Supplemental Materials

Total Page:16

File Type:pdf, Size:1020Kb

Supplemental Materials The infection-tolerant mammalian reservoir of Lyme disease and other zoonoses broadly counters the inflammatory effects of endotoxin Supplemental Materials Figures S1-S5 Tables S1-S20 Figure S1. Digital photograph of two adult Peromyscus leucopus with exudative conjunctivitis and huddled together. The animals had received 10 mg/gm body of Escherichia coli lipopolysaccharide intraperitoneally the day before. Figure S2. Species- and tissue-specific responses to LPS. Independent differential gene expression analysis of RNA-seq data were performed for blood, spleen, and liver tissues of P. leucopus and M. musculus collected 4 h after injection with LPS or buffer alsone as control. These are represented as volcano plots with range- adjusted scales for the log2-transformed fold-changes on x-axes and log10-transformed FDR p values on y- axes. Colors of symbols denote the following: red, up-regulated gene with absolute fold-change > 4.0 and p value < 0.05; purple, down-regulated gene with absolute fold-change > 4.0 and p value < 0.05; and gray, all others. Numbers at the top left and right corners in each plot respresent numbers of down- and up-regulated genes, respectively. Figure 3 is same data with constant scales for x- and y-axes across the plots. Numerical values for each gene in the 6 datasets are provided in Tables S4-S9. Figure S3. Correlation of IL-10 and IL-10 P. leucopus and M. musculus from RNA-seq of spleen and of Figure 6B and TaBle S14. The scatter plot is log10 values of normalized unique reads of one coding sequence against another for each of the four groups, as defined in the legend for Figure 6 and indicated By different symBols. 4.0 3.0 2.0 Interleukin-12 MC ML PC PL 1.0 1.0 2.0 3.0 4.0 5.0 Interleukin-10 Figure S4. Assessment of diversity among individual animals by species in transcriptional responses to LPS for 17 genes. Pairwise coefficients of determination (R2) were calculated for the 66 intraspecies pairs for LPS-treated P. leucopus, the 66 intraspecies pairs for LPS-treated M. musculus, and the 144 interspecies pairs for all LPS-treated animals. Data were drawn from selective RNA-seq for the spleen (Table S14). The top panel is a frequency distribution of R2 values for all 3 sets of determinations. The bottom panel shows just the distributions of intraspecies pairwise determinations. Peromyscus Peromyscus Mus Mus 0.5 0.6 0.7 0.8 0.9 1.0 Pairwise R2 values Mus Peromyscus 1.00 0.95 values 2 R 0.90 0.85 Pairwise 0.80 30 20 10 0 10 20 30 Count Count Figure S5. DEGs of RNA-seq of selected protein coding sequences for blood or spleen samples from P. leucopus of > 1 year of age. The figure comprises 9 box-plots for representative genes, singly or in pairs. The x-axes indicate the treatment groups: control or LPS-treated. The y-axes are log10-transformed, normalized unique reads per coding sequence. Data values by individual coding sequence are given in Table S13. 5.0 5.0 5.0 Blood Blood Blood 4.0 4.0 4.5 3.0 3.0 dehydrogenase 4.0 2.0 3-P 2.0 3.5 1.0 Nitric oxide synthas 2 Arginase 1 0.0 1.0 3.0 Control LPS Glyceraldehyde Control LPS Transforming growh factor β Control LPS Secretory leukoycte peptidase inhib. Integrin binding sialoprotein 5.0 5.0 4.0 Blood Spleen Spleen 4.0 β 4.0 3.0 3.0 3.0 2.0 nterleukin-1 Interleukin-6 Interleukin-10 I Tumor necrosis factor IL-1 receptor antagonist Superoxide dismutase 2 2.0 2.0 1.0 Control LPS Control LPS Control LPS 4.0 4.0 5.0 Spleen Spleen Spleen 3.0 3.0 4.0 2.0 2.0 -deoxygenase 1 3.0 1.0 2,3 CCL2 CXCL11 1.0 2.0 0.0 Colony stimulating factor 2 0.0 Colony stimulating factor 3 1.0 Indoleamine Control LPS Control LPS Pentraxin 3 Control LPS Table S1. Line listing of animals by species and other characteristics for two LPS experiments Microbiome Age Conjunc- Cortico- Nitric Species Animal Group Sex Mass (g) Specimens alpha (weeks tivitis sterone oxide diversity 22275 Control F 15 20 - bld, liv, spl 3.49 254 17.3 22277* Control F 15 14 - bld, liv, spl 3.18 238 1.1 22282 Control F 14 15 - bld, liv, spl 3.51 21 nd 22279 Control F 15 15 - bld, liv, spl 3.50 78 3.9 22321 Control M 13 16 - bld, liv, spl 3.49 214 9.8 22335 Control M 12 17 - bld, liv, spl 3.42 84 7.8 22341 Control M 11 15 - bld, liv, spl 3.80 100 3.7 22315 Control M 13 20 - bld, liv, spl 3.83 497 nd Peromyscus 22258 LPS F 17 26 - bld, liv, spl 3.54 681 7.7 leucopus 22281 LPS F 15 21 + bld, liv, spl 3.61 748 10.2 22278* LPS F 15 17 + bld, liv, spl 3.31 740 11.5 22289 LPS F 15 15 - bld, liv, spl 3.62 642 nd 22292 LPS F 15 20 - bld, liv, spl 3.69 817 0.0 22284 LPS F 15 15 + bld, liv, spl 3.69 671 0.0 22319 LPS M 13 18 - bld, liv, spl 3.76 697 2.7 22316 LPS M 13 21 + bld, liv, spl 3.74 713 14.7 22325 LPS M 12 27 - bld, liv, spl 3.73 697 nd 22332 LPS M 12 25 - bld, liv, spl 3.40 658 nd 22327 LPS M 12 15 + bld, liv, spl 3.77 664 4.7 22339 LPS M 11 20 + bld, liv, spl 3.87 658 11.3 102 Control F 10 20 - bld, liv, spl 3.68 nd nd 120 Control F 10 20 - bld, liv, spl 3.52 21 7.8 F1_01 Control F 10 20 - bld, liv, spl 3.65 159 4.5 F3_02 Control F 10 19 - bld, liv, spl 3.65 109 2.7 106 Control M 12 24 - bld, liv, spl 3.67 34 20.7 115 Control M 12 26 - bld, liv, spl 3.59 137 4.7 116 Control M 12 29 - bld, liv, spl 3.57 38 3.7 Mus M4_04 Control M 12 31 - bld, liv, spl 3.62 40 7.8 musculus 101 LPS F 10 19 - bld, liv, spl 2.98 709 52.1 103 LPS F 10 21 - bld, liv, spl 3.57 699 45.6 104 LPS F 10 20 - bld, liv, spl 3.14 662 29.3 105 LPS F 10 19 - bld, liv, spl 3.47 647 42.6 118 LPS F 10 18 - bld, liv, spl 3.63 709 18.3 F3_03 LPS F 10 21 - bld, liv, spl 3.65 687 23.5 107 LPS M 12 29 - bld, liv, spl 3.69 566 8.1 108 LPS M 12 25 - bld, liv, spl 3.59 490 30.3 109 LPS M 12 29 - bld, liv, spl 3.70 634 25.5 M2_05 LPS M 12 27 - bld, liv, spl 3.66 587 12.2 M4_06 LPS M 12 28 - bld, liv, spl 3.62 518 nd M4_07 LPS M 12 30 - bld, liv, spl 3.62 577 2.5 20694 Control F 83 21 - spl nd nd nd 20713 Control F 73 23 - bld nd nd nd 20733† Control F 79 18 - spl nd nd nd 20807# Control F 69 18 - spl nd nd nd 20949 Control F 54 19 - spl nd nd nd 20495 Control M 93 22 - bld, spl nd nd nd Peromyscus 20613 Control M 84 22 - bld nd nd nd leucopus 20688 LPS F 83 18 + spl nd nd nd 20695 LPS F 83 25 - spl nd nd nd 20696 LPS F 74 18 - bld nd nd nd 20702# LPS F 83 17 - spl nd nd nd 20704 LPS F 74 19 - bld nd nd nd 20732† LPS F 71 23 - bld, spl nd nd nd 20819 LPS F 69 28 + spl nd nd nd 20483 LPS M 94 23 - bld, spl nd nd nd 20501 LPS M 93 24 - bld nd nd nd * Mating pair H-106, same litter † Mating pair H-1056, same litter # Mating pair H-1055, different litter Table S2 Table S2. Pathway enrichments from metabolomics of plasma of Peromyscus leucopus and Mus musculus with or without LPS treatment Pathway Pathway Mus hits Mus Mus Mus Mus p Peromyscus Peromyscus Peromyscus Peromyscus Peromyscus total significant expected enriched value hits significant expected enriched p value Mus KEGG hits Peromyscus KEGG hits Alanine, aspartate and glutamate metabolism 28 25 17 8.66 1.96 6.7E-04 25 15 12.30 1.22 2.0E-01 C01042;C02362;C00049;C00152;C00402; C01042;C02362;C00049;C00152; C03406;C00041;C00232;C00025;C03912; C00402;C00041;C00232;C00025; C20776;C00158;C00438;C00026;C00169; C00334;C00064;C20776;C00158; C00352;C03090 C00026;C00352;C03090 alpha-Linolenic acid metabolism 12 11 4 3.71 1.08 5.7E-01 11 2 5.27 0.38 9.9E-01 C16331;C16327;C06427;C16336;C16300 C06427;C16300 Amino sugar and nucleotide sugar metabolism 35 28 4 10.82 0.37 1.0E+00 35 13 15.37 0.85 9.5E-01 C06241;C00270;C00352;C00190 C00357;C04501;C00270;C00029; C00352;C00267;C00984;C01019; C03410;C00461;C00159;C02336; C00329;C04257;C00052;C03691 Aminoacyl-tRNA biosynthesis 22 21 11 6.80 1.62 7.4E-02 21 18 9.66 1.86 6.2E-04 C00152;C00135;C00079;C00049;C00065; C00152;C00079;C00062;C00064; C00073;C00183;C00041;C00078;C00148; C00037;C00049;C00065;C00073; C00025 C00183;C00041;C00047;C00407; C00123;C00188;C00078;C00082; C00148;C00025 Arachidonic acid metabolism 35 35 4 10.82 0.37 1.0E+00 35 13 15.37 0.85 9.5E-01 C00219;C05956;C02166;C05951 C14768;C14769;C14770;C14771; C00219;C14781;C14813;C05966; C05356;C05956;C00909;C02165; C00427;C00584;C14782;C14814; C14778;C14823;C14812;C14748; C04742;C14749;C04805;C05965; C04853;C01312;C02198;C00696; C00639 Arginine and proline metabolism 37 35 10 11.44 0.87 8.4E-01 35 21 16.25 1.29 1.4E-01 C05933;C00300;C00019;C00763;C05946; C00062;C00334;C00019;C00315; C05938;C00148;C03912;C03287;C00025; C02714;C05936;C00750;C05147; C00077 C00763;C05947;C05938;C04281; C01157;C00148;C03440;C03287; C00025;C01165;C00077;C02946; C04282 Arginine biosynthesis 14 13 9 4.33 2.08 1.2E-02 13 9 6.15 1.46 1.3E-01 C00025;C03406;C00327;C00049;C00169; C00025;C00062;C00437;C00327; C00077;C00026;C00624;C00086 C00049;C00077;C00064;C00026; C00624 Ascorbate and aldarate metabolism 10 9 2 3.09 0.65 8.8E-01 9 4 4.39 0.91 7.4E-01 C01040;C00191;C00800 C01040;C00137;C00029;C00191; C00800;C00818 beta-Alanine metabolism 21 16 5 6.49 0.77 7.1E-01 16 8 9.22 0.87 5.9E-01 C00099;C00049;C02642;C05341;C00135 C00083;C00099;C00049;C02642; C00386;C00750;C05341;C00315 Biosynthesis of unsaturated fatty acids 34 27 7 10.51 0.67 8.9E-01 27 10 14.94 0.67 9.4E-01 C01595;C00219;C03242;C06426;C06429; C00249;C01530;C00712;C01595; C06428;C06427 C00219;C03242;C06426;C06429; C06428;C06427 Biotin metabolism 4 4 1 1.24 0.81 8.2E-01 4 4 1.76 2.28 6.1E-02 C00120 C00120;C05921;C05552;C00047 Butanoate metabolism 15 14 8 4.64 1.72 7.3E-02 13 8 6.59 1.21 2.8E-01 C01089;C00164;C00332;C00025;C00232; C01089;C00164;C00334;C00025; C00246;C00026;C02630 C00232;C00246;C00026;C02630 Caffeine metabolism 12 12 4 3.71 1.08 6.5E-01 12 7 5.27 1.33 3.8E-01 C13747;C07480;C16359;C16360;C16356;
Recommended publications
  • Responses of Bats to White-Nose Syndrome and Implications for Conservation
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2020 Responses of Bats to White-Nose Syndrome and Implications for Conservation Meghan Stark University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Stark, Meghan, "Responses of Bats to White-Nose Syndrome and Implications for Conservation" (2020). Doctoral Dissertations. 2518. https://scholars.unh.edu/dissertation/2518 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. RESPONSES OF BATS TO WHITE-NOSE SYNDROME AND IMPLICATIONS FOR CONSERVATION BY MEGHAN A. STARK B.S., University of Alabama at Birmingham, 2013 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Genetics May 2020 i This dissertation was examined and approved in partial fulfillment of the requirements for the degree of Ph.D. in Genetics by: Dissertation Director, Matthew MacManes, Assoc. Prof. UNH MCBS Jeffrey T. Foster, Associate Professor, NAU PMI W. Kelley Thomas, Professor, UNH MCBS Rebecca Rowe, Associate Professor, UNH NREN Thomas Lee, Associate Professor Emeritus, UNH NREN On April 6, 2020 Approval signatures are on file with the University of New Hampshire Graduate School. ii DEDICATION I dedicate this work to all of the strong women in my life: Myra Michele Ange Heather Michelle Coons Kaitlyn Danielle Cagle Brindlee Michelle Coons Patricia Gail Miller Sarah Jean Lane “Here’s to strong women.
    [Show full text]
  • Universidad Autónoma De Madrid Regulatory Mechanisms of Germinal Centers
    Universidad Autónoma de Madrid Departamento de Biología Molecular Regulatory mechanisms of Germinal Centers PhD Thesis Arantxa Pérez García Madrid, 2016 Regulatory mechanisms of Germinal Centers Memoria presentada por la licenciada en Biología Arantxa Pérez García para optar al título de doctor por la Universidad Autónoma de Madrid Directora de tesis: Almudena R. Ramiro Este trabajo ha sido realizado en el laboratorio de Biología de linfocitos B, en el Centro Nacional de Investigaciones Cardiovasculares (CNIC) Madrid, 2016 Memoria presentada por Arantxa Pérez García, licenciada en Biología, para optar al grado de doctor por la Universidad Autónoma de Madrid. Esta tesis ha sido realizada en el laboratorio de Biología de Linfocitos B del Centro Nacional de Investigaciones Cardiovasculares (CNIC), bajo la dirección de la Doctora Almudena R. Ramiro, y para que así conste y a los efectos oportunos, firma el siguiente certificado; En Madrid, a 21 de Abril de 2016 Almudena R. Ramiro RESUMEN Tras el reconocimiento del antígeno, los linfocitos B pueden iniciar la reacción de centro germinal (GC), en la cual diversifican sus genes de inmunoglobulinas, mediante las reacciones de hipermutación somática (SHM) y cambio de isotipo (CSR), dando lugar a células plasmáticas o B memoria. La transición a través de los diferentes estadios de esta reacción implica la expresión coordinada de redes de genes que permiten una correcta diversificación de los linfocitos B. A nivel molecular, las reacciones de SHM y CSR se desencadenan por la desaminación de citosinas en los genes de las inmunoglobulinas, mediada por AID. La actividad de AID en linfocitos B no está restringida a los genes de las inmunoglobulinas, pudiendo introducir mutaciones en otros genes y mediar translocaciones cromosómicas con potencial linfomagénico.
    [Show full text]
  • Synergistic Genetic Interactions Between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models
    BASIC RESEARCH www.jasn.org Synergistic Genetic Interactions between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models Rory J. Olson,1 Katharina Hopp ,2 Harrison Wells,3 Jessica M. Smith,3 Jessica Furtado,1,4 Megan M. Constans,3 Diana L. Escobar,3 Aron M. Geurts,5 Vicente E. Torres,3 and Peter C. Harris 1,3 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct, with ADPKD usually caused by the genes PKD1 or PKD2 (encoding polycystin-1 and polycystin-2, respectively) and ARPKD caused by PKHD1 (encoding fibrocys- tin/polyductin [FPC]). Primary cilia have been considered central to PKD pathogenesis due to protein localization and common cystic phenotypes in syndromic ciliopathies, but their relevance is questioned in the simple PKDs. ARPKD’s mild phenotype in murine models versus in humans has hampered investi- gating its pathogenesis. Methods To study the interaction between Pkhd1 and Pkd1, including dosage effects on the phenotype, we generated digenic mouse and rat models and characterized and compared digenic, monogenic, and wild-type phenotypes. Results The genetic interaction was synergistic in both species, with digenic animals exhibiting pheno- types of rapidly progressive PKD and early lethality resembling classic ARPKD. Genetic interaction be- tween Pkhd1 and Pkd1 depended on dosage in the digenic murine models, with no significant enhancement of the monogenic phenotype until a threshold of reduced expression at the second locus was breached.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Supp Table 1.Pdf
    Upregulated genes in Hdac8 null cranial neural crest cells fold change Gene Symbol Gene Title 134.39 Stmn4 stathmin-like 4 46.05 Lhx1 LIM homeobox protein 1 31.45 Lect2 leukocyte cell-derived chemotaxin 2 31.09 Zfp108 zinc finger protein 108 27.74 0710007G10Rik RIKEN cDNA 0710007G10 gene 26.31 1700019O17Rik RIKEN cDNA 1700019O17 gene 25.72 Cyb561 Cytochrome b-561 25.35 Tsc22d1 TSC22 domain family, member 1 25.27 4921513I08Rik RIKEN cDNA 4921513I08 gene 24.58 Ofa oncofetal antigen 24.47 B230112I24Rik RIKEN cDNA B230112I24 gene 23.86 Uty ubiquitously transcribed tetratricopeptide repeat gene, Y chromosome 22.84 D8Ertd268e DNA segment, Chr 8, ERATO Doi 268, expressed 19.78 Dag1 Dystroglycan 1 19.74 Pkn1 protein kinase N1 18.64 Cts8 cathepsin 8 18.23 1500012D20Rik RIKEN cDNA 1500012D20 gene 18.09 Slc43a2 solute carrier family 43, member 2 17.17 Pcm1 Pericentriolar material 1 17.17 Prg2 proteoglycan 2, bone marrow 17.11 LOC671579 hypothetical protein LOC671579 17.11 Slco1a5 solute carrier organic anion transporter family, member 1a5 17.02 Fbxl7 F-box and leucine-rich repeat protein 7 17.02 Kcns2 K+ voltage-gated channel, subfamily S, 2 16.93 AW493845 Expressed sequence AW493845 16.12 1600014K23Rik RIKEN cDNA 1600014K23 gene 15.71 Cst8 cystatin 8 (cystatin-related epididymal spermatogenic) 15.68 4922502D21Rik RIKEN cDNA 4922502D21 gene 15.32 2810011L19Rik RIKEN cDNA 2810011L19 gene 15.08 Btbd9 BTB (POZ) domain containing 9 14.77 Hoxa11os homeo box A11, opposite strand transcript 14.74 Obp1a odorant binding protein Ia 14.72 ORF28 open reading
    [Show full text]
  • A B-Cell Receptor-Related Gene Signature Predicts Survival in Mantle
    Published Ahead of Print on February 22, 2018, as doi:10.3324/haematol.2017.184325. Copyright 2018 Ferrata Storti Foundation. A B-cell receptor-related gene signature predicts survival in mantle cell lymphoma: results from the “Fondazione Italiana Linfomi” MCL-0208 trial by Riccardo Bomben, Simone Ferrero, Tiziana D'Agaro, Michele Dal Bo, Alessandro Re, Andrea Evangelista, Angelo Michele Carella, Alberto Zamò, Umberto Vitolo, Paola Omedè, Chiara Rusconi, Luca Arcaini, Luigi Rigacci, Stefano Luminari, Andrea Piccin, Delong Liu, Adrien Wiestner, Gianluca Gaidano, Sergio Cortelazzo, Marco Ladetto, and Valter Gattei Haematologica 2018 [Epub ahead of print] Citation: Riccardo Bomben, Simone Ferrero, Tiziana D'Agaro, Michele Dal Bo, Alessandro Re, Andrea Evangelista, Angelo Michele Carella, Alberto Zamò, Umberto Vitolo, Paola Omedè, Chiara Rusconi, Luca Arcaini, Luigi Rigacci, Stefano Luminari, Andrea Piccin, Delong Liu, Adrien Wiestner, Gianluca Gaidano, Sergio Cortelazzo, Marco Ladetto, and Valter Gattei. A B-cell receptor-related gene signature predicts survival in mantle cell lymphoma: results from the “Fondazione Italiana Linfomi” MCL-0208 trial. Haematologica. 2018; 103:xxx doi:10.3324/haematol.2017.184325 Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in print on a regular issue of the journal.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Supp Material.Pdf
    Simon et al. Supplementary information: Table of contents p.1 Supplementary material and methods p.2-4 • PoIy(I)-poly(C) Treatment • Flow Cytometry and Immunohistochemistry • Western Blotting • Quantitative RT-PCR • Fluorescence In Situ Hybridization • RNA-Seq • Exome capture • Sequencing Supplementary Figures and Tables Suppl. items Description pages Figure 1 Inactivation of Ezh2 affects normal thymocyte development 5 Figure 2 Ezh2 mouse leukemias express cell surface T cell receptor 6 Figure 3 Expression of EZH2 and Hox genes in T-ALL 7 Figure 4 Additional mutation et deletion of chromatin modifiers in T-ALL 8 Figure 5 PRC2 expression and activity in human lymphoproliferative disease 9 Figure 6 PRC2 regulatory network (String analysis) 10 Table 1 Primers and probes for detection of PRC2 genes 11 Table 2 Patient and T-ALL characteristics 12 Table 3 Statistics of RNA and DNA sequencing 13 Table 4 Mutations found in human T-ALLs (see Fig. 3D and Suppl. Fig. 4) 14 Table 5 SNP populations in analyzed human T-ALL samples 15 Table 6 List of altered genes in T-ALL for DAVID analysis 20 Table 7 List of David functional clusters 31 Table 8 List of acquired SNP tested in normal non leukemic DNA 32 1 Simon et al. Supplementary Material and Methods PoIy(I)-poly(C) Treatment. pIpC (GE Healthcare Lifesciences) was dissolved in endotoxin-free D-PBS (Gibco) at a concentration of 2 mg/ml. Mice received four consecutive injections of 150 μg pIpC every other day. The day of the last pIpC injection was designated as day 0 of experiment.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]