute of Science Education and Research, Pune, Maharashtra, India 411008 ABSTRACT Gene duplication, expansion, and subsequent diversification are features of the evolutionary process. Duplicated genes can be lost, modified, or altered to generate novel functions over evolutionary timescales. These features make gene duplication a powerful engine of evolutionary change. In this study, we explore these features in the MADF-BESS family of transcriptional regulators. In Drosophila melanogaster, the family contains 16 similar members, each containing an N-terminal, DNA-binding MADF domain and a C-terminal, protein-interacting, BESS domain. Phylogenetic analysis shows that members of the MADF-BESS family are expanded in the Drosophila lineage. Three members, which we name hinge1, hinge2, and hinge3 are required for wing development, with a critical role in the wing hinge. hinge1 is a negative regulator of Winglesss expression and interacts with core wing-hinge patterning genes such as teashirt, homothorax, and jing. Double knockdowns along with heterologous rescue experiments are used to demonstrate that members of the MADF-BESS family retain function in the wing hinge, in spite of expansion and diversification for over 40 million years. The wing hinge connects the blade to the thorax and has critical roles in fluttering during flight. MADF-BESS family genes appear to retain redundant functions to shape and form elements of the wing hinge in a robust and fail-safe manner. HE MADF-BESS gene family in Drosophila melanogaster in a broader sense a subgroup of the individual, indepen- Tconsists of 16 transcriptional regulators (Figure 1A), dent MADF and BESS family genes, where both MADF and coded by 16 discrete genes.
    [Show full text]
  • One Hundred and First
    COneO mm Hundred ENC andEM FirstENT SUNDAY, THE NINTEENTH OF MAY, TWO THOUSAND NINETEEN COMMENCEMENT PROGRAM PROCESSIONAL ... Selected Marches . The Manchester Pipe Band Daniel Pisowloski, Pipe Major Gordon Bell, Drum Sergeant CALL TO ORDER . Marc R. Forster Henry B. Plant Professor of History and College Marshal A CALL TO COMMUNITY . Angela Nzegwu Interim Director of Religious and Spiritual Programs AMERICA THE BEAUTIFUL ��������������������������������������������������������������������������������������������������� George Samuel Grotheer ’19 Constitution Brass Quintet REMARKS BY THE PRESIDENT . Katherine Bergeron President of the College SENIOR CLASS SPEAKER . Issraa Omayma Faiz ’19 PRESENTATION OF OAKES AND LOUISE AMES PRIZE . Jeffrey Cole Dean of the Faculty Professor of Anthropology PRESENTATION OF ANNA LORD STRAUSS MEDAL ���������������������������������������������������������������������� Jefferson A. Singer Dean of the College Faulk Foundation Professor of Psychology CONFERRING OF HONORARY DEGREES . President Bergeron Dean Jeff Cole DeFred G. Folts III ’82 Chair, Connecticut College Board of Trustees COMMENCEMENT ADDRESS . Martin Chalfie and Tulle Inger Hazelrigg CONFERRING OF DEGREES ���������������������������������������������������������������������������������������������������������������� President Bergeron Dean Singer Marina J. Melendez Associate Dean of the College; Dean for Juniors, Seniors and Transfers; Posse Coordinator Marc R. Forster ALUMNI ASSOCIATION WELCOME . Jamie Glanton Costello ’89 President, Board of
    [Show full text]
  • Insect Transcription Factors: a Landscape of Their Structures and Biological Functions in Drosophila and Beyond
    International Journal of Molecular Sciences Review Insect Transcription Factors: A Landscape of Their Structures and Biological Functions in Drosophila and beyond Zhaojiang Guo 1,† , Jianying Qin 1,2,†, Xiaomao Zhou 2 and Youjun Zhang 1,* 1 Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; [email protected] (Z.G.); [email protected] (J.Q.) 2 Longping Branch, Graduate School of Hunan University, Changsha 410125, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-82109518 † These authors contributed equally to this work. Received: 23 October 2018; Accepted: 16 November 2018; Published: 21 November 2018 Abstract: Transcription factors (TFs) play essential roles in the transcriptional regulation of functional genes, and are involved in diverse physiological processes in living organisms. The fruit fly Drosophila melanogaster, a simple and easily manipulated organismal model, has been extensively applied to study the biological functions of TFs and their related transcriptional regulation mechanisms. It is noteworthy that with the development of genetic tools such as CRISPR/Cas9 and the next-generation genome sequencing techniques in recent years, identification and dissection the complex genetic regulatory networks of TFs have also made great progress in other insects beyond Drosophila. However, unfortunately, there is no comprehensive review that systematically summarizes the structures and biological functions of TFs in both model and non-model insects. Here, we spend extensive effort in collecting vast related studies, and attempt to provide an impartial overview of the progress of the structure and biological functions of current documented TFs in insects, as well as the classical and emerging research methods for studying their regulatory functions.
    [Show full text]