Behavioral and Genomic Characterization of Scheduled Ethanol Deprivation

Total Page:16

File Type:pdf, Size:1020Kb

Behavioral and Genomic Characterization of Scheduled Ethanol Deprivation Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2013 Behavioral and genomic characterization of scheduled ethanol deprivation Jonathan Warner Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Medical Pharmacology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/3264 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Behavioral and genomic characterization of scheduled ethanol deprivation A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University by Jonathan Andrew Warner Bachelor of Science, Virginia Commonwealth University, 2007 Director: Michael F. Miles, M.D., Ph.D. Professor, Department of Pharmacology and Toxicology Virginia Commonwealth University Richmond, Virginia November 8th, 2013 II Acknowledgments I would like to sincerely thank my advisor, Michael Miles, for his heroic patience and invaluable guidance throughout my graduate career. I learned an incredible amount during my time under his tutelage, and I say without reservation that I could not have had a better mentor. I feel very lucky to have found my way to Dr. Miles’ laboratory. I would also like to thank my graduate committee for their suggestions and input along the way, and for sitting through my presentations. I would like to thank my mother, father, and sister for all of their support and assistance. Without them this time would have been far more difficult, and I might not have made it this far. I would also like to thank my friends, who have kept me sane. I express my sincere gratitude to Dr. Yan Zhang and Dr. Yunyun Yuan, who gave me the opportunity to study their compound, NAQ. Finally, I would also like to thank the past and present members of the Miles Laboratory, all of whom have contributed in some way to the success of my project. III Table of Contents Acknowledgments........................................................................................................................... ii List of Tables .................................................................................................................................. v List of Figures ............................................................................................................................... vii Abstract ......................................................................................................................................... vii Chapter 1. Introduction ................................................................................................................... 1 Chapter 2. Background and significance ........................................................................................ 8 Alcoholism and alcohol use disorders ......................................................................................... 8 Neurobiology and treatment of alcoholism in humans ............................................................. 10 Animal models of excessive alcohol consumption ................................................................... 13 Chronic intermittent ethanol vapor (CIE) ................................................................................. 14 Intermittent alcohol access (IAA) ............................................................................................. 16 Influence of age, genetics, and environment on IAA ................................................................ 19 Neurobiology of Intermittent Alcohol Access .......................................................................... 24 Chapter 3. Genomic analysis of the alcohol deprivation effect identifies alterations in mesocorticolimbic gene expression functioning in neuroplasticity .............................................. 39 Introduction ............................................................................................................................... 39 Materials and Methods .............................................................................................................. 41 Results ....................................................................................................................................... 45 Discussion ................................................................................................................................. 67 Chapter 4. Intermittent alcohol access elevates ethanol intake in C57BL/6J and C57BL/6NCrl mice ............................................................................................................................................... 82 Introduction ............................................................................................................................... 82 Materials and Methods .............................................................................................................. 86 Results ....................................................................................................................................... 90 Discussion ............................................................................................................................... 114 Chapter 5. Nucleus accumbens transcriptional regulation in the intermittent alcohol access model: differential expression and weighted gene co-expression networks ............................... 120 IV Introduction ............................................................................................................................. 120 Materials and Methods ............................................................................................................ 124 Results ..................................................................................................................................... 131 Discussion ............................................................................................................................... 155 Chapter 6. Mu-opioid receptor-selective antagonist NAQ selectively reduces high concentration alcohol consumption and delays the effects of intermittent alcohol access ................................ 170 Introduction ............................................................................................................................. 170 Materials and Methods ............................................................................................................ 174 Results ..................................................................................................................................... 177 Discussion ............................................................................................................................... 187 Chapter 7. General discussion, limitations, and future directions ............................................. 194 Alcohol deprivation effect studies........................................................................................... 194 Intermittent alcohol access ...................................................................................................... 197 Limitations .............................................................................................................................. 207 Transcriptional regulation mechanisms in NAc during drinking and scheduled deprivation . 215 Other likely nucleus accumbens adaptations of note for future study .................................... 222 List of References ............................................................................................................................ i Appendix 1. Supplementary Materials Location ..................................................................... xxxix Vita ................................................................................................................................................. xl V List of Tables Table 3.1. Top 25 results in NAc from transcription factor binding site analysis performed with oPossum (http://burgundy.cmmt.ubc.ca/oPOSSUM/) in promoter regions +/- 2000 base-pairs from transcription start site for genes regulated by ethanol deprivation in nucleus accumbens, prefrontal cortex, and ventral midbrain of C57BL/6J mice. ......................................................... 60 Table 3.2. Top 20 candidate genes for deprivation-induced elevated ethanol consumption within and across brain regions based on ranking with ToppNet (http://toppgene.cchmc.org/) using 5 gene lists related to ethanol consumption as training sets ............................................................ 65 Table 5.1. Differential gene expression determined by multi-class LIMMA. ............................ 132 Table 5.2. Transcription factor binding site analysis in genes differentially expressed between IAA and CA nucleus accumbens. ............................................................................................... 135 Table 5.3. Significantly over-represented transcription factors with factor, binding protein, or direct mediator of action regulated across groups (LIMMA, F < .05 and/or adjusted p-value < .05) .............................................................................................................................................
Recommended publications
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Antidepression Action of BDNF Requires and Is Mimicked by Gαi1/3
    Antidepression action of BDNF requires and is SEE COMMENTARY mimicked by Gαi1/3 expression in the hippocampus John Marshalla,1,2, Xiao-zhong Zhoub,c,d,1, Gang Chene,1, Su-qing Yangb,c,YaLib,c, Yin Wangb,c, Zhi-qing Zhangb,c, Qin Jiangf, Lutz Birnbaumerg,h,2, and Cong Caob,c,f,i,2 aDepartment of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912; bJiangsu Key Laboratory of Neuropsychiatric Diseases Research, Soochow University, Suzhou 215000, China; cInstitute of Neuroscience, Soochow University, Suzhou 215000, China; dDepartment of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 Jiangsu, China; eDepartment of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu, China; fThe Fourth School of Clinical Medicine, The Affiliated Eye Hospital, Nanjing Medical University, 210029 Nanjing, China; gNeurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; hSchool of Medical Sciences, Institute of Biomedical Research, Catholic University of Argentina, C1107AAZ Buenos Aires, Argentina; and iNorth District, The Municipal Hospital of Suzhou, Suzhou 215001, China Contributed by Lutz Birnbaumer, February 14, 2018 (sent for review December 26, 2017; reviewed by William N. Green and Elizabeth A. Jonas) Stress-related alterations in brain-derived neurotrophic factor (BDNF) proteins encoded by the genes GNAI1, GNAI2,andGNAI3, expression, a neurotrophin that plays a key role in synaptic plasticity, respectively, with more than 94% sequence identity between are believed to contribute to the pathophysiology of depression. Here, Gαi1 and Gαi3 (19). Our studies have demonstrated that Gαi1 we show that in a chronic mild stress (CMS) model of depression the and Gαi3 (but not Gαi2) are required for EGF- and keratinocyte Gαi1 and Gαi3 subunits of heterotrimeric G proteins are down- growth factor (KGF)-induced Akt–mTOR complex 1 (mTORC1) regulated in the hippocampus, a key limbic structure associated with activation (16, 20).
    [Show full text]
  • CAMKK2 (Human) Recombinant Protein
    CAMKK2 (Human) Recombinant Gene Summary: The product of this gene belongs to Protein the Serine/Threonine protein kinase family, and to the Ca(2+)/calmodulin-dependent protein kinase subfamily. Catalog Number: P6478 This protein plays a role in the calcium/calmodulin-dependent (CaM) kinase cascade by Regulation Status: For research use only (RUO) phosphorylating the downstream kinases CaMK1 and CaMK4. Seven transcript variants encoding six distinct Product Description: Human CAMKK2 (NP_006540.3, isoforms have been identified for this gene. Additional 1 a.a. - 588 a.a.) full length recombinant protein with splice variants have been described but their full-length GST-tag at N-terminal using baculovirus expression nature has not been determined. The identified isoforms system. exhibit a distinct ability to undergo autophosphorylation and to phosphorylate the downstream kinases. [provided Host: Viruses by RefSeq] Applications: Func (See our web site product page for detailed applications information) Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Form: Liquid Preparation Method: Baculovirus expression system. Purification: Glutathione sepharose chromatography. Purity: 72% Activity: The activity was measured by off-chip mobility shift assay (MSA). The enzyme was incubated with fluorecence-labeled substrate, Mg (or Mn)/ATP, and Ca/Calmodulin. The phosphorylated and unphosphorylated substrates were separated and detected by MSA device. Substrate: CAMKK substrate, ATP: 500 uM. Storage Buffer: 50 mM Tris-HCl, 150 mM NaCl, 0.05% Brij35, 1 mM DTT, 10% glycerol, pH7.5 Storage Instruction: Stored at -80°C. Aliquot to avoid repeated freezing and thawing. Entrez GeneID: 10645 Gene Symbol: CAMKK2 Gene Alias: CAMKK, CAMKKB, KIAA0787, MGC15254 Page 1/1 Powered by TCPDF (www.tcpdf.org).
    [Show full text]
  • Convergent Lines of Evidence Support CAMKK2 As a Schizophrenia Susceptibility Gene
    UC Irvine UC Irvine Previously Published Works Title Convergent lines of evidence support CAMKK2 as a schizophrenia susceptibility gene. Permalink https://escholarship.org/uc/item/4cp7366h Journal Molecular psychiatry, 19(7) ISSN 1359-4184 Authors Luo, X-J Li, M Huang, L et al. Publication Date 2014-07-01 DOI 10.1038/mp.2013.103 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Molecular Psychiatry (2014) 19, 774–783 & 2014 Macmillan Publishers Limited All rights reserved 1359-4184/14 www.nature.com/mp ORIGINAL ARTICLE Convergent lines of evidence support CAMKK2 as a schizophrenia susceptibility gene X-j Luo1,2,35,MLi3,35, L Huang4,5,6, S Steinberg7, M Mattheisen8, G Liang1, G Donohoe9, Y Shi10, C Chen11,WYue12,13, A Alkelai14, B Lerer14,ZLi10,QYi15, M Rietschel16, S Cichon17, DA Collier18,19, S Tosato20, J Suvisaari21, Dan Rujescu22,23, V Golimbet24, T Silagadze25, N Durmishi26, MP Milovancevic27, H Stefansson7, TG Schulze28,MMNo¨ then17, C Chen29, R Lyne9, DW Morris9, M Gill9, A Corvin9, D Zhang12,13, Q Dong29, RK Moyzis30, K Stefansson7,31, E Sigurdsson31,32,FHu33, MooDS SCZ Consortium36,BSu34 and L Gan1,2 Genes that are differentially expressed between schizophrenia patients and healthy controls may have key roles in the pathogenesis of schizophrenia. We analyzed two large-scale genome-wide expression studies, which examined changes in gene expression in schizophrenia patients and their matched controls. We found calcium/calmodulin (CAM)-dependent protein kinase kinase 2 (CAMKK2) is significantly downregulated in individuals with schizophrenia in both studies.
    [Show full text]
  • Structural and Binding Studies of Human CAMKK2 Kinase Domain Bound to Small Molecule Ligands
    bioRxiv preprint doi: https://doi.org/10.1101/538157; this version posted February 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Structural and binding studies of human CAMKK2 kinase domain bound to small molecule ligands Gerson S. Profeta 1,2, Caio V. dos Reis 1,2, Paulo H. C. Godoi 1,2, Angela M. Fala 1,2, Roger Sartori 2, Anita P. T. Salmazo 2, Priscila Z. Ramos 1,2, Katlin B. Massirer 1,2, Jonathan M. Elkins 2,3, David H. Drewry 4, Opher Gileadi 3 & Rafael M. Couñago 1,2 * 1. Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-875, Brazil 2. Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP, 13083-886, Brazil 3. Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK 4. Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA * Electronic address: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/538157; this version posted February 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Imbim Annual Report 2015
    Department of Medical Biochemistry and Microbiology IMBIM ANNUAL REPORT 2015 DEPARTMENT OF MEDICAL BIOCHEMISTRY AND MICROBIOLOGY ANNUAL REPORT 2015 Pictures taken by Helena Öhrvik The role of copper in mast cell granule homeostasis Ctr2 is a protein involved in cellular transport of copper. Upper panels: staining for tryptase, a mast cell granule protease, in tryptase (Mcpt6)-deficient (negative control), Ctr2-/- and wild type (WT) mast cells. Note that the absence of Ctr2 causes upregulated expression of tryptase. Lower panels: staining of Ctr2-/- and WT mast cells with toluidine blue, a proteoglycan- binding dye. Note increased toluidine blue staining of Ctr2-/- mast cells, indicating increased proteoglycan content of granules. Öhrvik, H., Logeman, B., Noguchi, G., Eriksson, I., Kjellén, L., Thiele, D.J., Pejler, G. (2015) Ctr2 regulates mast cell maturation by affecting the storage and expression of tryptase and proteoglycans. J. Immunol. 195, 3654-364. Edited by Veronica Hammar ISBN no 978-91-979531-8-4 PREFACE Another year has passed with both small and large successes for the laboratory. The Department has a stable staff consisting of some 150 people. Including project workers, post doc etc we are around 250 persons that spend our daily work hours at the Department. Fortunately the granting situation for the IMBIM researchers improved considerably during 2015. Many of the small and medium sized research groups received grants that will help them continue to excel during the coming years. In addition Dan Andersson, Leif Andersson, Per Jemth, and a couple of scientists at ICM, received a hefty 47 milj kr grant from “Knut och Alice Wallenbergs Stiftelse” to support their research on the evolution of new genes and proteins.
    [Show full text]
  • Regulation of Ca2+/Calmodulin-Dependent Protein Kinase Kinase Β by Camp Signaling
    Regulatory phosphorylation of CaMKKβ by PKA Regulation of Ca2+/calmodulin-dependent protein kinase kinase β by cAMP signaling Shota Takabatake,1,* Satomi Ohtsuka,1,* Takeyuki Sugawara, 2 Naoya Hatano,1 Naoki Kanayama,1 Masaki Magari,1 Hiroyuki Sakagami,2 and Hiroshi Tokumitsu1,** 1Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530 Japan, 2Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374 Japan **To whom correspondence should be addressed: Hiroshi Tokumitsu, Ph.D. Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan. Tel/FAX: +81-86-251-8197; E-mail: [email protected] Notes: *S. T. and S. O. contributed equally to this work. Running title: Regulatory phosphorylation of CaMKKβ by PKA The abbreviations used are: CaMKKβ, Ca2+/CaM-dependent protein kinase kinase β; AID, autoinhibitory domain; CaM, calmodulin; CaMK, Ca2+/CaM-dependent protein kinase; AMPK, 5’AMP-activated protein kinase; PKA, cAMP-dependent protein kinase; CDK5, cyclin-dependent kinase 5; GSK3, glycogen synthase kinase 3; DAPK, death-associated kinase ConfliCt of interest: The authors declare that they have no conflict of interest with the contents of this article. 1 Regulatory phosphorylation of CaMKKβ by PKA ABSTRACT BACKGROUND: Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) is a pivotal activator of CaMKI, CaMKIV and 5’-AMP-activated protein kinase (AMPK), controlling Ca2+-dependent intracellular signaling including various neuronal, metabolic and pathophysiological responses. Recently, we demonstrated that CaMKKβ is feedback phosphorylated at Thr144 by the downstream AMPK, resulting in the conversion of CaMKKβ into Ca2+/CaM-dependent enzyme.
    [Show full text]
  • Supplemental Materials
    The infection-tolerant mammalian reservoir of Lyme disease and other zoonoses broadly counters the inflammatory effects of endotoxin Supplemental Materials Figures S1-S5 Tables S1-S20 Figure S1. Digital photograph of two adult Peromyscus leucopus with exudative conjunctivitis and huddled together. The animals had received 10 mg/gm body of Escherichia coli lipopolysaccharide intraperitoneally the day before. Figure S2. Species- and tissue-specific responses to LPS. Independent differential gene expression analysis of RNA-seq data were performed for blood, spleen, and liver tissues of P. leucopus and M. musculus collected 4 h after injection with LPS or buffer alsone as control. These are represented as volcano plots with range- adjusted scales for the log2-transformed fold-changes on x-axes and log10-transformed FDR p values on y- axes. Colors of symbols denote the following: red, up-regulated gene with absolute fold-change > 4.0 and p value < 0.05; purple, down-regulated gene with absolute fold-change > 4.0 and p value < 0.05; and gray, all others. Numbers at the top left and right corners in each plot respresent numbers of down- and up-regulated genes, respectively. Figure 3 is same data with constant scales for x- and y-axes across the plots. Numerical values for each gene in the 6 datasets are provided in Tables S4-S9. Figure S3. Correlation of IL-10 and IL-10 P. leucopus and M. musculus from RNA-seq of spleen and of Figure 6B and TaBle S14. The scatter plot is log10 values of normalized unique reads of one coding sequence against another for each of the four groups, as defined in the legend for Figure 6 and indicated By different symBols.
    [Show full text]
  • Autophosphorylation of Camkk2 Generates Autonomous Activity That
    www.nature.com/scientificreports OPEN Autophosphorylation of CaMKK2 generates autonomous activity that is disrupted by a T85S Received: 02 April 2015 Accepted: 21 August 2015 mutation linked to anxiety and Published: 23 September 2015 bipolar disorder John W. Scott1, Elizabeth Park2, Ramona M. Rodriguiz2, Jonathan S. Oakhill1, Samah M. A. Issa1, Matthew T. O’Brien1, Toby A. Dite1, Christopher G. Langendorf1, William C. Wetsel2,3, Anthony R. Means4 & Bruce E. Kemp1 Mutations that reduce expression or give rise to a Thr85Ser (T85S) mutation of Ca2+-CaM-dependent protein kinase kinase-2 (CaMKK2) have been implicated in behavioural disorders such as anxiety, bipolar and schizophrenia in humans. Here we report that Thr85 is an autophosphorylation site that endows CaMKK2 with a molecular memory that enables sustained autonomous activation following an initial, transient Ca2+ signal. Conversely, autophosphorylation of Ser85 in the T85S mutant fails to generate autonomous activity but instead causes a partial loss of CaMKK2 activity. The loss of autonomous activity in the mutant can be rescued by blocking glycogen synthase kinase-3 (GSK3) phosphorylation of CaMKK2 with the anti-mania drug lithium. Furthermore, CaMKK2 null mice representing a loss of function model the human behavioural phenotypes, displaying anxiety and manic-like behavioural disturbances. Our data provide a novel insight into CaMKK2 regulation and its perturbation by a mutation associated with behavioural disorders. Anxiety and bipolar disorders are among the most prevalent mental health conditions in the world. Genome wide studies have identified the region of chromosome 12q24.31 as a susceptibility locus con- taining the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) gene, which has been impli- cated in the pathogenesis of anxiety, bipolar disorder, and schizophrenia1–3.
    [Show full text]
  • Rabbit Anti-EWSR1 Polyclonal Antibody Reactivity: Hu, Rt, Ms, Dg Synonym: Ewing Sarcoma Breakpoint Region 1, EWS, EWSR1, EWSR-1
    Order Information Description: Rabbit anti-EWSR1 Catalogue#: 600-820 Lot#: See the label Size: 100 ug/200 ul Host: Rabbit Clone: N/A Application: ELISA, WB, IHC, Rabbit anti-EWSR1 Polyclonal Antibody Reactivity: Hu, Rt, Ms, Dg Synonym: Ewing sarcoma breakpoint region 1, EWS, EWSR1, EWSR-1. ANTIGEN PREPARATION A synthetic peptide corresponding to the internal segment of EWSR1 protein. This sequence is identical among human, rat, mouse and dog species. BACKGROUND The EWSR1 gene encodes a putative RNA binding protein. Mutation in this gene causes Ewing sarcoma and neuroectodermal and various other tumors. This gene is involved in a number of different sarcomas as a result of chromosomal translocations. EWSR1 is fused to an ETS transcription factor (FLI-1, ERG, ETV-1, E1AF or FEV) in Ewing sarcoma; to activating transcription factor-1 (ATF-1) in soft tissue clear cell sarcoma; to Wilms Tumor -1 (WT1) in desmoplastic small round cell; to nuclear receptor 4A3 (NR4A3) in extraskeletal myxoid chondrosarcoma, and to C/EBP- homologous protein (CHOP) in myxoid liposarcoma. EWSR1 genes are required for mitotic integrity and survival of neural cells in the early embryonic development, and that the involvement of EWSR1 in mitotic stability is conserved from zebrafish to human. PURIFICATION FORMULATION This affinity purified antibody is supplied in sterile phosphate- The Rabbit IgG is purified by Epitope Affinity Purification. buffered saline (pH7.2) containing antibody stabilizer SPECIFICITY STORAGE This antibody recognizes ~70 kDa of EWSR1 protein. It The antibodies are stable for 12 months from date of receipt when also cross reacts with human, mouse and rat tissues.
    [Show full text]
  • TRPM Channels in Human Diseases
    cells Review TRPM Channels in Human Diseases 1,2, 1,2, 1,2 3 4,5 Ivanka Jimenez y, Yolanda Prado y, Felipe Marchant , Carolina Otero , Felipe Eltit , Claudio Cabello-Verrugio 1,6,7 , Oscar Cerda 2,8 and Felipe Simon 1,2,7,* 1 Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; [email protected] (I.J.); [email protected] (Y.P.); [email protected] (F.M.); [email protected] (C.C.-V.) 2 Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile; [email protected] 3 Faculty of Medicine, School of Chemistry and Pharmacy, Universidad Andrés Bello, Santiago 8370186, Chile; [email protected] 4 Vancouver Prostate Centre, Vancouver, BC V6Z 1Y6, Canada; [email protected] 5 Department of Urological Sciences, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada 6 Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 7560484, Chile 7 Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile 8 Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile * Correspondence: [email protected] These authors contributed equally to this work. y Received: 4 November 2020; Accepted: 1 December 2020; Published: 4 December 2020 Abstract: The transient receptor potential melastatin (TRPM) subfamily belongs to the TRP cation channels family. Since the first cloning of TRPM1 in 1989, tremendous progress has been made in identifying novel members of the TRPM subfamily and their functions. The TRPM subfamily is composed of eight members consisting of four six-transmembrane domain subunits, resulting in homomeric or heteromeric channels.
    [Show full text]
  • Mct6) Knockout Mice: Evidence of a Potential Role in Glucose and Lipid Metabolism
    Molecular Pharmacology Fast Forward. Published on July 10, 2019 as DOI: 10.1124/mol.119.116731 This article has not been copyedited and formatted. The final version may differ from this version. MOL # 116731 Characterization and proteomic-transcriptomic investigation of monocarboxylate transporter 6 (Mct6) knockout mice: evidence of a potential role in glucose and lipid metabolism Authors: Robert S. Jones 1, Chengjian Tu 1,2, Ming Zhang 2, Jun Qu 1,2, and Marilyn E. Morris 1, * 1 Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA 2 New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Downloaded from Buffalo, NY, USA molpharm.aspetjournals.org at ASPET Journals on October 1, 2021 1 Molecular Pharmacology Fast Forward. Published on July 10, 2019 as DOI: 10.1124/mol.119.116731 This article has not been copyedited and formatted. The final version may differ from this version. MOL # 116731 Running title: Mct6 knockout mice and role in glucose and lipid metabolism * Correspondence should be addressed to: Marilyn E. Morris, PhD Department of Pharmaceutical Sciences University at Buffalo State University of New York Downloaded from 352 Kapoor Hall Buffalo, NY 14214 molpharm.aspetjournals.org Ph: (716) 645-4839 [email protected] This manuscript contains: at ASPET Journals on October 1, 2021 23 text pages 5 tables 7 figures 54 references 226 words in Abstract 444 words in Introduction 1536 words in Discussion Nonstandard abbreviations: ALP: alkaline phosphatase, ALT: alanine aminotransferase, BUN: blood urea nitrogen, CRISPR/Cas9: clustered regularly interspaced short palindromic 2 Molecular Pharmacology Fast Forward.
    [Show full text]